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Abstract

We present a novel paradigm to deal with depth recon-
struction from 4D light fields in a variational framework.
Taking into account the special structure of light field data,
we reformulate the problem of stereo matching to a con-
strained labeling problem on epipolar plane images, which
can be thought of as vertical and horizontal 2D cuts through
the field. This alternative formulation allows to estimate ac-
curate depth values even for specular surfaces, while simul-
taneously taking into account global visibility constraints in
order to obtain consistent depth maps for all views. The re-
sulting optimization problems are solved with state-of-the-
art convex relaxation techniques. We test our algorithm on a
number of synthetic and real-world examples captured with
a light field gantry and a plenoptic camera, and compare
to ground truth where available. All data sets as well as
source code are provided online for additional evaluation.

1. Introduction

The 4D light field has been established as a promis-
ing paradigm to describe the visual appearance of a scene.
Compared to a traditional 2D image, it contains informa-
tion about not only the accumulated intensity at each image
point, but separate intensity values for each ray direction.
Thus, the light field implicitly captures 3D scene geometry
and reflectance properties.

The additional information inherent in a light field allows
a wide range of applications. Popular in computer graphics,
for example, is light field rendering, where the scene is dis-
played from a virtual viewpoint [18, 14]. The light field
data also allows to add effects like synthetic aperture, i.e.
virtual refocusing of the camera, stereoscopic display, and
automatic glare reduction as well as object insertion and re-
moval [11, 10, 6].

In the past, light fields have been very hard to capture
and required expensive custom-made hardware to be able
to acquire several views of a scene. Straightforward but
hardware-intensive are camera arrays [22]. Somewhat more
practical and less expensive is a gantry construction con-

Figure 1. Our novel paradigm for depth reconstruction in a light
field allows to estimate highly accurate depth maps even for spec-
ular scenes.

sisting of a single moving camera [20], which is however
restricted to static scenes, see figure 2. Recently, however,
the first commercial plenoptic cameras have become avail-
able on the market. Using an array of microlenses, a single
one of these cameras essentially captures an full array of
views simultaneously. This makes such cameras very at-
tractive for a number of industrial applications, in particular
depth estimation and surface inspection, and they can also
acquire video streams of dynamic scenes [8, 15, 16].

Naturally, this creates a high demand for efficient and ro-
bust algorithms which reconstruct information directly from
light fields. However, while there has been a lot of work
on for example stereo and optical flow algorithms for tradi-
tional image pairs, there is a lack of similar modern methods
which are specifically tailored to the rich structure inherent
in a light field. Furthermore, much of the existing analysis
is local in nature, and does not enforce global consistency
of results.

Contributions. In this paper, we introduce a framework
for variational light field analysis, which is designed to
enable the application of modern continuous optimization
methods to 4D light field data. Here, we specifically ad-
dress the problem of depth estimation, and make a number
of important contributions.

• We introduce a novel local data term for depth estima-
tion, which is tailored to the structure of light field data
and much more robust than traditional stereo matching
methods to non-Lambertian objects.
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• We introduce a labeling scheme based on state-of-the-
art convex relaxation methods [17, 21], which allows
to estimate globally consistent depth maps which sat-
isfy visibility constraints for all (possibly hundreds of)
views simultaneously.

The robustness of our method is demonstrated on a large
range of data sets, from synthetic light fields with ground
truth available up to real-world examples from several
sources, including a recent plenoptic camera. Source code
for the method and all of our data sets are provided online
on our web page.

2. Related work
The concept of light fields originated mainly in computer

graphics. In this field, image based rendering [19] is a com-
mon technique to render new views from a set of images
of a scene. Adelson and Bergen [1] as well as McMillan
and Bishop [14] treated view interpolation as a reconstruc-
tion of the plenoptic function. This function is defined on
a seven-dimensional space and describes the entire infor-
mation about light emitted by a scene, storing an inten-
sity value for every 3D point, direction, wavelength and
time. A dimensionality reduction of the plenoptic func-
tion to 4D, the so called Lumigraph, was introduced by
Gortler et al. [9] and Levoy and Hanrahan [12]. They intro-
duced the two plane parametrization, which we also adopt
in our work, where each ray is determined by its intersec-
tions with two planes.

A main benefit of light fields compared to traditional im-
ages or stereo pairs is the expansion of the disparity space to
a continuous space. This becomes apparent when consider-
ing epipolar plane images (EPIs), which can be viewed as
2D slices of constant angular and spatial direction through
the Lumigraph. Due to a dense sampling in angular direc-
tion, corresponding pixels are projected onto lines in EPIs,
which can be more robustly detected than point correspon-
dences.

One of the first approaches using EPIs to analyze scene
geometry was published by Bolles et al. [5]. They detect
edges, peaks and troughs with a subsequent line fitting in
the EPI to reconstruct 3D structure. Another approach is
presented by Criminisi et al. [6], who use an iterative ex-
traction procedure for collections of EPI-lines of the same
depth, which they call an EPI-tube. Lines belonging to the
same tube are detected via shearing the EPI and analyz-
ing photo-consistency in the vertical direction. They also
propose a procedure to remove specular highlights from al-
ready extracted EPI-tubes.

There are also two less heuristic methods which work in
an energy minimization framework. In Matousek et al. [13],
a cost function is formulated to minimize a weighted path
length between points in the first and the last row of an

(a) LEGO gantry [20] (b) Plenoptic camera [16]

Figure 2. Acquisition devices which captured the real-world
4D light fields on which we test our algorithm.

EPI, preferring constant intensity in a small neighborhood
of each EPI-line. However, their method only works in the
absence of occlusions. Berent et al. [2] deal with the simul-
taneous segmentation of EPI-tubes by a region competition
method using active contours, imposing geometric proper-
ties to enforce correct occlusion ordering.

In contrast to the above works, we perform a labeling
for all points in the EPI simultaneously by using a state-of-
the-art continuous convex energy minimization framework.
We enforce globally consistent visibility across views by re-
stricting the spatial layout of the labeled regions. Compared
to methods which extract EPI-tubes sequentially [5, 6], this
is independent of the order of extraction and does not suffer
from an associated propagation of errors. While a simul-
taneous extraction is also performed in [2], they perform
local minimization only and require good initialization, as
opposed to our convex relaxation approach. Furthermore,
they use a level set approach, which makes it expensive and
cumbersome to deal with a large number of regions. As a
further novelty to previous work, we suggest to employ the
structure tensor of an EPI to obtain robust local depth esti-
mates.

3. 4D light field structure
Several ways to represent light fields have been pro-

posed. In this paper, we adopt the two-plane parametriza-
tion. One way to look at a 4D light field is to consider it
as a collection of pinhole views from several view points
parallel to a common image plane, figure 3. The 2D
plane Π contains the focal points of the views, which we
parametrize by the coordinates (s, t), and the image plane Ω
is parametrized by the coordinates (x, y). A 4D light field
or Lumigraph is a map

L : Ω×Π→ R, (x, y, s, t) 7→ L(x, y, s, t). (1)

It can be viewed as an assignment of an intensity value to
the ray Rx,y,s,t passing through (x, y) ∈ Ω and (s, t) ∈ Π.

For the problem of estimating 3D structure, we consider
the structure of the light field, in particular on 2D slices
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(b) Pinhole view at (s∗, t∗) and epipolar plane image Sy∗,t∗

Figure 3. Each camera location (s∗, t∗) in the image plane Π yields a different pinhole view of the scene. By fixing a horizontal line of
constant y∗ in the image plane and a constant camera coordinate t∗, one obtains an epipolar plane image (EPI) in (x, s) coordinates. A
scene point P is projected onto a line in the EPI due to a linear correspondence between its s- and projected x-coordinate, see figure (a)
and equation (3).

through the field. We fix a horizontal line of constant y∗

in the image plane and a constant camera coordinate t∗, and
restrict the light field to an (x, s) -slice Σy∗,t∗ . The resulting
map is called an epipolar plane image (EPI),

Sy∗,t∗ : Σy∗,t∗ → R,
(x, s) 7→ Sy∗,t∗(x, s) := L(x, y∗, s, t∗).

(2)

Let us consider the geometry of this map, figure 3. A point
P = (X,Y, Z) within the epipolar plane corresponding to
the slice projects to a point in Ω depending on the chosen
camera center in Π. If we vary s, the coordinate x changes
according to [5]

∆x = − f
Z

∆s, (3)

where f is the distance between the parallel planes1.
Interestingly, a point in 3D space is thus projected onto

a line in Σy∗,t∗ , where the slope of the line is related to its
depth. This means that the intensity of the light field should
not change along such a line, provided that the objects in
the scene are Lambertian. Thus, if we want to estimate the
depth for a ray Rx,y,s,t, we can try to find the slope of level
lines in the slices corresponding to the point. We now turn
to formulating this problem as a variational labeling prob-
lem on the slice domains.

4. Local depth estimate on an EPI
We first consider how we can estimate the local direction

of a line at a point (x, s) for an epipolar plane image Sy∗,t∗ ,
where y∗ and t∗ are fixed. The case of vertical slices is anal-
ogous. The goal of this step is to compute a local depth esti-
mate ly∗,t∗(x, s) for each point of the slice domain, as well

1Note than to obtain this formula from figure 3(a), ∆x has to be cor-
rected by the translation ∆s to account for the different local coordinate
systems of the views.

as a reliability estimate ry∗,t∗(x, s) ∈ [0, 1], which gives a
measure of how reliable the local depth estimate is. Both
local estimates will used in subsequent sections to obtain a
consistent depth map in a global optimization framework.

In order to obtain the local depth estimate, we need to
estimate the direction of lines on the slice. This is done
using the structure tensor J of the epipolar plane image S =
Sy∗,t∗ ,

J =

[
Gσ ∗ (SxSx) Gσ ∗ (SxSy)
Gσ ∗ (SxSy) Gσ ∗ (SySy)

]
=

[
Jxx Jxy
Jxy Jyy

]
. (4)

Here, Gσ represents a Gaussian smoothing operator at an
outer scale σ and Sx,Sy denote the gradient components
of S calculated on an inner scale ρ.

The direction of the local level lines can then be com-
puted via [3]

ny∗,t∗ =

[
Jyy − Jxx

2Jxy

]
=

[
∆x
∆s

]
, (5)

from which we derive the local depth estimate via equa-
tion (3) as

ly∗,t∗ = −f ∆s

∆x
. (6)

As the reliability measure we use the coherence of the
structure tensor [3],

ry∗,t∗ :=
(Jyy − Jxx)

2
+ 4J2

xy

(Jxx + Jyy)
2 . (7)

Using the local depth estimates dy∗,t∗ , dx∗,s∗ and relia-
bility estimates ry∗,t∗ , rx∗,s∗ for all the EPIs in horizontal
and vertical direction, respectively, one can now proceed
to directly compute depth maps in a global optimization
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Figure 4. Global labeling constraints on an EPI: if depth λi is less
than λj and corresponds to direction ni, then the transition from
λi to λj is only allowed in a direction orthogonal to ni to not
violate occlusing order.

framework, which is explained in section 6. However, it
is possible to first enforce global visibility constraints sep-
arately on each of the EPIs. This step is computationally
expensive, but leads to the best results. We explain it in the
next section.

5. Consistent EPI depth labeling
The computation of the local depth estimates using the

structure tensor only takes into account the immediate local
structure of the light field. In truth, the depth values within
a slice need to satisfy global visibility constraints across all
cameras for the labeling to be consistent. In particular, a line
with is labeled with a certain depth cannot be interrupted by
a transition to a label corresponding to a greater depth, since
this would violate occlusion ordering, figure 4.

In this section, we show how we can obtain globally con-
sistent estimates for each slice, which take into account all
views simultaneously. While this is a computationally very
expensive procedure, it yields the optimal results. How-
ever, for less complex light fields or if computation time is
important, it can be omitted and one can proceed with the
local estimates to section 6.

To satisfy the global visibility constraints on the slice
level, we compute for each slice a new labeling dy∗,t∗ which
is close to the local estimate ly∗,t∗ , but satisfies the con-
straints. The desired labeling is a map

dy∗,t∗ : Σy∗,t∗ → {λ1, . . . , λN} (8)

into a range of N discrete depth labels. We encode the
minimization problem by using binary indicator functions
ui : Σy∗,t∗ → {0, 1}, one for each of the N labels, with
the label uniqueness constraint that

∑N
i=1 ui = 1. A region

where ui = 1 thus indicates a region of depth λi.
We define local cost functions ci(x, s), which denote

how expensive it is to assign the depth label λi at a
point (x, s), as

ci(x, s) := ry∗,t∗(x, s) |λi − ly∗,t∗(x, s)| . (9)

(a) Typical epipolar plane image Sy∗,t∗

(b) Noisy local depth estimate ly∗,t∗

(c) Consistent depth estimate dy∗,t∗ after optimization

Figure 5. With the consistent labeling scheme described in sec-
tion 5, one can enforce global visibility constraints in order to im-
prove the depth estimates for each epipolar plane image. Brighter
shades of green denote larger disparities and thus lines corre-
sponding to closer points.

Note that the penalty is weighted with the local reliability
estimate, so that points at which the depth estimate is likely
inaccurate have less influence on the result.

The new slice labeling is then recovered by minimizing
the global energy functional

E(u) = R(u) +

N∑
i=1

∫
Σy∗,t∗

ciui d(x, s), (10)

where u = (u1, . . . , uN ) is the vector of indicator func-
tions. The difficult part is now to define the regularizer
R(u) in a way that the labeling is globally consistent with
occlusion ordering.

We observe that the visibility constraints restrict the al-
lowed relative positions of labeled regions.

If ni is the direction of the line corresponding to the
depth λi, then the transition from λi to a larger depth label
λj , j > i is only allowed to happen in a direction orthogonal
to ni, figure 4. Otherwise, a closer point would be occluded
by a point which is further away, which is impossible.

We enforce this occlusion ordering constraint by penal-
izing a transition from label λi to λj in direction ν with

d(λi, λj ,ν) :=


0 if i = j,

∞ if i < j and ν 6= ±n⊥i ,
1 if i < j and ν = ±n⊥i ,
d(λj , λi,ν) otherwise.

(11)
This problem fits into the minimization framework de-
scribed in [21], where the authors describe the construc-
tion of a regularizer R to enforce the desired ordering con-
straints. We use an implementation of their method to min-
imize (10), and refer to their paper for more details. Note
that the optimization scheme in [21] only imposes soft con-
straints, which means that there can still be some constraint
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(a) Central view (b) Ground truth

(c) Data term optimum (d) After global optimization
Figure 6. For a Lambertian light field with relatively simple geom-
etry, our global approach already yields an almost perfect depth
map. The expensive consistent estimate does not substantially im-
prove the result anymore.

violations left if the data term has a highly dominant prefer-
ence for an inaccurate labeling.

Figure 5 demonstrates the result of enforcing global con-
sistency for a single EPI of a light field. While the lo-
cal depth estimate is noisy and of course does not satisfy
any global constraints, the optimization yields a piecewise
smooth estimate with sharp occlusion boundaries, which are
aligned in the proper direction corresponding to the closer
depth label of the transition. In particular, consistent la-
beling greatly improves robustness to non-Lambertian sur-
faces, since they typically lead only to a small subset of
outliers along an EPI-line.

6. Global Integration
After obtaining EPI depth estimates dy∗,t∗ and dx∗,s∗

from the horizontal and vertical slices, respectively, we need
to integrate those estimates into a consistent single depth
map u : Ω → R for each view (s∗, t∗). This is the objec-
tive of the following section. We achieve our goal with a
globally optimal labeling scheme in the domain Ω, where
we minimize a functional of the form

E(u) =

∫
Ω

g |Du|+ ρ(u, x, y) d(x, y). (12)

In figure 6, we can see that the per-slice estimates are
still noisy. Furthermore, edges are not yet localized very

Source Data set Views Resolution
Blender [4] Conehead 21 × 21 500 × 500

Buddha 21 × 21 768 × 768
Mona 41 × 41 512 × 512

Gantry [20] Truck 17 × 17 1280 × 960
Crystal 17 × 17 960 × 1280

Plenoptic Elephant 9 × 9 980 × 628
camera [16] Watch 9 × 9 980 × 628

Figure 7. 4D Light field data sets used in our evaluation.

Dataset
Method ∆ Conehead Mona Buddha
Stereo [7] 1 17.6 15.3 10.8

5 64.3 43.3 45.6

Stereo [17] 1 34.5 9.5 19.1
5 94.6 56.8 91.7

Local 1 21.5 8.1 26.4
(section 4) 5 77.1 43.0 79.6

Global 1 49.0 12.3 38.3
(section 4 + 6) 5 98.7 74.3 95.9

Consistent 1 51.1 15.5 39.6
(section 5 + 6) 5 98.9 80.1 97.1

Figure 8. Comparison of estimated depth with ground truth for
various approaches. The table shows the percentage of pixels for
which the error is less than ∆ labels. Note that an error of one
label corresponds to a relative depth error of only 0.2%, and the
count is with respect to all pixels in the image without regard to
occluded regions.

well, since computing the structure tensor entails an initial
smoothing of the input data. For this reason, we encourage
discontinuities of u to lie on edges of the original input im-
age by weighting the local smoothness with a measure of
the edge strength. We use

g(x, y) = 1− rs∗,t∗(x, y), (13)

where rs∗,t∗ is the coherence measure for the structure
tensor of the view image, defined similarly as in (7).

In the data term, we want to encourage the solution to be
close to either dx∗,s∗ or dy∗,t∗ , while suppressing impulse
noise. Also, the two estimates dx∗,s∗ and dy∗,t∗ shall be
weighted according to their reliability rx∗,s∗ and ry∗,t∗ . We
achieve this by setting

ρ(u, x, y) := min(ry∗,t∗(x, s∗) |u− dy∗,t∗(x, s∗)| ,
rx∗,s∗(y, t∗) |u− dx∗,s∗(y, t∗)|).

(14)

We compute globally optimal solutions to the func-
tional (12) using the technique of functional lifting de-
scribed in [17].
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(a) Center view (b) Stereo [17] (c) Ours (global) (d) Ours (consistent)
Figure 9. The synthetic light field “Mona” with some specularities and complex geometry is surprisingly difficult for depth reconstruction.
Here, the consistent estimate yields a substantial improvement over global integration only, which already outperforms other methods.

(a) Stereo [7], intensities rescaled (b) Ours (local) (c) Stereo [17] (d) Ours (global)
Figure 10. With our methods, we can perform stable depth reconstruction in the synthetic light field “Buddha”. The global stereo algorithm
also achieves a satisfactory result, but has obvious difficulties on the specular statue and metal beam. See figure 1 for center view and
result from our consistent estimation, which yields small, but visible and measurable improvements.

7. Experiments

In this section, we verify the robustness and quality of
depth estimates based on orientations in the epipolar plane
image, and compare our results to stereo matching ap-
proaches. For this, we perform depth reconstruction on a
number of data sets from various sources, see figure 7. The
synthetic data sets and ground truth created with Blender
will be provided on our webpage for future evaluations.

With our experiments we show that the light field
paradigm provides better results if compared to stereo meth-
ods with comparable computational effort. In the first step,
we compare our data term or local estimation using our
structure tensor segmentation (section 4) to a local stereo
approach [7]. In the second step, we compare the results of
our global optimization (section 4 and 6) to a stereo match-
ing approach within the same global optimization frame-
work [17]. Finally, we demonstrate the potential of the very
accurate but also time-consuming consistent approach (sec-
tion 5 and 6).

Table 8 shows quantitative results of all the experiments
with available ground truth data. For all methods, param-
eters were tuned to achieve optimum results. In our case,
the dominant parameters are the scale parameters σ, τ for
the structure tensor and a smoothing factor for global inte-

gration. We found that σ = τ = 0.8 works well in most
examples, and results are very robust to parameter varia-
tions.

Comparison of local estimates. Local estimation of
depth for a single view performs at interactive frame rates.
In table 8, one can see that our local data term on its own is
often already more precise than a stereo approach [7]. This
shows that the Lumigraph is a highly efficient data structure
for depth estimation tasks, since with low amount of effort
we obtain dense depth maps and for the most part bypass
the occlusion problem by accumulating information from
many surrounding views. Note that in this step, the local es-
timate performs depth estimation at floating point precision,
which is the main cause of the high accuracy compared to
the stereo matching method which is much more quantized,
see figure 10.

Comparison of global estimates. Integrating the local
depth estimates into a globally optimized depth map takes
about 2-10 minutes per view depending on resolution and
number of depth labels. Total computation times are com-
parable for both stereo matching as well as our novel tech-
nique based on structure tensor computation. Figures 9 to11
show visual comparisons of our global optimization to an
approach which uses stereo matching [17], but which opti-
mizes the same global functional (12) with a different data
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(a) Center view (b) Stereo reconstruction [17] (c) Our method (global)

Figure 11. Exploiting the structure of 4D light fields allows stable depth reconstruction even for very difficult scenes with reflective and
specular surfaces, where methods based on stereo matching tend to fail. Note that the stereo result is already overly smoothed in some
regions, while there is still a lot of noise left in the specular areas. Data sets “Truck” and “Crystal” from Stanford light field archive,
17 × 17 images at resolution 1280 × 960, runtime 15 minutes for both methods with 128 depth labels on an nVidia Fermi GPU.

term. The numerical results in table 8 once again demon-
strate the superiority of the light field structure for depth
estimation.

Consistent labeling. The full accuracy of the depth eval-
uation based on light fields is only achievable if we make
use of the entire information provided in the EPI represen-
tation. For this, we need to impose the global occlusion
ordering constraints described in section 5, which takes sev-
eral hours to compute for all EPIs, but computes data for all
views in the light field simultaneously. The visual and nu-
merical improvements are shown in figures 9 and 10 as well
as table 8.

Plenoptic camera images. We also experimentally
demonstrate that our depth reconstruction technique works
with images from a Raytrix plenoptic camera [16] and
yields results which are superior to the reference algorithm
provided by the manufacturer, figure 12. Note that in order
to run our algorithm on this type of images, we first need to
perform a conversion to a Lumigraph [23].

8. Conclusions
We have introduced a novel idea for robust depth estima-

tion from 4D light field data in a variational framework. We
locally estimate depth using dominant directions on epipo-
lar plane images, which are obtained using the structure ten-
sor. The local estimates are integrated into global depth
maps with a globally optimal state-of-the-art convex opti-
mization method. At greater computational cost, it is also
possible to recover depth estimates which satisfy global
visibility constraints. This can be done by labeling each
epipolar plane image separately and imposing spatial layout
constraints using a recent continuous optimization method
based on convex relaxation.

We achieve state-of-the-art results, whose accuracy sig-
nificantly surpasses that of traditional stereo-based meth-
ods. Furthermore, on data sets from various sources includ-
ing plenoptic cameras, we demonstrated that by taking into
account the special structure of 4D light fields one can ro-
bustly estimate depth for non-Lambertian surfaces.
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(a) Center view (b) Reference algorithm by manufacturer (c) Our result (global)
Figure 12. Depth estimates from lightfields acquired with the Raytrix plenoptic camera, which compare our method to a reference algorithm
provided by the camera manufacturer on difficult real-world scenes with reflective metal objects. Our result clearly provides more details
in the reconstruction.
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