Master SIF - REP (Part 1) Image acquisition and Projection Models

Thomas Maugey thomas.maugey@inria.fr

気条
ínría

Fall 2023

Table of Contents

(1) Projection Model
(2) Perspective Projection Model
(3) Omnidirectional projection
(4) Reference

Table of Contents

What is a projection model?

Find the relationship between a point in the 3D world and the corresponding pixel in an image.

Photodetector

Sensor that converts a certain electromagnetic activity into a electrical current.

Usually a semiconductor that transforms a light photons into electrons only for a certain band of energy. The number of electrons collected is proportional to the quantity of light that is received.

One photodiode per Red/Green/Blue channel:

- CCD: charge-coupled device
- CMOS: complementary metal-oxide-semiconductor

One photodiode for all Red/Green/Blue channels:

- Feoven

From photodiode to Pixel

T. Maugey

Projection Model
Perspective Projection Model

Omnidirectiona projection

Reference

A Pixel is a picture element

Active-Pixel Sensor (APS)

 associate to each pixel, one (or several) photodetector and an active amplifier.Interline Transfer CCD Architecture
4-Pixel Array

APS based on CCD

How to capture the light ?

The issue is not only to capture the light intensity, but also the light direction

Table of Contents

（1）Projection Model
（2）Perspective Projection Model
（3）Omnidirectional projection
（4）Reference

Pinhole capture $=$ Perspective projection

T. Maugey

Projection Model
Perspective
Projection Model
Omnidirectional projection

Reference

Filter the light with a hole, in order to have, at most, one ray per 3D point in the scene.

An old idea

T. Maugey

Projection Model

- Ibn Al-Haytham (965-1039)
- Leonardo Da Vinci (1514)
- Johann Zahn (1685)

Aperture and focal length

- The aperture is the hole (pinhole) center O of the camera through which the rays are passing
- The focal length f is the distance between the aperture and the camera plane

Aperture's size

Acquisition and
Projection
T. Maugey

Projection Model

Perspective
Projection Model
Omnidirectional projection

Reference

It controls the trade-off between the quantity of light and the uniqueness of the ray direction per sensor.

In the following, we consider that it is a point.

Focal length

T. Maugey

Projection Model

Perspective
Projection Model

Omnidirectional

 projectionReference

It controls the angle of view of the camera (and thus the zoom).

Camera objectives:

- Small f : wide angle
- High f : zoom

$f=28 \mathrm{~mm}$

$f=50 \mathrm{~mm}$

$f=70 \mathrm{~mm}$

$$
f=210 \mathrm{~mm}
$$

Three coordinate systems

3D point:
Projected point:

$$
\mathbf{P}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Pixel:

$$
\mathbf{p}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathbf{u}=\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]
$$

From Camera to Image coordinates

The relationship between \mathbf{P} and \mathbf{p} is given by:

$$
\left\{\begin{array}{l}
x=? \\
y=?
\end{array}\right.
$$

From Camera to Image coordinates

The relationship between \mathbf{P} and \mathbf{p} is given by:

$$
\left\{\begin{aligned}
x & =f \frac{X}{Z} \\
y & =f \frac{Y}{Z}
\end{aligned}\right.
$$

From Image to Pixel coordinates

Projection
T. Maugey

Projection Model
Perspective
Projection Model

Camera center:
$\mathbf{c}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$

Resolution (pixel. mm^{-1}):
Pixel coordinates:

$$
\mathbf{k}=\left[\begin{array}{l}
k_{x} \\
k_{y}
\end{array}\right]
$$

$\left\{\begin{array}{l}u_{x}=k_{x}\left(x+x_{0}\right) \\ u_{y}=k_{y}\left(y+y_{0}\right)\end{array}\right.$

Homogeneous Coordinates

Represent a n-dimensional coordinate with an $n+1$-dimension vector:

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n} \\
1
\end{array}\right]
$$

Homogeneous divide:

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n} \\
w
\end{array}\right] \rightarrow\left[\begin{array}{c}
v_{1} / w \\
\vdots \\
v_{n} / w \\
1
\end{array}\right]
$$

Two vectors are said homogeneous if their homogeneous divide is equal, e.g.,

$$
\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \equiv\left[\begin{array}{l}
4 \\
6 \\
2
\end{array}\right] \equiv\left[\begin{array}{l}
6 \\
9 \\
3
\end{array}\right]
$$

From Camera to Pixel coordinates

Projection Model

Perspective

Projection Model

Omnidirectional

 projectionReference

$$
\left[\begin{array}{c}
u_{x} \\
u_{y} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
k_{x} f X+k_{x} x_{0} Z \\
k_{y} f Y+k_{y} y_{0} Z \\
Z
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
k_{x} f & 0 & k_{x} x_{0} \\
0 & k_{y} f & k_{y} y_{0} \\
0 & 0 & 1
\end{array}\right]}_{\text {Intrinsic Matrix } \mathbf{K}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Intrinsic matrix

The intrinsic matrix is given by:

$$
\mathbf{K}=\left[\begin{array}{ccc}
k_{x} f & s & k_{x} x_{0} \\
0 & k_{y} f & k_{y} y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

with

- s : skew parameter (in pixels)
- $\left(x_{0}, y_{0}\right)$: principal point coordinates (in mm)
- f : focal length (in mm)
- k_{x}, k_{y} : vertical, horizontal resolution (in pixel. mm^{-1})

Play with it:
http://ksimek.github.io/2013/08/13/intrinsic/

World coordinates

Acquisition and
Projection
T. Maugey

Projection Model

Perspective
Projection Model

Omnidirectiona

 projection
Reference

The point \mathbf{P} might be expressed in the world coordinate system: $\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w}\end{array}\right]$

Change of coordinate system

If (α, β, γ) are the euler angles of the rotation around respectively the (X_{w}, Y_{w}, Z_{w}) axis, the rotation matrix is given by:

$$
\mathbf{R}=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \gamma
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

If the camera center O coordinates expressed in the world system are given by \mathbf{t}, the coordinate system change is expressed as:

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\mathbf{R}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-\mathbf{t}\right)=\underbrace{\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R t}
\end{array}\right]}_{\text {Extrinsic Matrix } \mathbf{E}}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Play with it: http://ksimek.github.io/2012/08/22/extrinsic/

From World to Pixel coordinates

Projection Model
Perspective
Projection Model
Omnidirectional projection
Reference
= Camera

$$
\left[\begin{array}{c}
u_{x} \\
u_{y} \\
1
\end{array}\right] \equiv\left[\begin{array}{ccc}
k_{x} f & 0 & k_{x} x_{0} \\
0 & k_{y} f & k_{y} y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R t}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]=\mathbf{K E}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Perspective projection's properties

- Distant objects look smaller (exercice)
- Lines project to lines (exercice)
- Parallel lines are in general no longer parallel (exercice)
- Parallel lines meet at a vanishing point
- Angles are not preserved
- 3D points can be retrieved from camera motion (cf. Epipolar Geometry)

Pose estimation

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Unknown rotations and positions estimated thanks to known world coordinate positions and their associated pixel positions

$$
\left[\begin{array}{c}
u_{x} \\
u_{y} \\
1
\end{array}\right] \equiv\left[\begin{array}{ccc}
k_{x} f & 0 & k_{x} x_{0} \\
0 & k_{y} f & k_{y} y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R t}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Algorithms

- Find many matches
- And minimize

$$
\min _{(\mathbf{K}, \mathbf{R}, \mathbf{t})} \sum_{i} r_{i}(\mathbf{K}, \mathbf{R}, \mathbf{t})^{2}=\min _{(\mathbf{K}, \mathbf{R}, \mathbf{t})} \sum_{i}\left\|p_{i}^{\text {obs }}-p_{i}^{\text {est }}(\mathbf{K}, \mathbf{R}, \mathbf{t})\right\|_{2}^{2}
$$

- Gauss-Newton Solver
- By first finding inital values $\left(\mathbf{K}_{0}, \mathbf{R}_{0}, \mathbf{t}_{0}\right)$
- Then iteratively refine

$$
\left(\mathbf{K}_{s+1}, \mathbf{R}_{s+1}, \mathbf{t}_{s+1}\right)=\left(\mathbf{K}_{s}, \mathbf{R}_{s}, \mathbf{t}_{s}\right)+\delta(\mathbf{K}, \mathbf{R}, \mathbf{t})
$$

- where $\delta(\mathbf{K}, \mathbf{R}, \mathbf{t})=-\left(\mathbf{J}_{r}^{T} \mathbf{J}_{r}\right)^{-1} \mathbf{J}_{r}^{\top} r$
- Levenberg-Marquardt

Pose estimation applications

- Calibration
- Augmented reality
- Video summary

Table of Contents

(2) Perspective Projection Model
(3) Omnidirectional projection
4) Reference

What is an omnidirectional image?

Definition

An image that represents the light activity arriving at a point (the image center) from every direction (360° field of view).

Applications:

- Virtual reality Head-Mounted Display (HDM)

- Free viewpoint Television More than 1 million videos uploaded on Youtube in 1 year
- Robotics

Omnidirectional capture?

The main issue is to cover a wide angle of view $\left(360^{\circ}\right)$

- Multiple perspective projections by several small degree of view cameras (180° or 360° field of view)

- A curved mirror + one single perspective camera (180° field of view)
- Fish-eye lenses $\left(180^{\circ}\right.$ field of view $)$

In the following, we present the two last ones.

Catadioptric cameras: hyper-catadioptric

Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of equation $\rho=\frac{a}{1+e \cos \theta}$:

Perspective projection on the sensor array:

In the image coordinate:

Catadioptric cameras: hyper-catadioptric

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

In the image coordinate:

Projection on the mirror of equation $\rho=\frac{a}{1+e \cos \theta}$:

$$
\mathbf{P}_{m}=\frac{\mathbf{P}}{\|\mathbf{P}\|} \cdot \rho
$$

$\left[\begin{array}{l}X_{m} \\ Y_{m} \\ Z_{m}\end{array}\right]$

$$
=\frac{\rho}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection on the sensor array:
at the 2 perspective projection or the hyperboloid

Catadioptric cameras: hyper-catadioptric

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of equation $\rho=\frac{a}{1+e \cos \theta}$:

$$
\mathbf{P}_{m}=\frac{\mathbf{P}}{\|\mathbf{P}\|} \cdot \rho
$$

$\left[\begin{array}{c}X_{m} \\ Y_{m} \\ Z_{m}\end{array}\right]$

$$
=\frac{\rho}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection on the sensor array:

$$
\left\{\begin{array}{l}
x=f \frac{X_{m}}{Z_{m}+d} \\
y=f \frac{Y_{m}}{Z_{m}+d}
\end{array}\right.
$$

In the image coordinate:

Catadioptric cameras: hyper-catadioptric

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference
Projection on the mirror of equation $\rho=\frac{a}{1+e \cos \theta}$:

$$
\mathbf{P}_{m}=\frac{\mathbf{P}}{\|\mathbf{P}\|} \cdot \rho
$$

$$
\left[\begin{array}{c}
X_{m} \\
Y_{m} \\
Z_{m}
\end{array}\right]
$$

$$
=\frac{\rho}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection on the sensor array:
$\left\{\begin{array}{l}x=f \frac{X_{m}}{Z_{m}+d} \\ y=f \frac{Y_{m}}{Z_{m}+d}\end{array}\right.$
And:
$d=\frac{2 a e}{1-e^{2}}$ and $\cos (\theta)=\frac{Z}{\|\mathbf{P}\|}$,

In the image coordinate:

Catadioptric cameras: hyper-catadioptric

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference
Projection on the mirror of equation $\rho=\frac{a}{1+e \cos \theta}$:

$$
\mathbf{P}_{m}=\frac{\mathbf{P}}{\|\mathbf{P}\|} \cdot \rho
$$

$\left[\begin{array}{c}X_{m} \\ Y_{m} \\ Z_{m}\end{array}\right]$

$$
=\frac{\rho}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection on the sensor array:
$\left\{\begin{array}{l}x=f \frac{X_{m}}{Z_{m}+d} \\ y=f \frac{Y_{m}}{Z_{m}+d}\end{array}\right.$
And:
$d=\frac{2 a e}{1-e^{2}}$ and $\cos (\theta)=\frac{Z}{\|\mathrm{P}\|}$,

In the image coordinate:

$$
\mathbf{p}=\left[\frac{\frac{1-e^{2}}{1+e^{2}} f X}{\frac{2 e}{1+e^{2}} \sqrt{X^{2}+Y^{2}+Z^{2}}+Z}, \frac{\frac{1-e^{2}}{1+e^{2}} f Y}{\frac{2 e}{1+e^{2}} \sqrt{X^{2}+Y^{2}+Z^{2}}+Z}\right]^{\top}
$$

Catadioptric cameras: Para-catadioptric

T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of
 equation $\rho=\frac{a}{1+\cos \theta}$:

Orthogonal projection on the sensor array:

In the image coordinate:

Catadioptric cameras: Para-catadioptric

T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of

Orthogonal projection on the sensor array:

In the image coordinate:

Catadioptric cameras: Para-catadioptric

T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of
 equation $\rho=\frac{a}{1+\cos \theta}$:

$$
\mathbf{P}_{m}=\frac{\mathbf{P}}{\|\mathbf{P}\|} \cdot \rho
$$

$\left[\begin{array}{c}X_{m} \\ Y_{m} \\ Z_{m}\end{array}\right]=\frac{\rho}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]$
Orthogonal projection on the sensor array:
$\left\{\begin{array}{c}x=X_{m} \\ y=Y_{m}\end{array}\right.$
And $\cos (\theta)=\frac{Z}{\|\mathbf{P}\|}$,
In the image coordinate:

Catadioptric cameras: Para-catadioptric

T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the mirror of

Orthogonal projection on the sensor array:
$\left\{\begin{array}{l}x=X_{m} \\ y=Y_{m}\end{array}\right.$
And $\cos (\theta)=\frac{Z}{\|\mathbf{P}\|}$,

In the image coordinate:

$$
\mathbf{p}=\left[\frac{a X}{\sqrt{X^{2}+Y^{2}+Z^{2}}+Z}, \frac{a Y}{\sqrt{X^{2}+Y^{2}+Z^{2}}+Z}\right]^{\top}
$$

Fisheye lens

Radial distortion of the lens:

$$
r \neq r^{\prime}
$$

Example of radial distortion [F01]:

$$
r^{\prime}=\frac{k_{1} r}{1-k_{2} r^{2}}
$$

Usually, this distortion reads [C07]:

$$
r=f(\theta)
$$

[F01] A. W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and lens distortion. In CVPR (1), pages $125-132,2001$.
[C07] J. Courbon, Y. Mezouar, L. Eck, and P. Martinet. A generic fisheye camera model for robotic applications. In IROS, pages $1683\{1688,2007$

Unified Spherical Model

Projection on the sphere of center O_{1} :

Perspective projection of center O_{2} on the sensor array:

In the image coordinates:

Unified Spherical Model

Projection on the sphere of center O_{1} :

$$
\mathbf{P}_{s}=\frac{\mathbf{P}}{\|\mathbf{P}\|}
$$

$$
\left[\begin{array}{c}
X_{s} \\
Y_{s} \\
Z_{s}
\end{array}\right]=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection of center O_{2} on the sensor array:

In the image coordinates:

Unified Spherical Model

Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Projection on the sphere of center O_{1} :

$$
\mathbf{P}_{s}=\frac{\mathbf{P}}{\|\mathbf{P}\|}
$$

$$
\left[\begin{array}{c}
X_{s} \\
Y_{s} \\
Z_{s}
\end{array}\right]=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection of center O_{2} on the sensor array:

$$
\left\{\begin{array}{l}
x=f \frac{X_{s}}{Z_{S_{s}}+\xi} \\
y=f \frac{Y_{s}+\xi}{Z_{s}+\xi}
\end{array}\right.
$$

In the image coordinates:

Unified Spherical Model

Projection on the sphere of center O_{1} :

$$
\mathbf{P}_{s}=\frac{\mathbf{P}}{\|\mathbf{P}\|}
$$

$$
\left[\begin{array}{c}
X_{s} \\
Y_{s} \\
Z_{s}
\end{array}\right]=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Perspective projection of center O_{2} on the sensor array:

$$
\left\{\begin{array}{l}
x=f \frac{X_{s}}{Z_{S}+\xi} \\
y=f \frac{Z_{s}}{Z_{s}+\xi}
\end{array}\right.
$$

In the image coordinates:

$$
\mathbf{p}=\left[\frac{f X}{\xi \sqrt{X^{2}+Y^{2}+Z^{2}}+Z}, \frac{f Y}{\xi \sqrt{X^{2}+Y^{2}+Z^{2}}+Z}\right]^{\top}
$$

Example of Captured 360° image

Acquisition and
Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

Catadioptric Cameras

[S.K. Nayar and V.N. Peri, "Folded Catadioptric Cameras," Panoramic Vision, pp. 103-119, R., Springer-Verlag, Apr. 2001.]
[S. Baker and S.K. Nayar, ,"Single Viewpoint Catadioptric Cameras," Panoramic Vision, pp. 39-71, R.,
Springer-Verlag, Apr. 2001.]
[S. Baker and S.K. Nayar, "A Theory of Single-Viewpoint Catadioptric Image Formation," International Journal on Computer Vision, Vol. 35, No. 2, pp. 175-196, Nov. 1999.]

Example of Captured 360° image

Acquisition and Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

[http://polymathprogrammer.com/2009/10/15/convert-360-degree-fisheye-image-to-landscape-mode/] $4 \square$ 品 品

Line projections

Let us take a line of equation

$$
\left\{\begin{array}{c}
X=a_{x} t+X_{0} \\
Y=a_{y} t+Y_{0} \\
Z=a_{z} t+Z_{0}
\end{array}\right.
$$

If $k_{x}=k_{y}=f=1$ and $x_{0}=y_{0}=0$. We can write

$$
\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{a_{x} t+X_{0}}{\xi \sqrt{\left(a_{x} t+X_{0}\right)^{2}+\left(a_{y} t+Y_{0}\right)^{2}+\left(a_{z} t+Z_{0}\right)^{2}}+a_{z} t+Z_{0}} \\
\frac{a_{y} t+Y_{0}}{\xi \sqrt{\left(a_{x} t+X_{0}\right)^{2}+\left(a_{y} t+Y_{0}\right)^{2}+\left(a_{z} t+Z_{0}\right)^{2}}+a_{z} t+Z_{0}}
\end{array}\right]
$$

The projection of lines are curves in the spherical image.

Parallel lines projections

Parallel lines in the 3D space
Projection in the spherical camera
The vanishing points are visible in the scene.

Viewport rendering

Projection
T. Maugey

Projection Model
Perspective Projection Model

Omnidirectional projection

Reference

The pixels of the spherical image are placed on the sphere

$$
\mathbf{P}_{s}=[x, y, z]^{\top}
$$

The viewport is oriented towards a direction whose rotation matrix is given by \mathbf{R}.

The center of the viewport is at (c_{u}, c_{v}), with corresponding resolutions $\left(k_{u}, k_{v}\right)$.

The projection of \mathbf{P}_{s} on the viewport is:

Viewport rendering

The pixels of the spherical image are placed on the sphere

$$
\mathbf{P}_{s}=[x, y, z]^{\top}
$$

The viewport is oriented towards a direction whose rotation matrix is given by \mathbf{R}.

The center of the viewport is at (c_{u}, c_{v}), with corresponding resolutions $\left(k_{u}, k_{v}\right)$.

The projection of \mathbf{P}_{s} on the viewport is:

$$
\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \equiv\left[\begin{array}{ccc}
k_{u} c_{u} & 0 & k_{u} f \\
k_{v} c_{v} & k_{v} f & 0 \\
1 & 0 & 0
\end{array}\right] \mathbf{R}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Table of Contents

(2) Perspective Projection Model
(3) Omnidirectional projection
(4) Reference

References

- Radke, R. J. (2013). Computer vision for visual effects. Cambridge University Press.
- Forsyth, D. A., and Ponce, J. (2003). A modern approach. Computer vision: a modern approach, 88-101.
- http://ksimek.github.io/

