
Transformer-based Long-Term Viewport Prediction
in 360◦ Video: Scanpath is All You Need

Fang-Yi Chao†, Cagri Ozcinar‡, Aljosa Smolic†
†V-SENSE, School of Computer Science and Statistics, Trinity College Dublin

{fang-yi.chao, aljosa.smolic}@tcd.ie
‡Samsung Research UK

Abstract—Virtual Reality (VR) multimedia technology has dra-
matically advanced in recent years. Its immersive and interactive
natures enable users to view any direction in 360◦ content
freely. Users do not see the entire 360◦ content at a glance,
but only a portion in the viewport. Viewport-based adaptive
streaming, which streams only the user’s viewport of interest
with high quality, has emerged as the primary technique to save
bandwidth over the best-effort Internet. Thus, users’ viewport
prediction in the forthcoming seconds becomes an essential task
for informing the streaming decisions in the VR system. Various
viewport prediction methods based on deep neural networks have
been proposed. However, typically they are composed of complex
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) that require heavy computation. To achieve high
prediction accuracy in limited computation time in a streaming
system, we propose a new transformer-based architecture, named
360◦ Viewport Prediction Transformer (VPT360), that only
leverages the past viewport scanpath to predict a user’s future
viewport scanpath. We evaluate VPT360 over three widely-used
datasets and compare the computation complexity with the state-
of-the-art methods. The experiments show that our VPT360
provides the highest accuracy for short-term and long-term pre-
diction and achieves the lowest computation complexity. The code
is publicly available at https://github.com/FannyChao/VPT360 to
further contribute to the community.

Index Terms—360◦ video, viewport prediction, head motion
prediction.

I. INTRODUCTION

The rapidly advanced immersive and interactive technolo-
gies in Virtual Reality (VR) bring about the surging popularity
of 360◦ video on commercial streaming platforms. Due to
its omnidirectional nature, which captures spherical spatial
information in all directions, 360◦ video requires a massive
amount of data to be streamed, e.g., eight times more than
traditional videos for the same perceived quality [7]. As users
only see a portion of a given video in the viewport of a
Head-Mounted Display (HMD), to guarantee high Quality of
Experience (QoE) in the viewport seen by users, the entire
360◦ video has to be very high resolution. Recent works have
developed viewport-adaptive streaming solutions [8] where
the portion of the video in the user’s viewport is streamed
at the highest possible quality while the remaining part of
the content is streamed at a lower quality for bandwidth
saving. An essential element of viewport-adaptive streaming

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Num-
ber15/RP/27760.

t = tcurrentt = tcurrent - H t = tcurrent + F

Video display time t

360°

1
8

0
°

Viewport center

Sample point

Historical

viewport scanpath

Predicted

viewport scanpath

Ground truth

viewport scanpath

Fig. 1: Illustration of viewport prediction in 360◦ video.
Our model aims to predict the viewport scanpath in the
forthcoming F seconds given the past H-second viewport
scanpath.

solutions is the viewport prediction algorithm. It predicts the
position of the user viewport in forthcoming time to inform
the downloading strategy in which part of the content should
be streamed in high quality.

Numerous viewport prediction methods were proposed to
benefit 360◦ streaming system. Most of them predict the view-
port center position (i.e., head movement) [1]–[6]. Our work
focuses on viewport center position prediction to optimize the
QoE in the viewport. Existing viewport prediction methods can
be classified into clustering-based [1], [2], and deep-learning-
based [3]–[6] depending on the used techniques.

Comparing clustering-based methods and deep-learning-
based methods, we discover that clustering-based methods
always require collecting viewport trajectories of multiple
users for every 360◦ video in advance since the clusters in
every video are content-dependent, while deep-learning-based
methods can process any 360◦ video once the methods are pre-
trained. However, deep-learning-based methods are typically
composed of complex architectures with numerous Convolu-
tional Neural Network (CNN) and Recurrent Neural Network
(RNN) layers, including elements such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) that re-
quire heavy computation. Recently, we have witnessed the
ground-breaking impact of transformers [9], [10] on natural
language translations. Instead of using CNN or RNN to extract
temporal dependencies in a sequence, a transformer adopts
a multi-head self-attention mechanism to directly capture the
temporal dependencies within elements at any distance in the
sequence.

https://github.com/FannyChao/VPT360

TABLE I: Taxonomy of existing viewport prediction methods
of Model Prediction Window

Cat. Method Input Output Algorithm Parameters Length

Clustering Petrangeli AIVR18 [1] Past scanpath Head Coordinates Spectral Clustering Algorithm / 10s
Taghavi NOSSDAV20 [2] Past scanpath Head Coordinates Clustering / 10s

Deep-learning

Xu PAMI18 [3] Past scanpath + Video Frame Head Coordinates CNN, LSTM, RL 34.00M 30ms (1 frame)
Nguyen MM18 [4] Past scanpath + Saliency map Viewport Map LSTM 58.48M (saliency map) 2.5s

+ 0.36M (scanpath)
Wu AAAI20 [5] Past scanpath + Past Viewport Frames Viewport Map Spherical CNN, RNN 128.87M 8s

+ Future Video Frames
Romero PAMI21 [6] Past scanpath + Saliency Map Head Coordinates LSTM 172.57M 5s

Ours Past scanpath Head Coordinates Transformer 6.3M 5s

Our contributions: Considering that the efficiency of 360◦

streaming system strongly relies on the accuracy of view-
port prediction in limited computation time, we propose a
viewport prediction transformer for 360◦ video, called 360◦

Viewport Prediction Transformer (VPT360). Our proposed
method processes only the past viewport scanpath to achieve
accurate long-term viewport prediction with low computation
complexity. As shown in Fig. 1, our model processes the
evolution of users’ viewport positions over time as scanpath
and captures temporal dependencies between any two positions
in given historical scanpath. Unlike other deep-learning-based
methods, which incorporate various video content features
(e.g., video frames, viewport frames, saliency maps), our ap-
proach only takes advantage of viewport scanpath to simplify
the computation. We evaluate our model over three widely-
used datasets, namely Wu MMSys17 [11], Xu PAMI18 [3],
David MMSys18 [12], and compare the computation com-
plexity with other state-of-the-art methods in terms of the
number of parameters used in the model. The experiments
demonstrate that our VPT360 which uses the least number
of parameters outperforms all the other methods on the three
datasets.

II. RELATED WORK

Table I lists state-of-the-art viewport prediction methods
with the taxonomy of several key characteristics, including
required input data (e.g., scanpath, video frames), output data
type (e.g., head coordinates, viewport map), the applied algo-
rithmic principle, the number of parameters, and the prediction
window length. In the following, we classify these methods
into two categories: clustering-based and deep-learning-based
techniques.

1) Clustering-based methods: Inspired by the vehicle tra-
jectory prediction in [13], Petrangeli et al. [1] leveraged the
spectral clustering algorithm to group similar trajectories by
measuring the distance between any two trajectories. A single
trend trajectory is then computed to represent each cluster’s
average trajectory and predict the viewer’s following viewport
positions. Taghavi et al. [2] proposed to represent the viewport
center with a quaternion. They clustered a group of viewport
centers by computing the distance of each viewport trajectory
and generated a single trend of viewport center for each cluster.

2) Deep-learning-based methods: Xu et al. [3] proposed
to apply Reinforcement Learning (RL) to predict the user’s
next head movement by considering the user’s past view-
port scanpath and spatial-temporal visual features in viewport

images extracted by CNN and LSTM. Nguyen et al. [4]
proposed a deep CNN model to predict saliency maps for
360◦ video and incorporate saliency maps and head orientation
map with LSTM to predict future viewport positions. To
reduce the geometric distortion inherent in spherical projection
(i.e., equirectangular projection), Wu et al. [5] proposed to
adopt a spherical CNN to extract 360◦ spatial features in
the past viewport frames and future video frames, and map
user’s preference in the past viewport frames into future
video frames. The preference embedded visual features are
then incorporated with the user’s past head movement to
predict future viewport positions with GRU. Romero et al. [6]
proposed to leverage saliency maps computed from future
video frames to guide the prediction model by integrating the
user’s past scanpath and future saliency maps with LSTM.

Comparing clustering-based methods and deep-learning-
based methods, we discover that clustering-based methods
have relatively less computation. However, the clusters of
every video are content-dependant, which indicates that it
requires collecting viewing trajectories from multiple users
for any 360◦ video. On the other hand, deep-learning-based
methods can directly be applied to any 360◦ video using
the trained model. Nevertheless, their complex architectures,
which have many learnable parameters in the models, require
heavy computation and lead to high latency in the streaming
system.

Inspired by the success of transformer architectures, we
propose a novel viewport prediction model to address viewport
prediction as a time series forecasting problem. Unlike RNN,
which processes sequential data in order, transformers lever-
age the powerful self-attention mechanism to simultaneously
take account of multiple elements in the input sequence and
attribute different weights to model the impacts between each
element. This architecture achieves better long-term depen-
dency modeling and larger-batch parallel training [9] com-
pared to RNNs. By leveraging the self-attention mechanism,
our transformer-based model uses only the viewport scanpath
without requiring any other content information (e.g., video
frames, saliency maps, etc.) to reduce the computational cost
and attain superior results compared to existing methods.

III. METHODOLOGY

A. Problem Description

In viewport prediction, our goal is to predict a viewer’s
viewport center trajectory (i.e., scanpath) in the following F
seconds given the user’s historical viewport center trajectory

Scaled Dot-Product

Linear Linear LinearLinear Linear Linear

input

sequence

output sequence

Multi-Head
Attention

Add & Norm

Add & Norm
Scaled Dot-Product

Attention

Linear Linear Linear

Concat

Linear

V K Q

Scaled Dot-Product

Attention

h

MatMul

Scale

Mask

SoftMax

MatMul

Q K V

Multi-Head Attention

Position-wise
Feed Forward

Linear

N x

Input embedding

Position embedding

(a) (b) (c)

Fig. 2: (a) Architecture of our transformer-based VPT360
model, (b) multi-head attention module (c), scaled dot-product
attention.

in the previous H seconds. We define {Pt}Tt=0 as a view-
port center trajectory of a viewer consuming a 360◦ video
in duration T . It can be represented in polar coordinates
{Pt = [θt, φt]}Tt=0 where [−π < θ ≤ π,−π/2 < φ ≤
π/2] or Cartesian coordinates {Pt = [xt, yt, zt]}Tt=0 where
[−1 < x ≤ 1,−1 < y ≤ 1,−1 < z ≤ 1]. Let F denote
output prediction window length and H denote input historical
window length. In every time stamp t, the model predicts the
future viewport center position, P̂t+s, for all prediction steps
s ∈ [1, F] with the given historical information Pt−h for all
past steps h ∈ [0, H]. We can formalize the problem as finding
the best model f∗F :

f∗F = argminEt[D(fF ({Pt}tt=t−H), {Pt}t+F
t=t+1)] (1)

where D(·) measures the geometric distance between the
predicted viewport center positions and corresponding ground
truth in each time step s, and Et computes the average distance
of every prediction step in interval t ∈ [t+ 1, t+ F].

B. Model Architecture

We introduce a new viewport prediction model, called
VPT360, which adopts the self-attention layer from trans-
former to predict the user’s long-term viewport positions in
the following F seconds. Fig. 2 shows the overall architecture
of our transformer-based model. As illustrated in Fig. 2a, the
transformer layer comprises two modules, a multi-head self-
attention module, and a position-wise feed-forward network.
We can repeat it N times to extract complex features in all
elements in the sequence.

C. Multi-Head Self-Attention Module

The transformer block shown in Fig. 2a processes a set of
scanpath embeddings {et}tt=t−H as input, and output a set of
updated embeddings {e′t}tt=t−H with temporal dependencies.
We can create the query, key, and value matrices Q ∈
Rdk×dmodel , K ∈ Rdk×dmodel , V ∈ Rdv×dmodel , respectively,
from the given input sequence with the functions:

Q = fQ({ej}tj=1),K = fK({ej}tj=1), V = fV ({ej}tj=1),
(2)

where fQ, fK and fV are the corresponding query, key and
value functions which linearly project the input sequence. The
query matrix Q contains vector representing one element in
the sequence, the key matrix K represents all the elements
in the sequence with a vector, and the value matrix V is the
same as the matrix Q which represents all the elements in the
sequence.

The attention weights between each element can be calcu-
lated with the scaled dot-product attention shown in Fig. 2c
and defined as:

Att(Q,K, V) = softmax(
Q,KT

√
dk

)V (3)

It can be regarded as the matrix V multiply with the weights
calculated by the matrix Q and K. The weights are defined
by how each element of the sequence Q is influenced by
all the other elements in the sequence K. Additionally, the
softmax function normalizes the weights to yield a distribution
between 0 and 1. Those weights are then applied to all the
elements in the sequence in V . The scale factor

√
dk is to

avoid overly large values of the inner product, especially when
the dimensionality is high.

The attention mechanism, shown in Fig. 2b, can be repeated
multiple times with linear projections of Q, K, and V .
This multi-head attention benefits the model to learn from
different representations of Q, K, and V by jointly attending
to information from different representation subspaces at other
positions. These linear representations are done by multiplying
Q, K, and V by weight matrices WQ,WK ,WV that are
learned during the training process.

MultiHead(Q,K, V) = Concat([headj]hj=1)W
O

where headj = Att(QWQ
j ,KW

K
j , V WV

j)
(4)

where the projections are parameter matrices WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv and
WO ∈ Rhdv×dmodel .

D. Position-wise Feed-Forward Network

After self-attention sub-layers aggregate all input embed-
dings with adaptive weights, each layer contains a fully con-
nected feed-forward network to consider interactions between
different dimensions. It consists of two linear transformations
with a ReLU activation in between and is applied to each
position separately and identically.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (5)

where W1 ∈ Rdmodel×4dmodel , W2 ∈ R4dmodel×dmodel , b1 ∈
R4dmodel and b2 ∈ Rdmodel are learnable weights and shared
across all positions. Note that while the linear transformations
are the same across different positions, they use different
weights in different layers.

E. Positional Embedding

Since there is no recurrent unit in transformer layer to
capture temporal features, we exploit positional embedding
to infuse the relative or absolute position information of the

TABLE II: Main characteristics of three datasets containing
scanpaths collected with HTC Vive HMD in 360◦ video. HM
and EF denote Head Movement and Eye Fixation, respectively.

Viewer Video Video Video Ground truth
Dataset # # Length Size Annotation

Wu MMSys17 [11] 48 9 2-10 min. 2k HM
Xu PAMI18 [3] 58 76 10-80 sec. 3k-8k HM / EF

David MMSys18 [12] 57 19 20 sec. 4k HM / EF

elements in the input sequence. We follow the work in [9]
to use the summation of input sequence with sine and cosine
functions of different frequencies:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)
(6)

where pos denotes the position and i denotes the dimension.
This sinusoidal function allows the model to attend by rel-
ative positions easily. We also tried the learnable position
embedding as used in [10], but found that this led to worse
performance in our case. We analyze the effect of the position
embedding in our experiments.

F. Combination Loss Function

In the training procedure, we use mean square error (MSE)
as a loss function due to its simplicity to measure the distance
between the predicted sequence and the ground truth sequence.
To improve the prediction accuracy, we compute the velocity
of each element in a sequence and measure the distance
of velocity between the predicted sequence and the ground
truth sequence by MSE. The motion velocity V is the root
mean square value of the position in current moment and the
position in the last moment, where V =

√
(Pt − Pt−1)2 =√

(xt − xt−1)2 + (yt − yt−1)2 + (zt − zt−1)2. Our loss func-
tion is then defined as the combination of position MSE and
motion velocity MSE as:

L = α MSE(P̂ , P) + β MSE(V̂ , V) (7)

where V̂ denotes the motion velocity in predicted position P̂ ,
and V denotes the motion velocity in ground truth position P .
The hyper-parameters α and β are used to balance the scale
of two loss components. We set (α, β) = (0.75, 0.25) in this
work by experiments.

IV. EXPERIMENTS

A. Dataset Analysis

Existing viewport prediction methods listed in Table I were
developed on different datasets. We selected three widely-used
datasets for a fair evaluation, namely Wu MMSys17 [11],
Xu PAMI18 [3], and David MMSys18 [12]. They were
recorded as Head Movements (HM) or Eye Fixations (EF) of
observers watching 360◦ videos with HTC Vive HMD. The
main characteristics of the datasets are shown in Table II.

Different video contents lead to different viewing scanpath.
We computed accumulated angular motion in every 5-second
scanpath of the three datasets and illustrated the histograms
in Fig. 3. Accumulated angular motion is defined as the

0 50 100 150 200 250 300 350 400
Accumulated angular motion (degree)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

Wu_MMSys17
Xu_PAMI18
David_MMSys18

Fig. 3: Histogram of accumulative angular motion in every
5-second scanpath in three datasets. Accumulated angular
motion is the summation of absolute head rotation angle in
a given scanpath.

summation of absolute head rotation angle in a given scanpath
sequence. For instance, if the observer’s head rotates a◦ to the
left and then rotates b◦ to the right, the accumulated angular
motion is (a + b)◦. We can see from Fig. 3 that 85% of
scanpaths in the Wu MMSys17 dataset and 67% of scanpaths
in the Xu PAMI18 dataset have accumulated angular motion
smaller than 50◦. It indicates that most scanpaths in these two
datasets do not have motion more than a half Field of View
(FoV) size of the viewport. Note that the FoV size is set to
100◦ referring to the common HMD (i.e., HTC Vive, Oculus
Rift) on the market. On the other hand, the David MMSys18
dataset obtains a significantly more extensive range of accu-
mulated angular motion in every 5-second scanpath. We thus
regard the David MMSys18 dataset as the most challenging
one and use it in our experiments for ablation study. Finally,
all these datasets are used for comparison between our method
and other state-of-the-art methods.

B. Implementation Details

Here we use Cartesian coordinates (i.e., x, y, z) rather than
polar coordinates (i.e., θ, φ) to represent viewport position
since the former retains continuous between ±1 in x, y, z
dimensions on the sphere, while the latter has a periodic issue
which −π = π in θ coordinate. We set the input historical
window length H = 1 second and output prediction window
length F = 5 seconds since the professional streaming systems
(e.g., Facebook) download video segments at least 5 seconds
before the playout time [14]. Precisely, our model forecasts
a user’s viewport scanpath in the forthcoming 5 seconds
by considering his/her previous 1-second viewport scanpath.
The sample rate is 25 elements per second, implying that
the model inputs a 25-element sequence and outputs a 125-
element sequence.

We use David MMSys18 to conduct an ablation study of
our method. Following the settings in Romero PAMI21 [6],
we selected ten videos viewed by 28 observers for training
and five videos viewed by the other 29 observers for testing.
Our transformer employs N = 1 layer encoder with h = 8
multi-head attention and model length dmodel = 512, where
dk = dv = dmodel/h = 64 following [9]. We used batch size
5, learning rate 2 × 10−7 with 0.99 decay rate, and Adam

TABLE III: Quantitative results of the ablation study. All the
scores are shown in average great circle distance (in rad.) from
the 1st to the 5th second, which the lower value indicates the
better prediction accuracy. The best scores are shown in bold.

1st s 2nd s 3rd s 4th s 5th s

SPE, Lpos 0.269 0.668 0.952 1.117 1.191
SPE, Lpos+vel 0.239 0.637 0.934 1.095 1.139
LPE, Lpos 0.354 0.749 1.004 1.174 1.293
LPE, Lpos+vel 0.401 0.774 1.018 1.179 1.287

input window H=0.5s 0.219 0.638 0.959 1.176 1.329
input window H=1.0s 0.239 0.637 0.934 1.095 1.139
input window H=1.5s 0.319 0.700 0.965 1.141 1.251
input window H=2.0s 0.307 0.706 0.988 1.170 1.272

Enc 1 layer 0.239 0.637 0.934 1.095 1.139
Enc 2 layers 0.258 0.652 0.920 1.095 1.191
Enc 3 layers 0.283 0.673 0.945 1.125 1.210

Ours (SPE, Lpos+vel) 0.239 0.637 0.934 1.095 1.139
Ours, SM, Enc 1 layer 0.355 0.765 1.021 1.174 1.271
Ours, SM, Enc 2 layers 0.313 0.752 1.056 1.247 1.362
Ours, SM, Enc 3 layers 0.278 0.850 1.279 1.506 1.604

optimizer. We implemented the model with PyTorch on a
computer embedded with an Intel Core i7-7700 CPU and an
Nvidia GTX 1080 GPU. We trained the model for 300 epochs
taking about 1.2hr training time on the David MMSys18
dataset.

C. Evaluation Metrics and Baseline

Referring to exiting methods [1]–[6], we selected three
widely-used metrics: average grate circle distance, the average
ratio of overlapping tiles, and mean overlap for evaluation.
Average great-circle distance computes the distance between
the predicted point P̂t = (θ̂t, φ̂t) and groudtruth point Pt =
(θt, φt) on a sphere. Mean overlap computes the average
overlap ratio of intersection over the union between predicted
and ground truth viewport area in a given prediction window.
The FoV size is set to 100◦. The average ratio of overlapping
tiles measures accuracy in terms of the percentage of overlap-
ping tiles between predicted and ground truth viewports. We
follow Nguyen MM18 [4] to set (9, 16) tiles in a frame. The
lower great circle distance, the higher mean overlap score, and
the higher ratio of overlapping tiles indicate a more accurate
prediction.

To assess the effectiveness of each method, we use a simple
baseline (no-prediction method) which uses the repetition of
the last element in the input scanpath as an output scanpath.

D. Ablation Study

Table III reports the quantitative results in average great
circle distance for prediction accuracy in each second. This
ablation study is organized into four parts. The first row in the
table investigates the impact of sinusoidal/learnable positional
embedding (denoted SPE/LPE) and combination loss function
(denoted Lpos and Lpos+vel). From the results, we can see that
sinusoidal outperforms learnable positional embedding in all
5-second sequences. Comparing the combination loss function,
we can see that adding velocity MSE to position MSE im-
proves the prediction in sinusoidal positional embedding. The

0 1 2 3 4 5
Prediction step s (sec.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 g
re

at
 c

irc
le

 d
ist

an
ce

 (r
ad

)

VPT360 (Ours)
Romero_PAMI21
No-prediction baseline

0.5 1.0 1.5 2.0 2.5
Prediction window length (sec.)

0.5

0.6

0.7

0.8

0.9

Av
g.

 ra
tio

 o
f o

ve
rla

pi
ng

 ti
le

s

VPT360 (Ours)
Taghavi_NOSSDAV20
No-prediction baseline
Romero_PAMI21
Nguyen_MM18

(a) (b)
Fig. 4: Comparison results on (a) David MMSys18 and (b)
Wu MMSys17 dataset, respectively.

second row in the table illustrates the results of different input
historical window lengths. It shows that the shorter window
length leads to better short-term prediction but worse long-
term prediction. We set the window length to 1 second as it
achieves the best results most of the time. The third row in
the table examines the effects of different transformer encoder
(denoted Enc) layers. In vanilla Transformer [9], which uses
six layers encoder to extract higher-order features between
elements, we discover that, in our work, only using one-layer
encoder performs satisfactorily. More layers of encoder do not
improve the results.

From the results above, we can conclude that, given 1-
second past scanpath, using sinusoidal position embedding,
combination loss function, and one layer transformer encoder
brings about the highest accuracy in 5-second scanpath predic-
tion. Referring to other existing methods using saliency maps
to improve the prediction, we integrate ground truth saliency
maps of future frames to see if it contributes to better predic-
tion. We use the method proposed in Romero PAMI21 [6] to
flatten the saliency maps of the next frame into one dimension
and concatenate it with position embedded input sequence. We
then use the transformer encoder to encode the concatenation
of position embedded sequence and flattened saliency map.

The fourth row of Table III demonstrates the results of
integrating ground truth saliency maps (denoted SM) with
encoders in a different number of layers. We can see that the
performance is not improved by simply combining the saliency
maps. A better integration method is required.

E. Comparison with the State of the Arts

Fig. 4a, Fig. 4b, and Table IV present the performance
of our VPT360 compared with state-of-the-art methods and
no-prediction baseline on three datasets, respectively. All the
training and test sets follow the same settings in all compared
methods for a fair comparison.

Fig. 4a compares our method with Romero PAMI21 [6]
on the David MMSys18 dataset. It shows that our method
achieves the best result in the entire 5-second scanpath
prediction. Fig. 4b compares our method with a cluster-

TABLE IV: Comparison with Xu PAMI18: Mean Overlap scores of FoV prediction, prediction window length F ≈ 30ms (1
frame). The best score is shown in bold and the second-best score is shown in underline.

Method KingKong SpaceWar2 StarryPolar Dancing Guitar BTSRun InsideCar RioOlympics SpaceWar CMLauncher2 Waterfall Sunset BlueWorld Symphony WaitingForLove Average

Xu PAMI18 [3] 0.809 0.763 0.549 0.859 0.785 0.878 0.847 0.820 0.626 0.763 0.667 0.659 0.693 0.747 0.863 0.753
No-prediction baseline 0.974 0.963 0.906 0.979 0.970 0.983 0.976 0.966 0.965 0.981 0.973 0.964 0.970 0.968 0.978 0.968
Romero PAMI21 [6] 0.974 0.964 0.912 0.978 0.968 0.982 0.974 0.965 0.965 0.981 0.972 0.964 0.970 0.969 0.977 0.968

VPT360 (Ours) 0.981 0.978 0.975 0.986 0.983 0.988 0.983 0.983 0.980 0.983 0.979 0.979 0.980 0.981 0.984 0.982

Fig. 5: Four examples of viewport scanpath predicted by
our VPT360 and Romero PAMI21 on the David MMSys18
dataset.

based method Taghavi NOSSDAV20 [2], two deep-learning-
based methods Nguyen MM18 [4], and Romero PAMI21
on Wu MMSys17 dataset. The results show the prediction
accuracy in terms of average ratio of overlapping tiles in
various prediction window lengths. Our method obtains a close
result as Taghavi NOSSDAV20 in a 0.5-second prediction
window while outperforms Taghavi NOSSDAV20 and the
other methods in the prediction window longer than 0.5
seconds. It is noted that the result of Taghavi NOSSDAV20 is
in the prediction window from 0.5 to 2 seconds as reported in
the paper [2]. In Table IV, to compare with Xu PAMI18 [3],
which predicts head movement in the next frame, we set the
prediction window into one frame (approximately 30ms) and
use mean overlap as an accurate measurement. We can see
that our method significantly outperforms Xu PAMI18 in all
15 test videos. Moreover, the scores of Xu PAMI18 are lower
than that of the no-prediction baseline in all 15 test videos,
which implies that its complex architecture does not contribute
to remarkable prediction ability.

We can conclude that our VPT360 achieves superior pre-
diction accuracy to state-of-the-art methods in both short-term
and long-term prediction from the comparison results. Fig. 5
visualizes four examples of viewport scanpath predicted by
our VPT360 and Romero PAMI21 on the David MMSys18
dataset.

V. CONCLUSION

This paper introduced a novel transformer-based long-term
viewport prediction method for 360◦ video, namely VPT360.
We process the user’s viewport scanpath as a time-dependent
sequence and model the time dependencies to predict future
viewport scanpath. By exploiting the self-attention mechanism
in the transformer to compute the impact between every two
elements in a sequence, we efficiently model long-term time
dependencies in the viewport scanpath without any other
video content information. Our ablation study validated the
usage of sinusoidal position embedding, combination loss
function, and 1-layer transformer encoder processing 1-second
viewport scanpath contributes to the highest accuracy in 5-
second prediction. Our VPT360 requires the least learnable
parameters and achieves the highest accuracy on short-term

and long-term prediction over three widely-used datasets com-
pared with other state-of-the-art methods. In future work, we
intend to develop an effective yet simple method to integrate
the saliency maps of 360◦ video to increase the prediction
accuracy and benefit the streaming system.

REFERENCES

[1] S. Petrangeli, G. Simon, and V. Swaminathan, “Trajectory-based view-
port prediction for 360-degree virtual reality videos,” in 2018 IEEE
International Conference on Artificial Intelligence and Virtual Reality
(AIVR), 2018, pp. 157–160.

[2] A. T. Nasrabadi, A. Samiei, and R. Prakash, “Viewport prediction for
360° videos: A clustering approach,” in Proceedings of the 30th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video, ser. NOSSDAV ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 34–39.

[3] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, “Predicting
head movement in panoramic video: A deep reinforcement learning
approach,” IEEE transactions on pattern analysis and machine intel-
ligence, 2018.

[4] A. Nguyen, Z. Yan, and K. Nahrstedt, “Your Attention is Unique:
Detecting 360-Degree Video Saliency in Head-Mounted Display for
Head Movement Prediction,” in ACM Multimedia Conference for 2018
(ACMMM2018), 2018.

[5] C. Wu, R. Zhang, Z. Wang, and L. Sun, “A spherical convolution
approach for learning long term viewport prediction in 360 immersive
video,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, pp. 14 003–14 040, Jun. 2020.

[6] M. F. Romero Rondon, L. Sassatelli, R. Aparicio-Pardo, and F. Precioso,
“Track: A new method from a re-examination of deep architectures for
head motion prediction in 360-degree videos,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

[7] S. Afzal, J. Chen, and K. K. Ramakrishnan, “Characterization of 360-
degree videos,” in Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, ser. VR/AR Network ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1–6.

[8] C. Ozcinar, J. Cabrera, and A. Smolic, “Visual attention-aware omnidi-
rectional video streaming using optimal tiles for virtual reality,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 1, pp. 217–230, 2019.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019.

[11] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring user
behaviors in VR spherical video streaming,” in Proceedings of the 8th
ACM on Multimedia Systems Conference, ser. MMSys’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 193–198.

[12] E. J. David, J. Gutiérrez, A. Coutrot, M. P. Da Silva, and P. L. Callet,
“A dataset of head and eye movements for 360° videos,” in Proceedings
of the 9th ACM Multimedia Systems Conference, ser. MMSys ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
432–437.

[13] S. Atev, G. Miller, and N. P. Papanikolopoulos, “Clustering of vehicle
trajectories,” IEEE Transactions on Intelligent Transportation Systems,
vol. 11, no. 3, pp. 647–657, 2010.

[14] C. Zhou, Z. Li, and Y. Liu, “A measurement study of oculus 360 degree
video streaming,” in Proceedings of the 8th ACM on Multimedia Systems
Conference, ser. MMSys’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 27–37.

	Introduction
	Related Work
	Clustering-based methods
	Deep-learning-based methods

	Methodology
	Problem Description
	Model Architecture
	Multi-Head Self-Attention Module
	Position-wise Feed-Forward Network
	Positional Embedding
	Combination Loss Function

	Experiments
	Dataset Analysis
	Implementation Details
	Evaluation Metrics and Baseline
	Ablation Study
	Comparison with the State of the Arts

	Conclusion
	References

