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Visual Attention

1 Visual attention
I Presentation
I Overt vs covert
I Bottom-Up vs Top-Down
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Introduction to visual attention (1/5)

Natural visual scenes are cluttered
and contain many different objects

that cannot all be processed
simultaneously.

Where is Waldo, the young
boy wearing the red-striped

shirt...

Amount of information coming
down the optic nerve 108 − 109

bits per second

Far exceeds what the brain is
capable of processing...
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Introduction to visual attention (2/5)

WE DO NOT SEE EVERYTHING AROUND US!!!

Test Your Awareness : Whodunnit?

YouTube link: www.youtube.com/watch?v=ubNF9QNEQLA
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Introduction to visual attention (3/5)

Visual attention
Posner proposed the following definition (Posner, 1980). Visual atten-
tion is used:

ß to select important areas of our visual field (alerting);
ß to search for a target in cluttered scenes (searching).

There are several kinds of visual attention:
ß Overt visual attention: involving eye movements;
ß Covert visual attention: without eye movements (Covert

fixations are not observable).
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Introduction to visual attention (4/5)

Bottom-Up vs Top-Down
ß Bottom-Up: some things draw attention reflexively, in a

task-independent way (Involuntary; Very quick; Unconscious);

ß Top-Down: some things draw volitional attention, in a
task-dependent way (Voluntary; Very slow; Conscious).
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Introduction to visual attention (5/5)

Computational models of visual attention aim at predicting
where we look within a scene.

In this presentation, we are focusing on Bottom-Up models of overt
attention but we want to go beyond.
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Computational models of visual attention

2 Computational models of visual attention
I Main hypothesis
I Taxonomy
I Information theoretic model
I Cognitive model
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Computational models of Bottom-up visual
attention (1/5)
Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

Adapted from (Herzog and Clarke, 2014, Manassi et al., 2013).

ß Basic features (e.g. edges and lines) are analyzed by independent
filters (V1);

ß Higher-level neurons pool information over multiple low-level neurons
with smaller receptive fields and code for more complex features.
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Computational models of Bottom-up visual
attention (2/5)
Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

Adapted from (Herzog and Clarke, 2014, Manassi et al., 2013).

The deeper we go, the more complex features we extract...

Deep features.
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Computational models of Bottom-up visual
attention (3/5)
Main ingredients

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies.

Receptive Field = region of the retina where the action of light alters
the firing of the neuron

ß RF = center + surrround;

ß The size of the RF varies: for V1
neurons (0.5-2 degrees near the fovea),
inferotemporal cortex neurons (30
degrees).

ß Simulated by DoG, Mexican Hat...
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Computational models of Bottom-up visual
attention (4/5)
Main ingredients

Most of the computational models of visual attention have been
motivated by the seminal work of (Koch and Ullman, 1985).

ß a plausible computational
architecture to predict our
gaze;

ß a set of feature maps
processed in a massively
parallel manner;

ß a single topographic saliency
map.
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Computational models of Bottom-up visual
attention (5/5)
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Computational models of Bottom-up visual
attention (1/1)

Taxonomy of models:
ß Information Theoretic

models;
ß Cognitive models;
ß Graphical models;
ß Spectral analysis

models;
ß Pattern classification

models;
ß Bayesian models.
ß Deep network-based

models. Extracted from (Borji and Itti, 2013).
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Information theoretic model (1/3)

Information Theory

ß Self-information,
ß Mutual information,
ß Entropy... Extracted from (Borji and Itti, 2013).

Self-information is a measure of the amount information provided by an
event. For a discrete X r.v defined by A = {x1, ..., xN} and by a pdf, the
amount of information of the event X = xi is given by:

I(X = xi) = −log2p(X = xi), bit/symbol
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Information theoretic model (2/3)
(Riche et al., 2013)’s model (RARE2012)
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Information theoretic model (3/3)
(Riche et al., 2013)’s model (RARE2012)

ß Good prediction: ß Difficult cases:
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Cognitive model (1/3)

as faithful as possible to
the Human Visual System

(HVS)

ß inspired by cognitive
concepts;

ß based on the HVS
properties.

Extracted from (Borji and Itti, 2013).
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Cognitive model (2/3)
(Le Meur et al., 2006)’s cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

1 Input color image;
2 Projection into a perceptual color space;
3 Subband decomposition in the Fourier

domain;
4 CSF and Visual Masking;
5 Difference of Gaussians;
6 Pooling.
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Cognitive model (3/3)
(Le Meur et al., 2006)’s cognitive model

ß Good prediction: ß Difficult cases:
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Performances

3 Saliency model’s performance
I Ground truth
I Similarity metrics
I Benchmark
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Ground truth (1/2)

The requirement of a ground truth

ß Eye tracker (sampling
frequency, accuracy...);

ß A panel of observers
(age, naive vs expert,
men vs women...);

ß An appropriate
protocol (free-viewing,
task...).

Cambridge research system

Tobii

Apple bought SMI.

23 / 75



Advanced DIP

T. Maugey

Visual attention

Computational
models of visual
attention

Saliency model’s
performance
Ground truth

A new
breakthrough

Saccadic model

Attentive
applications

Conclusion

Ground truth (2/2)

ß Discrete fixation map f i for the ith observer:

f i(x) =
M∑
k=1

δ(x− xk)

where M is the number of fixations and xk is
the kth fixation.

ß Continuous saliency map S:

S(x) =

(
1
N

N∑
i=1

f i(x)

)
∗Gσ(x)

where N is the number of observers.
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Similarity metrics

ß Comparing two maps:
• The linear correlation coefficient, cc ∈ [−1, 1];
• The similarity metric sim uses the normalized probability

distributions of the two maps (Judd et al., 2012). The similarity
is the sum of the minimum values at each point in the
distributions:

sim =
∑

x

min (pdfmap1(x), pdfmap2(x)) (1)

sim = 1 means the pdfs are identical, sim = 0 means the pdfs
are completely opposite.

• Earth Mover’s Distance metric EMD is a measure of the
distance between two probability distributions. It computes the
minimal cost to transform one probability distribution into
another one.

EMD = 0 means the distributions are identical, i.e. the cost is null.
• Receiver Operating Analysis.

Le Meur, O. & Baccino, T., Methods for comparing scanpaths and
saliency maps: strengths and weaknesses, Behavior Research Method,
2013. 25 / 75
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Similarity metrics
KL-divergence and CC between two maps

ß KL-Divergence:

KL(p|h) =
∑
i,j

p(i, j)log2
p(i, j)
h(i, j)

where p and h are the pdf of the predicted and human saliency maps.

p(i, j) =
SMp(i, j)∑
k,l
SMp(k, l)

h(i, j) =
SMh(i, j)∑
k,l
SMh(k, l)

KL is a divergence: KL = 0 when p and h are strictly the same, KL ≥ 0.
ß Linear correlation coefficient:

CC(p, h) =
covph

σpσh

where σk is the standard deviation of k and covph is the covariance between
p and h. CC is between -1 and 1.
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Similarity metrics
ROC between two maps

(a) Original (b) Human (c) Itti’s model

(1) Label the pixels of the human map as fixated (255) or not (0):

The threshold is often arbitrary chosen (to cover around 20% of
the picture).
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Similarity metrics
ROC between two maps

(2) Label the pixels of the predicted map as fixated (255) or not (0)
by a given threshold Ti:

(3) Count the good and bad predictions between human and
predicted maps:

(a) Human Bin. (b) Predicted Bin.
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Similarity metrics
ROC between two maps

(3) Count the good and bad predictions between human and
predicted maps:

False Positive Rate = True Positive / (True Positive+False Negative)
True Positive Rate = False Positive / (False Positive+True Negative)
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Similarity metrics
ROC between two maps

(4) Go back to (2) to use another threshold... Stop the process
when all thresholds are tested.

AUC (Area Under Curve)

30 / 75



Advanced DIP

T. Maugey

Visual attention

Computational
models of visual
attention

Saliency model’s
performance
Similarity metrics

A new
breakthrough

Saccadic model

Attentive
applications

Conclusion

Similarity metrics

ß Comparing a map and a set of visual fixations:

• Receiver Operating Analysis;

• Normalized Scanpath Saliency (Parkhurst et al., 2002, Peters
et al., 2005);

• The Kullback-Leibler divergence (Itti and Baldi, 2005).

Le Meur, O. & Baccino, T., Methods for comparing scanpaths
and saliency maps: strengths and weaknesses, Behavior Research
Method, 2013.
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Similarity metrics
ROC between a map and a set of fixations

ROC analysis is performed between a continuous saliency map and a
set of fixations.

Hit rate is measured in function of
the threshold used to binarize the
saliency map (Judd et al., 2009):

ROC curve goes from 0 to 1!
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Similarity metrics
NSS

NSS (Normalized Scanpath salience) gives the degree of
correspondence between human fixation locations and predicted
saliency maps (Parkhurst et al., 2002),(Peters et al., 2005).

1 Each saliency map is normalized to have zero mean and one unit
standard deviation.

2 Extraction of the predicted saliency at a given human fixation
point.

3 Average of the previous values.

From (Peters et al., 2005)

NSS = 0: random performance;
NSS >> 0: correspondence between human fixation locations and the predicted
salient points:
NSS << 0: anti-correspondence.
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Benchmark (1/1)

Online benchmarks: http://saliency.mit.edu/

MIT300 and CAT2000

For a fair comparison, download the images, run your model and
submit your results.

Matlab software is available on the webpage:
http://saliency.mit.edu/.
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A new breakthrough but...

4 A new breakthrough
I Convolutional Neural Network
I CNN-based saliency prediction
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A new breakthrough... (1/3)

Convolutional Neural Network in a nutshell

ß A neural network model is a series of hierarchically connected
functions;

ß Each function’s output is the input for the next function;
ß These functions produce features of higher and higher

abstractions;

ß End-to-end learning of feature hierarchies.
Image courtesy: http://www.iro.umontreal.ca/˜bengioy/talks/DL-Tutorial-NIPS2015.pdf
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A new breakthrough... (2/3)

ß Extremely big annotated datasets...
• Imagenet, ≈ 16 Million images annotated by humans, 1000

classes (Deng et al., 2009).

ß More power (GPU).
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A new breakthrough... (3/3)

ß One of the best CNN for image classification:

Composed of 16 layers (13 convolutional layers + 3 FC layers) (Simonyan
and Zisserman, 2014) trained on Imagenet.
The number of filters of convolutional layer group starts from 64 and
increases by a factor of 2 after each max-pooling layer, until it reaches 512.

ß One layer = convolution + ReLU (Rectified Linear Unit ≈
truncation / nonlinear function) + Pooling (average, max)
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CNN-based saliency prediction (1/9)

ß DeepGaze I: Boosting saliency prediction with feature maps
trained on Imagenet, (Kümmerer et al., 2014):

rk(x, y) represents rescaled
neural responses;

s(x, y) =
∑

k
wkrk(x, y) ∗Gσ ;

o(x, y) = s(x, y) + α× c(x, y);

SoftMax:
p(x, y) = exp(o(x,y))∑

x,y
exp(o(x,y))

.

39 / 75



Advanced DIP

T. Maugey

Visual attention

Computational
models of visual
attention

Saliency model’s
performance

A new
breakthrough
CNN-based saliency
prediction

Saccadic model

Attentive
applications

Conclusion

CNN-based saliency prediction (2/9)

ß Salicon: Reducing the semantic gap in saliency prediction by
adapting deep neural networks (Huang et al., 2015):

• integration of information at different image scales;
• saliency evaluation metrics;
• end-to-end learning.
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CNN-based saliency prediction (3/9)

ß DeepGaze II: Reading fixations from deep features trained on
object recognition (Kümmerer et al., 2016):

VGG-19 network is now used
feature maps from conv5 1,

ReLU5 1, ReLU5 2, conv5 3,
ReLU5 4;

4 layers of 1× 1 convolution +
ReLU (second neural network

that needs to be trained).
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CNN-based saliency prediction (4/9)

ß A Deep Multi-Level Network for Saliency Prediction (Cornia
et al., 2016):

L(S, Ŝ)MLNET = 1
N

N∑
j=1

1
α− Sj

(Sj − Ŝj)2, α = 1.1

with, S, Ŝ ∈ [0, 1]
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CNN-based saliency prediction (5/9)

ß A Deep Spatial Contextual Long-term Recurrent Convolutional
Network for Saliency Detection (Liu and Han, 2016):

• Local Image Feature
Extraction using CNNs
(normalize and rescale);

• Scene feature extractor
CNN
(Places-CNN (Zhou
et al., 2014));

• DSCLSTM model
incorporates global
context information and
scene context
modulation.
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CNN-based saliency prediction (6/9)

ß End-to-End Saliency Mapping via Probability Distribution
Prediction (Jetley et al., 2016):

• VGG Net without the fully-connected layers;
• Three additional convolutional layers + upsampling and softmax.

44 / 75



Advanced DIP

T. Maugey

Visual attention

Computational
models of visual
attention

Saliency model’s
performance

A new
breakthrough
CNN-based saliency
prediction

Saccadic model

Attentive
applications

Conclusion

CNN-based saliency prediction (7/9)

ß SalGan: Visual saliency prediction with generative adversarial
networks (Pan et al., 2017):

• Training generator (15 epochs), Binary
Cross entropy Loss (down-sampled output
and ground truth saliency);

• Alternate the training of the saliency
prediction network and discriminator
network after each iteration (batch).
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CNN-based saliency prediction (8/9)

ß Deep visual attention prediction (Wang and Shen, 2017):

• Encoder - Decoder
approach;

• Multi-scale predictions
are learned from
different layers with
different receptive field
sizes;

• Fuse saliency thanks to
1× 1 convolution layer
(F =

∑M

m=1 w
m
f S

m).

Ablation study:
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CNN-based saliency prediction (9/9)

ß Snapshot of performance (MIT benchmark, 19th Oct. 2017):
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Limitations (1/1)

The picture is much clearer than 10 years ago!
BUT...

Important aspects of our visual system are clearly overlooked
Current models implicitly assume that eyes are equally likely to
move in any direction;

Viewing biases are not taken into account;

The temporal dimension is not considered (static saliency map).
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The temporal dimension is not considered (static saliency map).
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5 Saccadic model
I Presentation
I Proposed model
I Plausible scanpaths?
I Limitations
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Presentation (1/1)

ß Eye movements are composed of fixations and saccades. A
sequence of fixations is called a visual scanpath.

ß When looking at visual scenes, we perform in average 4 visual
fixations per second.

Saccadic models are used:
1 to compute plausible visual

scanpaths (stochastic,
saccade amplitudes /
orientations...);

2 to infer the scanpath-based
saliency map ⇔ to predict
salient areas!!
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Proposed model (1/8)

So, what are the key ingredients to design a saccadic model?

ß The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

ß The model has to generate plausible scanpaths that are similar to
those generated by humans in similar conditions: distribution of
saccade amplitudes and orientations, center bias...

ß Inhibition of return has to be considered: time-course, spatial decay...

ß Fixations should be mainly located on salient areas.
O. Le Meur & Z. Liu, Saccadic model of eye movements for free-viewing
condition, Vision Research, 2015.
O. Le Meur & A. Coutrot, Introducing context-dependent and spatially-variant
viewing biases in saccadic models, Vision Research, 2016.
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Proposed model (2/8)

Let I : Ω ⊂ R2 7→ R3 an image and xt a fixation point at time t.

We consider the 2D discrete conditional probability:

p (x|xt−1, S) ∝ pBU (x)pB(d, φ|F, S)pM (x|xt−1)

ß pBU : Ω 7→ [0, 1] is the grayscale saliency map;
ß pB(d, φ|F, S) represents the joint probability distribution of saccade

amplitudes and orientations.
• d is the saccade amplitude between two fixation points x and

xt−1 (expressed in degree of visual angle);
• φ is the angle (expressed in degree between these two points);
• F and S correspond to the frame index and the scene type,

respectively.
ß pM (x|xt−1) represents the memory state of the location x at time t.

This time-dependent term simulates the inhibition of return.
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Proposed model (3/8)
Bottom-up saliency map

p (x|xt−1, S) ∝ pBU (x)pB(d, φ|F, S)pM (x|xt−1)

ß pBU is the bottom-up saliency map.
• Computed by GBVS model (Harel et al., 2006). According to

(Borji et al., 2012)’s benchmark, this model is among the best
ones and presents a good trade-off between quality and
complexity.

• pBU (x) is constant over time. (Tatler et al., 2005) indeed
demonstrated that bottom-up influences do not vanish over time.
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Proposed model (4/8)
Viewing biases

p (x|xt−1, S) ∝ pBU (x)pB(d, φ|F, S)pM (x|xt−1)

ß pB(d, φ|F, S) represents the joint probability distribution of
saccade amplitudes and orientations ⇒ learning from
eye-tracking data.
d and φ represent the distance and the angle between successive fixations.

Strong horizontal bias Strong horizontal bias but mainly in the
rightward direction.

Three modes in the distribution
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Proposed model (5/8)
Viewing biases

Spatially-invariant to spatially-variant and scene-dependent
distribution pB(d, φ|F, S):
rather than computing a unique joint distribution per image, we
evenly divide the image into a N ×N equal base frames.

N = 3
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Proposed model (6/8)
Viewing biases

Estimation of the joint distribution pB(d, φ|F, S), given the frame
index F (F ∈ {1, ..., 9}) and the scene category S (Natural scenes,
webpages, conversational...):

Dynamic landscape. Natural scenes.
ß Re-positioning saccades allowing us to go back to the screen’s

center. Interesting to reproduce the center bias!
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Proposed model (7/8)
Memory effect and inhibition of return (IoR)

p (x|xt−1, S) ∝ pBU (x)pB(d, φ|F, S)pM (x|xt−1)

ß pM (x|xt−1) represents the memory effect and IoR of the
location x at time t. It is composed of two terms: Inhibition and
Recovery.

• The spatial IoR effect declines as a Gaussian function Φσi (d)
with the Euclidean distance d from the attended
location (Bennett and Pratt, 2001);

• The temporal decline of the IoR effect is simulated by a simple
linear model.
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Proposed model (8/8)
Selecting the next fixation point

p (x|xt−1, S) ∝ pBU (x)pB(d, φ|F, S)pM (x|xt−1)

ß Optimal next fixation point (Bayesian ideal searcher proposed
by (Najemnik and Geisler, 2009)):

x∗t = arg max
x∈Ω

p (x|xt−1) (2)

Problem: this approach does not reflect the stochastic behavior of
our visual system and may fail to provide plausible
scanpaths (Najemnik and Geisler, 2008).

ß Rather than selecting the best candidate, we generate Nc = 5 random
locations according to the 2D discrete conditional probability
p (x|xt−1).
The location with the highest saliency is chosen as the next fixation
point x∗

t .
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Results (1/5)

The relevance of the proposed approach is assessed with regard to
the plausibility, the spatial precision of the simulated scanpath

and ability to predict saliency areas.

ß Do the generated scanpaths present the same oculomotor biases
as human scanpaths?

ß What is the similarity degree between predicted and human
scanpaths?

ß Could the predicted scanpaths be used to form relevant saliency
maps?
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Results (2/5)
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Results (3/5)
Scanpath-based saliency map

ß We compute, for each image, 20 scanpaths, each composed of
10 fixations.

ß For each image, we created a saliency map by convolving a
Gaussian function over the fixation locations.

(a) original image; (b) human saliency map; (c) GBVS saliency map; (d)
GBVS-SM saliency maps computed from the simulated scanpaths.
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Results (4/5)
Are the predicted scanpaths similar to human ones?

Yes, predicted scanpaths show similar patterns as the human
scanpaths!
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Results (5/5)
Mixing together bottom-up saliency and viewing biases.

(i) When the quality of
the input saliency map
increases, performance
of saccadic model
increases;
(ii) The gain brought by
spatially-variant and
context-dependent
distributions is not
significant;
(iii) Spatially-variant
and context-dependent
distributions are
required to generate
plausible visual
scanpaths (see previous
slides).
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Tailoring the model for different contexts!

ß Task-dependent saccadic model (free-viewing vs quality task...)
ß Age-dependent saccadic model.... (2 y.o., 4-6 y.o., 6-10 y.o,

adults) (Helo et al., 2014)

Le Meur et al., Visual attention saccadic models learn to emulate gaze patterns
from childhood to adulthood, IEEE Trans. Image Processing, 2017.
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Limitations

Still far from the reality...
ß We do not predict the fixation durations. Some models could be

used for this purpose (Nuthmann et al., 2010, Trukenbrod and
Engbert, 2014).

ß Second-order effect. We assume that the memory effect occurs
only in the fixation location. However, are saccades independent
events? No, see (Tatler and Vincent, 2008).

ß High-level aspects such as the scene context are not included in
our model.

ß Should we recompute the saliency map after every fixations?
Probably yes...

ß Randomness (Nc) should be adapted to the input image. By
default, Nc = 5.

ß Is the time course of IoR relevant? Is the recovery linear?
ß Foveal vs peripheral vision? Cortical magnification...
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Attentive applications

6 Attentive applications
I Taxonomy
I Saliency-based applications
I Eye Movements-based applications
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Taxonomy

ß A sheer number of saliency-based applications....

Extracted from (Nguyen et al., 2017). See also (Mancas et al., 2016).
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Taxonomy

ß A sheer number of saliency-based applications....

Extracted from (Nguyen et al., 2017). See also (Mancas et al., 2016).

ß More and more eye-movements-based applications...
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Saliency-based applications (1/2)

ß Saliency-based seam carving (Avidan and Shamir, 2007):

Extracted from (Nguyen et al., 2017).
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Saliency-based applications (1/2)

ß Saliency-based seam carving (Avidan and Shamir, 2007):

Extracted from (Nguyen et al., 2017).

ß Retargeting (Le Meur et al., 2006):
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Saliency-based applications (2/2)

ß Non photorealistic rendering (DeCarlo and Santella, 2002):
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Saliency-based applications (2/2)

ß Non photorealistic rendering (DeCarlo and Santella, 2002):

ß First-Person Navigation in Virtual Environments (Hillaire et al.,
2008):
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Eye Movements-based applications (1/3)

ß Predicting Moves-on-Stills for Comic Art using Viewer Gaze
Data (Jain et al., 2016)

The Ken Burns effect is a type of panning and zooming effect used in
video production from still imagery.

More results on http://jainlab.cise.ufl.edu/comics.html
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Eye Movements-based applications (2/3)

ß Gaze-driven Video Re-editing (Jain et al., 2015)
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Eye Movements-based applications (3/3)

ß Gaze Data for the Analysis of Attention in Feature
Films (Breeden and Hanrahan, 2017)

Smaller values indicate increased attentional synchrony.
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7 Conclusion
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Conclusion (1/2)

Take Home message:

ß Saliency model ⇒ 2D saliency map;

ß Saccadic model ⇒
• to produce plausible visual scanpaths;
• to detect the most salient regions of visual scenes.
• can be tailored to specific visual context.

ß A number of saliency-based / eye-movements-based applications.
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Conclusion (1/2)
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ß Saccadic model ⇒
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Conclusion (2/2)

ß Eye-movements revolution...

• Diagnosis of neurodevelopmental disorders (see Itti, L. (2015).
New Eye-Tracking Techniques May Revolutionize Mental Health
Screening. Neuron, 88(3), 442-444.);

• Learning Visual Attention to Identify People With Autism
Spectrum Disorder (Jiang and Zhao, 2017);

• Alzheimer’s disease (Crawford et al., 2015);

• US startup proposes a device for tracking your eyes to see if
you’re lying...;

• Emotion, gender (Coutrot et al., 2016), age (Le Meur et al.,
2017)....
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