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Visual Attention

Visual attention

@ Visual attention
» Presentation
» Overt vs covert
» Bottom-Up vs Top-Down
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Introduction to visual attention (1/5)

Natural visual scenes are cluttered
and contain many different objects

that cannot all be processed Amount of information coming
simultaneously. down the optic nerve 108 — 10

Far exceeds what the brain is

Where is Waldo, the young capable of processing. ..

§ boy wearing the red-striped
shirt...

4/75



Introduction to visual attention (2/5)

WE DO NOT SEE EVERYTHING AROUND US!!

Test Your Awareness : Whodunnit?

YouTube link: www.youtube.com/watch?v=ubNFOQNEQLA



www.youtube.com/watch?v=ubNF9QNEQLA

Introduction to visual attention (3/5)

Visual attention

Posner proposed the following definition (Posner, 1980). Visual atten-
tion is used:

" to select important areas of our visual field (alerting);

= to search for a target in cluttered scenes (searching).

There are several kinds of visual attention:
= Qvert visual attention: involving eye movements;

w Covert visual attention: without eye movements (Covert
fixations are not observable).
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Introduction to visual attention (4/5)

Bottom-Up vs Top-Down

»= Bottom-Up: some things draw attention reflexively, in a
task-independent way (
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Introduction to visual attention (4/5)

Bottom-Up vs Top-Down

»= Bottom-Up: some things draw attention reflexively, in a
task-independent way (

» Top-Down: some things draw volitional attention, in a
task-dependent way (Voluntary; Very slow; Conscious).
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Introduction to visual attention (5/5)

Computational models of visual attention aim at predicting
where we look within a scene.

In this presentation, we are focusing on Bottom-Up models of overt
attention but we want to go beyond.

Iput inage toat nyp

el —
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Computational models of visual attention

Computational
models of visual

attention ® Computational models of visual attention
» Main hypothesis

» Taxonomy

» Information theoretic model

» Cognitive model

9/75



Computational models of Bottom-up visual

attention (1/5)

Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

[Receptive fields size] [ Features |
1T Izl faces
V4 @ objects
V2 D shapes
Vi \R a:gglie:es
and objects visual field

Adapted from (Herzog and Clarke, 2014, Manassi et al., 2013).

= Basic features (e.g. edges and lines) are analyzed by independent
filters (V1);

= Higher-level neurons pool information over multiple low-level neurons
with smaller receptive fields and code for more complex features.
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Computational models of Bottom-up visual

attention (2/5)

Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

[Receptive fields size] [ Features |
T Izl faces

V4 @ objects
V2 D shapes

edges
Vi \R

and lines

and objects

visual field

Adapted from (Herzog and Clarke, 2014, Manassi et al., 2013).

The deeper we go, the more complex features we extract...

Deep features.
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Computational models of Bottom-up visual

attention (3/5)

Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

Receptive Field = region of the retina where the action of light alters
the firing of the neuron

= RF = center + surrround;

= The size of the RF varies: for V1
neurons (0.5-2 degrees near the fovea),
inferotemporal cortex neurons (30
degrees).

bright centre, dark surround

»= Simulated by DoG, Mexican Hat...

dark centre, bright surround
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Computational models of Bottom-up visual

attention (4/5)

Main ingredients

Most of the computational models of visual attention have been
motivated by the seminal work of (Koch and Ullman, 1985).

» 3 plausible computational
architecture to predict our
gaze;

Central Representation

" a set of feature maps
processed in a massively
parallel manner;

Feature Maps

" a single topographic saliency
map.
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Computational models of Bottom-up visual
attention (5/5)

pes

Sabioncy map /%y/r/?/éta/ nap teat nap
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Computational models of Bottom-up visual
attention (1/1)

Taxonomy of models:

Featurs agration Theay (F1) Treman snd Gelade 1960

— 7\
- N
Pomerieau. 1995

Graphical Models et ol 1990 188

w= |nformation Theoretic
models;

.. Salah et al, 2002 2,
Taxonomy = Cognitive models; ,f/ x\:;‘li“iiw

2005 — Ot a0 {1 NG

= Graphical models;

Novabakiam
Hou snd Zhag, 2007 and 2005

= Spectral analysis M:\mm v S \\&“
models; G

B nd Zrarg 2008 e

= Pattern classification
models;

= Bayesian models.
\M:ma

2010 cpatiotemgora)

» Deep network-based
models.

Extracted from (Borji and Itti, 2013).
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Information theoretic model (1/3)

Information Theoretic Models

) Bruce and Tsotsos, 2005 [Spatial)
I rmation Theory / Rosenholtz, 1998
Torralba, 2003

Bruce and Houand  Mancas, 2007

= Self-information, { Tzﬂntgngv Zheng, 2008  Seo and Mienr,

Information theoretic
model

= M utu a| information, (spatio-temporal) Wang et al, 2011
: Yin Li et al, 2009
- Fptrapwv ... R
Entropy' . Extracted from (Borji and Itti, 2013).

Self-information is a measure of the amount information provided by an
event. For a discrete X r.v defined by A = {z1,...,zn} and by a pdf, the
amount of information of the event X = z; is given by:

I(X = z;) = —logap(X = x;), bit/symbol
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Information theoretic model (2/3)

's model (RARE2012)

Input Image

Information theoretic Step 1:
model . - Features Extraction

Step 2:
Multi-scale Rarity

Step 3:
Intra and Inter-channel Fusion

Output Saliency Map
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Information theoretic model (3/3)

's model (RARE2012)

w= Difficult cases:
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Cognitive model (1/3)

Cognitive model

as faithful as possible to

the Human Visual System
(HVS)

= inspired by cognitive
concepts;

» based on the HVS
properties.

Cognitive models

Feature Integration Theory [FIT), Triesman and Gelade, 1980

Kach and Ullman, 1985

/ \\ Miebur

Milanse, 1993

Baluja and and Koch,
Pomereau, 1895
Itti et al, 1998 1984
g NG
3 > Itti et al, 2003
& ‘%, Le Meur et al, 2007 4t = =
) Marat et al, 2009
Itti, 2005 4 JiaLietal, 2010
VOCUS, Frintrop, 2006
STB, Walther et 2|, 2008 Navalpakkam
and ltti, 2005

Le Meur et sl, 2006 4 = =

Murray et al, 2011 / \ Borji et al,
2010
Frintrop, Elazary and
2008 Itti, 2010
Heidemann et al, 2004 == Kootstra et al., 2008 [symmetry model]
Extracted from (Borji and Itti, 2013).
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Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

INPUT

‘OPPONENT COLOR SPACE.

1 Input color image; . \
2 Projection into a perceptual color space; A

3 Subband decomposition in the Fourier “----
domain;

4 CSF and Visual Masking;

<>
5 Difference of Gaussians; @

6 Pooling.
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Cognitive model (3/3)

's cognitive model

w= Difficult cases:
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Performances

N © Saliency model’s performance
performance » Ground truth

» Similarity metrics

» Benchmark
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Ground truth (1/2)

The requirement of a ground truth

= Eye tracker (sampling
frequency, accuracy...);

= A panel of observers
(age, naive vs expert,
men vs women...);

» An appropriate
protocol (free-viewing,
task...).

Cambridge research system

Tobii

o e

Apple bought SMI.
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Ground truth (2/2)

= Discrete fixation map f* for the i*" observer:

Fx) =) 0(x—xi)

where M is the number of fixations and x is
the k" fixation.

= Continuous saliency map S:

S(x) = (% Zﬂ‘(x)) * Ga(x)

where N is the number of observers.

2475



Similarity metrics

= Comparing two maps:
® The linear correlation coefficient, cc € [-1,1];
® The similarity metric sim uses the normalized probability
distributions of the two maps (Judd et al., 2012). The similarity
is the sum of the minimum values at each point in the
distributions:

sim = Z min (pdfmap1 (X), Pdfmap2(X)) (1)

sim = 1 means the pdfs are identical, sim = 0 means the pdfs
are completely opposite.
® Earth Mover's Distance metric EM D is a measure of the
distance between two probability distributions. It computes the
minimal cost to transform one probability distribution into
another one.
EMD = 0 means the distributions are identical, i.e. the cost is null.
® Receiver Operating Analysis.
Le Meur, O. & Baccino, T., Methods for comparing scanpaths and
saliency maps: strengths and weaknesses, Behavior Research Method,
2013.
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Similarity metrics

KL-divergence and CC between two maps

= KL-Divergence:

p(3,5)

KL = pli,log2 225

0]
where p and h are the pdf of the predicted and human saliency maps.
SMP(Zaj)
Zk’l SMp(k,1)
SMp (4, 5)
Zk,l SMy, (K, 1)

Similarity metrics . .
p(i,j) =

h(i, §)

KL is a divergence: KL =0 when p and h are strictly the same, KL > 0.
= Linear correlation coefficient:
CcoUpp
Opop
where o}, is the standard deviation of k and covy, is the covariance between

p and h. CC is between -1 and 1.
26 /75



Similarity metrics

ROC between two maps

(a) Original ) Human (c) Itti's model

(1) Label the pixels of the human map as fixated (255) or not (0):

The threshold is often arbitrary chosen (to cover around 20% of
the picture).
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_\\"//_ Similarity metrics

ROC between two maps

DN
e (2) Label the pixels of the predicted map as fixated (255) or not (0)
by a given threshold T;:

T. Maugey

(3) Count the good and bad predictions between human and
predicted maps:

(a) Human Bin. (b) Predicted Bin.
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_\\"//_ Similarity metrics

-//ll\\- ROC between two maps

(3) Count the good and bad predictions between human and
predicted maps:

netrics

False Negative

False Positive Rate = True Positive / (True Positive+False Negative)
True Positive Rate = False Positive / (False Positive+True Negative)
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Similarity metrics

ROC between two maps

(4) Go back to (2) to use another threshold... Stop the process
when all thresholds are tested.
True Positive Point for the

Rate threshold Ti
4

False Positive
Rate

0
1

AUC (Area Under Curve)
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Similarity metrics

» Comparing a map and a set of visual fixations:

® Receiver Operating Analysis;

® Normalized Scanpath Saliency (Parkhurst et al., 2002, Peters
et al., 2005);

® The Kullback-Leibler divergence (Itti and Baldi, 2005).

Le Meur, O. & Baccino, T., Methods for comparing scanpaths
and saliency maps: strengths and weaknesses, Behavior Research
Method, 2013.
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Similarity metrics

ROC between a map and a set of fixations

ROC analysis is performed between a continuous saliency map and a
set of fixations.

Hit rate is measured in function of
the threshold used to binarize the
saliency map (Judd et al., 2009):

For this threshold,
HitRate=0

ROC curve goes from 0 to 1!

ROC CURVE

2108uH Buiseanu]

Hit Rate

For this threshold,
HitRate=1

Percent Salient 4
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Similarity metrics

NSS

NSS (Normalized Scanpath salience) gives the degree of
correspondence between human fixation locations and predicted
saliency maps (Parkhurst et al., 2002),(Peters et al., 2005).

@ Each saliency map is normalized to have zero mean and one unit

standard deviation.

® Extraction of the predicted saliency at a given human fixation
Sty s point.
© Average of the previous values.

i normalized
T scanpath

1 salience

1 1.304

From (Peters et al., 2005)

NSS = 0: random performance;
NSS >> 0: correspondence between human fixation locations and the predicted
salient points:
NSS << 0: anti-correspondence.
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Benchmark (1/1)

Online benchmarks: http://saliency.mit.edu/

MIT300 and CAT2000

[Dataset [Citation [images [Durations [Extra Notes
ﬁ;“:‘r"s’?'el":’s‘” & [This was the firs data set with held-out
ITike Judd, Fredo Durand, Anfonio Toralba. A ot 5o oo Inuman eye movements, and is used as
MIT300  [Benchmark of Computaional Wodes of Salency to %% MO | ages: [fee. 3sec benchmarktostset
[Precict Human Fixations [MITtech report 20121~ |102%% o1 18.50 loyetrackor: ETL 400 ISCAN (240Hz)
IDownload 300 test images.

Benchmark [Udvaiis 5o
[This dataset contains two sefs of mages
Irain and test. Train images (100 from
124 per leach category) and fxations of 18
14000 images from 20 [mage lobservers are shared but 6 observers are
P o o Bocsting Saeney nossarch (dferent categories (120 n l5soc [neid-out Test mages are avaiable but
e e o |20 1920x1080px e fiowing ixations of all 24 observers aro held out
1 dvar ~ 38px lages loyetracker: EyeLink1000 (1000Hz)
1827 Download 2000 test images.

IDownload 2000 train images (with
[fxations of 18 observers).

For a fair comparison, download the images, run your model and
submit your results.

Matlab software is available on the webpage:
http://saliency.mit.edu/.
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A new breakthrough but...

O A new breakthrough
» Convolutional Neural Network
breakthrough » CNN-based saliency prediction
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A new breakthrough... (1/3)

Convolutional Neural Network in a nutshell

= A neural network model is a series of hierarchically connected
functions;

= Each function’s output is the input for the next function;

» These functions produce features of higher and higher
abstractions;

Low-Level| |Mid-Level Trainable
Feature Feature Classifier

» End-to-end learning of feature hierarchies.

Image courtesy: http://www.iro.umontreal.ca/~bengioy/talks/DL- Tutorial-NIPS2015.pdf
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http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

A new breakthroug

»= Extremely big annotated datasets...
Imagenet, =~ 16 Million images annotated by humans, 1000
classes (Deng et al., 2009).

® 2 v!l“lmﬂiu\*n\;ﬁ ' w"-f

™ o] & e —
g I.#l!lﬁi.ﬂﬂﬁll"ﬂ i bl

lutional Neural

Lo T
LavFEssETRL AR AN - l‘lﬂmlldﬂm
S mP| ELER e mnnllel.m -
= el I il

-
.4 AL FL Y F RSP, DR
2 MEmEEra. .H-vll-!%llﬂill _/ed=dmenz i 3md [l

= More power (GPU).
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A new breakthrough... (

» QOne of the best CNN for image classification:

B Convolutional Layer M Max-Pooling Layer Fully-Connected Layer Il Softmax Activation

@
Flattening r
) et | | O] | O] [0 Class Predictions
‘ ‘
o O

Input Image

al Neural

VGG-16

Composed of 16 layers (13 convolutional layers + 3 FC layers) (Simonyan
and Zisserman, 2014) trained on Imagenet.

The number of filters of convolutional layer group starts from 64 and
increases by a factor of 2 after each max-pooling layer, until it reaches 512.

= One layer = convolution + ReLU (Rectified Linear Unit ~
truncation / nonlinear function) 4+ Pooling (average, max)
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CNN-based saliency prediction (1/9)

= DeepGaze I: Boosting saliency prediction with feature maps
trained on Imagenet, (Kimmerer et al., 2014):

ri(z,y) represents rescaled
neural responses;

s(z,y) =Y, werk(z,y) *

o(z,y) = s(z,y) + a x c(z,y);

Krizhevskylcaffe network

SoftMax:
eeplo(z,y))
oy exp(o(z,y))

\ u(e,1) |/

3k werk(, y)) p(l‘, y) =

softmax
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CNN-based saliency prediction (2/9)

» Salicon: Reducing the semantic gap in saliency prediction by
adapting deep neural networks (Huang et al., 2015):

Input images
Saliency Map

Co s

Saliency Objectives
(KLD, NS, CC, SIM)

it

DNNs with shared welghts
Resizing 7|
—>

Human Fixation Maps

ed saliency

® integration of information at different image scales;
® saliency evaluation metrics;

® end-to-end learning.
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CNN-based saliency prediction (3/9)

= DeepGaze Il: Reading fixations from deep features trained on

object recognition (Kiimmerer et al., 2016):

VGG-19 network is now used

VGG features readout network
(fixed parameters) (trained parameters) feature maps from conv5_1,
RelLU5_1, RelLU5_2, conv5_3,
RelLU5_4;

-

1

4 layers of 1 x 1 convolution +

ReLU (second neural network
that needs to be tralned)
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CNN-based saliency prediction (4/9)

= A Deep Multi-Level Network for Saliency Prediction (Cornia
et al., 2016):

saliency

with, S, S € [0, 1]
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CNN-based saliency prediction (5/9)

= A Deep Spatial Contextual Long-term Recurrent Convolutional
Network for Saliency Detection (Liu and Han, 2016):

® Local Image Feature
Extraction using CNNs
(normalize and rescale);

Scene feature extractor
CNN

(Places-CNN (Zhou

et al., 2014));

DSCLSTM model
incorporates global
context information and
scene context
modulation.

iency.
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CNN-based saliency prediction (6/9)

= End-to-End Saliency Mapping via Probability Distribution
Prediction (Jetley et al., 2016):

Input image 512 feature maps 32 feature maps 8 feature maps 1 feature map Final map

O N Y el

bilinear fllter + softmax

iency

® VGG Net without the fully-connected layers;

® Three additional convolutional layers + upsampling and softmax.
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CNN-based saliency prediction (7/9)

w SalGan: Visual saliency prediction with generative adversarial
networks (Pan et al., 2017):

iz (0 |

Image Stimuli
+ Predicted
Saliency Map

i

d saliency

Discriminator
Com-VGG WM MaxPooling MMM Upsampling g Sigmoid Image Stimuli
Conv-Scratch WM Fully Connected + Ground Truth
Saliency Map
® Training generator (15 epochs), Binary
SAUCT AUCB] NSST CCT  IG
Cross entropy Loss (down-sampled output MSE 0728 0820 1680 0708 0628
. . BCE 0.753 0.825 2562 0772 0.824
and ground truth sallency), BCEA 0757 0833 2580 0772 1.067
. X GANA 0773 0859 2560 0.786 1.243
® Alternate the training of the saliency Table 4. Best results through epochs obtained with non-adversarial (MSE
d BCE) and ad ial training. BCE/4 and GAN/4 refe de sam-
icti iscrimi e sliney mape. Saleney mape s on SALTCON vafaaton.
prediction network an iscriminator

network after each iteration (batch).
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CNN-based saliency prediction (8/

w Deep visual attention prediction (\Wang and Shen, 2017):

® Encoder - Decoder
approach;

® Multi-scale predictions
o are learned from

N i different layers with
different receptive field
sizes;

d saliency

® Fuse saliency thanks to
oot .
Sl 1 x 1 convolution layer

Fuse M m qQm
Saliency (F = E —1 'LUf S )
Image |~— Convolutional Blocks of VGGNet ———— m=
Output

Saliency2

Ablation study:

004 0% | 001
005 0% | 007
002 1070|002
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CNN-based saliency prediction (9/9

= Snapshot of performance (MIT benchmark, 19" Oct. 2017):

- Emn [ AUC {oayc nss ‘sample.
p— po— cos | [ 0 525 [0 o] e[| owesespen | %2
e b [ b bw pe | hm II[
A A Y T T T et iii
[otoncy atanve [ NircehaCaves, Lovrs B G frst tsted 10302016
el W U N A S S AU A
D T
st [ e e g ot ] i
» ., oy s S R SN o o e P pri o o v e e
CNN-based saliency | Attentive Model [arXIv 2016]
S St KA
e by | hon pao i ore oo et
ot
R TN e N A A e III
oeon s oo s o P AR N P R )
mw
[Protssity e el A EN A [fest testen 05112015
loistbuten T T ss Joso gs fprn fors 070 206 [oee [estistes oia0ts
ey
E— S
e p—
i o C S T T T T mm”wm“ll
R
saican ;‘:“é;g‘;;;;";_‘“.“”‘;";;‘;‘;‘;;‘"’:‘; rtvonfoos Joss 220 b2 jo7s oot [107  festisies 10002010 _‘
Sl
o
—
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Limitations (1/1)

The picture is much clearer than 10 years ago!
BUT...

Important aspects of our visual system are clearly overlooked
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Limitations (1/1)

The picture is much clearer than 10 years ago!
BUT...

Important aspects of our visual system are clearly overlooked

iency.

© Current models implicitly assume that eyes are equally likely to
move in any direction;
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Limitations (1/1)

The picture is much clearer than 10 years ago!

BUT...

Important aspects of our visual system are clearly overlooked

© Current models implicitly assume that eyes are equally likely to
move in any direction;

(%] Viewing biases are not taken into account;

[ x)
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iency

Limitations (1/1)

The picture is much clearer than 10 years ago!

BUT...

Important aspects of our visual system are clearly overlooked
© Current models implicitly assume that eyes are equally likely to
move in any direction;

(%] Viewing biases are not taken into account;

O The temporal dimension is not considered (static saliency map).
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Saccadic model

@ Saccadic model
» Presentation
» Proposed model
» Plausible scanpaths?
» Limitations

Saccadic model
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Presentation (1/1)

= Eye movements are composed of fixations and saccades. A
sequence of fixations is called a visual scanpath.

= When looking at visual scenes, we perform in average 4 visual
fixations per second.

Saccadic models are used:

@ to compute plausible visual
scanpaths (stochastic,
saccade amplitudes /
orientations...);

® to infer the scanpath-based
saliency map < to predict
salient areas!!
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

Proposed model

O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.

O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

"> The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

Proposed model

O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.

O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

"> The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

"> The model has to generate plausible scanpaths that are similar to
those generated by humans in similar conditions: distribution of
saccade amplitudes and orientations, center bias...

Proposed model

O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.

O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

"> The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

"> The model has to generate plausible scanpaths that are similar to
those generated by humans in similar conditions: distribution of
saccade amplitudes and orientations, center bias...

Proposed model

"> |nhibition of return has to be considered: time-course, spatial decay...

O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.

O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

"> The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

"> The model has to generate plausible scanpaths that are similar to
those generated by humans in similar conditions: distribution of
saccade amplitudes and orientations, center bias...

Proposed model

"> |nhibition of return has to be considered: time-course, spatial decay...

"= Fixations should be mainly located on salient areas.
O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.
O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (2/8)

Let Z:Q C R? — R? an image and x; a fixation point at time .

We consider the 2D discrete conditional probability:

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(X|x:—1)
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Proposed model (2/8)

Let Z:Q C R? — R? an image and x; a fixation point at time .

We consider the 2D discrete conditional probability:

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(X|x:—1)

" ppy : Q> [0,1] is the grayscale saliency map;

Frerezs "= pg(d, §|F,S) represents the joint probability distribution of saccade
amplitudes and orientations.
® ( is the saccade amplitude between two fixation points x and
x¢—1 (expressed in degree of visual angle);
® ¢ is the angle (expressed in degree between these two points);

® F and S correspond to the frame index and the scene type,
respectively.
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Proposed model (2/8)

Let Z:Q C R? — R? an image and x; a fixation point at time .

We consider the 2D discrete conditional probability:

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(X|x:—1)

" ppy : Q> [0,1] is the grayscale saliency map;

Frerezs "= pg(d, §|F,S) represents the joint probability distribution of saccade
amplitudes and orientations.
® ( is the saccade amplitude between two fixation points x and
x¢—1 (expressed in degree of visual angle);
® ¢ is the angle (expressed in degree between these two points);
® F and S correspond to the frame index and the scene type,
respectively.

" par(X|x¢—1) represents the memory state of the location x at time ¢.
This time-dependent term simulates the inhibition of return.
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Proposed model (3/8)

Bottom-up saliency map

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(x|x:—1)

" ppy is the bottom-up saliency map.

® Computed by GBVS model (Harel et al., 2006). According to
(Borji et al., 2012)’s benchmark, this model is among the best
ones and presents a good trade-off between quality and
complexity.

® ppu(x) is constant over time. (Tatler et al., 2005) indeed
demonstrated that bottom-up influences do not vanish over time.

Bottom-up saliency
map
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Proposed model (4/8)

Viewing biases

P (X|x;—1,5) < ppu(x)ps(d, ¢|F, S)parr(X|x;—1)

= pp(d, d|F,S) represents the joint probability distribution of
saccade amplitudes and orientations = learning from
eye-tracking data.
d and ¢ represent the distance and the angle between successive fixations.

Viewing biases

0

Strong horizontal bias Strong horizontal bias but mainly in the Three modes in the distribution
rightward direction.
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Proposed model (5/8)

Viewing biases

Spatially-invariant to spatially-variant and scene-dependent
distribution pp(d, ¢|F, S):

rather than computing a unique joint distribution per image, we
evenly divide the image into a N x N equal base frames.
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Viewing biases

Proposed model (6/8)

Viewing biases

Estimation of the joint distribution pp(d, ¢|F,S), given the frame
index F' (F € {1,...,9}) and the scene category S (Natural scenes,
webpages, conversational...):

o o
!w |

)
.C

Dynamic Iandscape. Natural scenes.
» Re-positioning saccades allowing us to go back to the screen’s
center. Interesting to reproduce the center bias!
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Proposed model (7/8)

Memory effect and inhibition of return (loR)

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(x|x:—1)

"= par(X|x¢—1) represents the memory effect and IoR of the
location x at time t. It is composed of two terms: Inhibition and
Recovery.

Memory - loR 3

fomory

=
-
-

® The spatial IoR effect declines as a Gaussian function ®,,(d)
with the Euclidean distance d from the attended
location (Bennett and Pratt, 2001);

® The temporal decline of the loR effect is simulated by a simple
linear model.

57/75



Proposed model (8/8)

Selecting the next fixation point

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(x|x:—1)

= QOptimal next fixation point (Bayesian ideal searcher proposed
by (Najemnik and Geisler, 2009)):

*
— _ 2
X; = argmaxp (X|x;—1) (2)

Problem: this approach does not reflect the stochastic behavior of
our visual system and may fail to provide plausible
scanpaths (Najemnik and Geisler, 2008).
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Proposed model (8/8)

Selecting the next fixation point

P (X|x;—1,S) < ppu(X)ps(d, ¢|F, S)prr(x|x:—1)

= QOptimal next fixation point (Bayesian ideal searcher proposed
by (Najemnik and Geisler, 2009)):

*
— _ 2
X; = argmaxp (X|x;—1) (2)

Problem: this approach does not reflect the stochastic behavior of
our visual system and may fail to provide plausible
scanpaths (Najemnik and Geisler, 2008).

»+ Rather than selecting the best candidate, we generate N. = 5 random
locations according to the 2D discrete conditional probability
P (xlxe—1).
The location with the highest saliency is chosen as the next fixation
point x;.
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Results (1/5)

The relevance of the proposed approach is assessed with regard to
the plausibility, the spatial precision of the simulated scanpath
and ability to predict saliency areas.

" Do the generated scanpaths present the same oculomotor biases
as human scanpaths?

Plausible scanpaths?

» What is the similarity degree between predicted and human
scanpaths?

»» Could the predicted scanpaths be used to form relevant saliency
maps?
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Results (2/5)




Results (3/5)

Scanpath-based saliency map

= We compute, for each image, 20 scanpaths, each composed of
10 fixations.

= For each image, we created a saliency map by convolving a
[E— Gaussian function over the fixation locations.

(a) (C)

(a) original image; (b) human saliency map; (c) GBVS sallency map; (d)
GBVS-SM saliency maps computed from the simulated scanpaths.
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Results (4/5)

Are the predicted scanpaths similar to human ones?

(a) Natural scenes  (b) Static webpages (c)  Conversational (d) Dynamic land-
video scapes

Plausible scanpaths?

Figure 11: Joint distribution of predicted scanpaths shown on polar plot for (a) Natural scenes,
(b) Webpages, (c) conversational video and (d) dynamic landscapes. Scanpaths are generated
by the context-dependent saccadic saliency model (Top2(R+H), N = 3).

Yes, predicted scanpaths show similar patterns as the human
scanpaths!
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Results (5/5)

Mixing together bottom-up saliency and viewing biases.

Metric o SIM EMD
State-of-the-art saliency models
(Iuti et al., [1008) 027L0.18 0374005 3414065
(Le Meur et al., 2006) 0.38+0.20 0.43+0.09 3.03+1.06
(Harel et al 16| 0.56+0.14 0.48+0.05 2.49+0.53
(Bruce & Tsotsos, 2009)  0.31£0.10 0372001  3.4420.56
(Judd 2000) 0420013 0401004 3251057
\ it al ‘ H\Qb 0.42+0.18 0.43+0.06 30+0.76
(Riche ct al., 2013) 051£0.18 0482006 2.61+0.71
Z Top 2 models combined: (Riche ct al ‘zm) + \1Harvl et al., 2006)
Top2(R+IT) 0.62+0.13  0.514+0.05 20,56

Saccadic saliency model (Top2(R+H)) context-independent. N = 1
dLP Meur & Lin, 2015) 06414018 0.568+0.09  2.03+0.85
Saccadic saliency model (Top2(R-+11)) context-dependent, N — 3

Natural scenes 0.649£0.18  0.56610.09  2.068:0.84
Webpages 0.641£0.18  0.561£0.09 2177088
Conversational 0.628£017  0.561£0.09  2.061=0.81
< Landscapes 06534017  0.57T1H0.08  2.034+0.85

Tuble 2 Performance (average  standard deviation) of saliency models over Bruce's dataseL.
In pink cells, we compare state-of-the-art saliency maps with human saliency maps. We
add the top 2 models ((Riche ot al.| [2013) + (Iarel et al; 2006)) into a sing
wp model: Top2(R  H). Tn groen cells, we compare the performances when low-

independent saceadic model based on a single distribution (N=1) from )
Second, we assess our context-dependent saccadic model based on 9 distributions

Viewing biases estimated Irom 4 categories (Natural Scenes, Webpages, Conversational videos
and Landscape videos). Three metries are used: CC (linear ation), SIM (histogram
similarity) and EMD (arth Mover's Distance). For more details please tofer to the text

(i) When the quality of
the input saliency map
increases, performance
of saccadic model
increases;

(ii) The gain brought by
spatially-variant and
context-dependent
distributions is not
significant;

(iii) Spatially-variant
and context-dependent
distributions are
required to generate
plausible visual
scanpaths (see previous
slides).
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Tailoring the model for different contexts!

== Task-dependent saccadic model (free-viewing vs quality task...)

= Age-dependent saccadic model.... (2 y.o0., 4-6 y.o0., 6-10 y.o,
adults) (Helo et al., 2014)

age2y.o.
18|

Plausible scanpaths?

saccade amplitude

Le Meur et al., Visual attention saccadic models learn to emulate gaze patterns
from childhood to adulthood, IEEE Trans. Image Processing, 2017.

64/75



Limitations

Still far from the reality...

= We do not predict the fixation durations. Some models could be
used for this purpose (Nuthmann et al., 2010, Trukenbrod and
Engbert, 2014).

»= Second-order effect. We assume that the memory effect occurs
only in the fixation location. However, are saccades independent
events? No, see (Tatler and Vincent, 2008).

» High-level aspects such as the scene context are not included in
our model.

Limitations

= Should we recompute the saliency map after every fixations?
Probably yes...

= Randomness (N,) should be adapted to the input image. By
default, N, = 5.

= |s the time course of loR relevant? Is the recovery linear?

= Foveal vs peripheral vision? Cortical magnification...
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Attentive applications

@ Attentive applications
» Taxonomy
» Saliency-based applications
» Eye Movements-based applications

Attentive
applications
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Taxonomy

Atte

= A sheer number of saliency-based applications....

Systems

Vision

Computer

hics

1
Multimedia )

1
(rsctoreon)

Recognition
tion
Segmentation

Taxonomy

Image ‘Composition
Manipulatior Montage
Collage

Retargeting

‘Super-resolution

Compression Image

Video
Summarization

Content-based
Retrieval ) image retrieval
mage Colection

Browsing

Rendering

Non-
photorealistic

render
Dynamic Lighting

Aesthetics

Evaluation
Assessment

Enhancement
Advertisement I

Webpage

Video

Dynamic Captioning

Image

Extracted from (Nguyen et al, 2017). See also (Mancas et al., 2016).
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Taxonomy

= A sheer number of saliency-based applications....

Computer

1 13
Multimedia ) (Mlsce\lanecus)

Compression Image

Vision

Resizing

Retargeting mage
Summarization

Content-based
Retrieval ) image retrieval
mage Colection

Browsing

‘Super-resolution

Image Composition
Manipula Montage
Collage

Rendering

Recognition
Detection
Segmentation
Tracking

Aesthetics
Assessment

Evaluation

Enhancement
Advertisement I

Webpage

Video

Dynamic Captioning

Non-
photorealistic

render
Dynamic Lighting

Image

Taxonomy

Extracted from (Nguyen et al, 2017). See also (Mancas et al., 2016).

" More and more eye-movements-based applications...
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Saliency-based applications (1/2)

= Saliency-based seam carving (Avidan and Shamir, 2007):

Saliency map
Importance Retargeted
image

Energy map

Extracted from (Nguyen et al., 2017).

Saliency-based
applications
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Saliency-based applications (1/2)

= Saliency-based seam carving (Avidan and Shamir, 2007):

Saliency map

Energy map
Extracted from (Nguyen et al., 2017).

= Retargeting (Le Meur et al., 2006):
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Saliency-based applications (2/2)

= Non photorealistic rendering (DeCarlo and Santella, 2002):
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Saliency-based applications (2/2)

= Non photorealistic rendering (DeCarlo and Santella, 2002):

= First-Person Navigation in Virtual Environments (Hillaire et al.,
2008):
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i1
=>><<= Eye Movements-based applications (1/3)
]

= Predicting Moves-on-Stills for Comic Art using Viewer Gaze
Data (Jain et al., 2016)

The Ken Burns effect is a type of panning and zooming effect used in
video production from still imagery.

3

Original Panel © maRvEL Our Result

More results on http://jainlab.cise.ufl.edu/comics.html
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Eye Movements-based applications (2/3)

= Gaze-driven Video Re-editing (Jain et al., 2015)

We record gaze data from viewers on the original widescreen video,
Each viewer is marked in a different color.

applications

The cropping window pans to the left while zooming in.
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Eye Movements-based applications (3/3)

» Gaze Data for the Analysis of Attention in Feature
Films (Breeden and Hanrahan, 2017)

$§
58

E; 2%
=o10%

Smaller values indicate increased attentional synchrony.
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Conclusion

@ Conclusion

Conclusion
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Conclusion (1/2)

Take Home message:

= Saliency model = 2D saliency map;

Conclusion
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Conclusion (1/2)

Take Home message:
= Saliency model = 2D saliency map;

= Saccadic model =
® to produce plausible visual scanpaths;
® to detect the most salient regions of visual scenes.
® can be tailored to specific visual context.

Conclusion
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Conclusion (1/2)

Take Home message:
= Saliency model = 2D saliency map;

= Saccadic model =

® to produce plausible visual scanpaths;
® to detect the most salient regions of visual scenes.
® can be tailored to specific visual context.

= A number of saliency-based / eye-movements-based applications.

Conclusion
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Conclusion (2/2)

= Eye-movements revolution...

® Diagnosis of neurodevelopmental disorders (see Itti, L. (2015).
New Eye-Tracking Techniques May Revolutionize Mental Health
Screening. Neuron, 88(3), 442-444.);

Conclusion
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Conclusion

® US startup proposes a device for tracking your eyes to see if
you're lying...;
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Conclusion (2/2)

= Eye-movements revolution...

® Diagnosis of neurodevelopmental disorders (see Itti, L. (2015).
New Eye-Tracking Techniques May Revolutionize Mental Health
Screening. Neuron, 88(3), 442-444.);

® Learning Visual Attention to Identify People With Autism
Spectrum Disorder (Jiang and Zhao, 2017);

® Alzheimer's disease (Crawford et al., 2015);

Conclusion

® US startup proposes a device for tracking your eyes to see if
you're lying...;

® Emotion, gender (Coutrot et al., 2016), age (Le Meur et al.,
2017)....
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