

Master SIF - REP (Part 2) Pixel Organisation and Representation

Thomas Maugey thomas.maugey@inria.fr

Fall 2023

Table of Contents

Pixel Organisatio

Pixel organisation

360 imag

Light fields

• Pixel organisation problem

2 360 images

3 Light fields

4 Reference

Table of Contents

Pixel Organisation

Pixel organisation

problem

• Pixel organisation problem

2 360 images

3 Light fields

4 Reference

Pixels

T. Maugey

Pixel organisation problem

Light fields

360 images Light fields First pixels in 1965, when the "digital world" moved from a representation of images by lines to an array of *picture elements* called **pixels**.

Aspect ratio = W/H (4/3, 16/9,...) Resolution = $W \times H$ Density (Pixel per Inch, PPI) = $\frac{\sqrt{W^2+H^2}}{d}$ (where d is the screen diagonal in "inches")

Image resolution: $W \times H$

Pixel organisation problem

 160×160

Standard AR and Resolutions

T. Maugey

Pixel organisation problem

Light fields

Reference

 3840×2160 (4K UHDTV), 4096×2160 (4K Cinema), 7680×4320 (8K UHDTV), 15360×8640 (16K Cinema), 61440×34560 (64K Cinema)

Table of Contents

Pixel organisation problem 360 images

2 360 images

3 Light fields

4 Reference

Is matrix organisation always meaningful?

Pixel Organisation

problem

360 images

_ight field:

Example of omnidirectional capture

How to represent accurately this image?

Equirectangular representation

Pixel Organisatio

......

Pixel organisation

360 images

ight fields.

Equirectangular or Panorama description

- Most popular
- Suitable for image processing applications

But

Radial distortions

360 images

Pixel Organisatio

T. Mauge

Pixel organisation

360 images

Light fields Reference

Pixel Organisatio

T. Mauge

Pixel organisation

360 images

Light fields Reference

Cube

Used by Facebook

Sphere

No radial distortion

[Facebook, "Under the hood: building 360 video."]
https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video."]

Pixel Organisatio

T. Mauge

Pixel organisation

360 images

Light field: Reference

- Used by Facebook
- No radial distortion

But

Loose some connexion informations

[Facebook, "Under the hood: building 360 video." https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video/]

Pyramidal representation

Pixel Organisatio

Pixel organisatio

360 images

1:--- 6-13-

Reference

Storage of several pyramidal representations corresponding to different directions on the server

[https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/]

Pyramidal representation

Pixel Organisatio

T. Mauge

Pixel organisation problem

360 images

Light fields

Pyramid

Storage of several pyramidal representations corresponding to different directions on the server

[https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/]

Pyramidal representation

Pixel Organisatio

T. Mauge

Pixel organisation problem

360 images

Light fields

.

Pyramid

Storage of several pyramidal representations corresponding to different directions on the server

[https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/]

Uniform sampling

Pixel Organisatio

T. Mauge

Pixel organisatio

360 images

Light field:

- Equidistant point
- Connectivity preserved

But

Not a 2D image anymore

Table of Contents

Light fields

Pixel organisation problem

2 360 images

3 Light fields

4 Reference

Pixel Organisatio

Pixel organisa problem

360 images

Light fields

Reference

Aperture does not capture enough light

Organisatio

Pixel organisatio problem

360 imaį

Light fields

Aperture is then replaced by a lens

Organisatio

Pixel organisatio problem

360 imag

Light fields

Reference

The lens deviates the light rays

Organisatio

Pixel organisatio problem

360 ima

Light fields

The rays do not converge to one point, blur appears

Focus

Pixel Organisatio

Pixel organisation

Light fields

Reference

The focus plane position depends on the object distance.

All the objects whose focus plane is placed at the sensor plane will be **in-focus**, all the other ones are **out-of-focus**

Examples

Pixel Organisatio

T. Mauge

Pixel organisation

360 image

Light fields

Deference

Light field

Pixel Organisatio

T. Maugey

Pixel organisation problem

Light fields

Light heic

Light field sensing

Pixel Organisatio

T. Mauge

Pixel organisation problem

Light fields

The value of the light field on the sensor plane at position (x,y) is equal to

$$E_F^{\rm im}(x,y) = \frac{1}{F^2} \int_u \int_v L_F(x,y,u,v) dv du$$

Plenoptic camera

Pixel Organisatio

Pixel organisation

Light fields

An array of micro-lenses enables to discriminate the ray directions $E_F^{\rm lf}(x,y,i_u,i_v) = \frac{1}{F^2} \int_{u \in U_{i_u}} \int_{v \in V_{i_v}} L_F(x,y,u,v) dv du$

In practice, (x,y) are discretized as well $E_F^{\mathrm{lf}}(i_x,i_y,i_u,i_v) = \frac{1}{F^2} \int_{x \in X_{i_x}} \int_{y \in Y_{i_y}} \int_{u \in U_{i_u}} \int_{v \in V_{i_v}} L_F(x,y,u,v) dv du dy dx$

Often, the indexes are removed and the recorded light field is denoted by $E_F^{\rm lf}(x,y,u,v)$, where (x,y,u,v) become indices.

LF capture

Organisation

T Maugev

Pixel organisation problem

360 imaį

Light fields

The light field recorded with a distance F looks like:

Raw Light field

Pixel Organisation The pixel array $E_F(i_x,i_y,i_u,i_v)$ can be represented as it is recorded

Pixel organisation problem 360 images Light fields

Sub-aperture images

Pixel Organisation

T. Mauge

Pixel organisation

360 image

Light fields

The pixel array $E_F^{\mathrm{lf}}(i_x,i_y,i_u,i_v)$ can be represented by orientations

Epipolar images

Pixel Organisation

Pixel organisation

360 image

Light fields

The pixel array $E_F^{\mathrm{lf}}(i_x,i_y,i_u,i_v)$ can be represented row-by-row

Digital refocusing

Pixel organisation problem

360 images
Light fields

The digital refocusing consists in synthesizing images $E_{F'}^{\rm im}$ with the desired focus F' from a single light field record $E_F^{\rm lf}$.

The generated image is equal to

$$E^{\mathrm{im}}_{F'}(x',y') =$$

Digital refocusing

Pixel organisation

Light fields

The digital refocusing consists in synthesizing images $E_{F'}^{\rm im}$ with the desired focus F' from a single light field record $E_F^{\rm lf}$.

The generated image is equal to

$$E_{F'}^{\text{im}}(x',y') = \frac{1}{F'^2} \int_{u} \int_{v} L_{F'}(x',y',u,v) du dv dx' dy'$$

Light field's property

problem
360 images

Light fields Reference

With a new distance $F' = \alpha F$

 $L_{F^{\prime}}(x^{\prime},y^{\prime},u,v)$ is equal to the value of light field L_{F} at position:

$$x =$$

$$y =$$

The acquired image is thus:

Light field's property

Pixel Organisation

Pixel organisation problem 360 images **Light fields** Reference

With a new distance $F' = \alpha F$

 $L_{F'}(x',y',u,v)$ is equal to the value of light field L_F at position:

$$x = u(1 - \frac{1}{\alpha}) + \frac{x'}{\alpha}$$

$$y = v(1 - \frac{1}{\alpha}) + \frac{y'}{\alpha}$$

The acquired image is thus:

$$E_{\alpha F}^{\mathrm{im}}(x',y') = \frac{1}{\alpha^2 F^2} \int_u \int_v L_F \left(u(1-\frac{1}{\alpha}) + \frac{x'}{\alpha}, v(1-\frac{1}{\alpha}) + \frac{y'}{\alpha}, u, v \right) dv du$$

Digital refocusing

Light fields

The generated image is equal to

$$E_{\alpha F}^{\mathrm{im}}(i_{x'},i_{y'}) = \frac{1}{\alpha^2 F^2} \int_{x' \in X_{i_{x'}}} \int_{y' \in Y_{i_{y'}}} \int_{u} \int_{v} L_{F'}(x',y',u,v) du dv dx' dy'$$

Using previous relation between L_F and $L_{\alpha F}$:

$$E_{\alpha F}^{\mathrm{im}}(i_{x'},i_{y'}) = \frac{1}{\alpha^2 F^2} \int \int \int \int \int L_F \left(u(1-\frac{1}{\alpha}) + \frac{x'}{\alpha}, v(1-\frac{1}{\alpha}) + \frac{y'}{\alpha}, u,v \right) du dv dx' dy'$$

We can write (with $\iota(.)$ equal to the round operation):

$$E_{\alpha F}^{\mathrm{im}}(i_{x'},i_{y'}) \approx \frac{1}{\alpha^2 F^2} \sum_{i} \sum_{i} \sum_{i} \sum_{j} \sum_{i} E_F^{\mathrm{lf}} \left(\iota(i_u(1-\frac{1}{\alpha})+\frac{i_{x'}}{\alpha}),\iota(i_v(1-\frac{1}{\alpha})+\frac{i_{y'}}{\alpha}),i_u,i_v \right)$$

Digital refocusing

T. Maugey

Pixel organisation problem

300

Light fields

It comes down to summing along the rays of equations

$$\left(\iota(i_u(1-\tfrac{1}{\alpha})+\tfrac{i_{x'}}{\alpha}),\iota(i_v(1-\tfrac{1}{\alpha})+\tfrac{i_{y'}}{\alpha}),i_u,i_v\right)$$

Or simply shifting and summing the sub-aperture images

Examples

Pixel Organisatio

Pixel organisation

problem

360 imag

Light fields

Depth Estimation

Pixel Organisatio

Pixel organisation

Light fields

problem
360 images

 \leftarrow Epipolar plane image

[Wanner, S., Goldluecke, B. (2012, June). Globally consistent depth labeling of 4D light fields. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 41-48). IEEE.]

Structure Tensor

Pixel Organisatio

T. Maugey

Pixel organisation problem

500 imag

Light fields

Let $I(\mathbf{p})$ be an image realization at a pixel position \mathbf{p} .

Let $\nabla I_x(\mathbf{p})$ and $\nabla I_y(\mathbf{p})$ be the horizontal and vertical gradients respectively.

We define the tensor structure at position ${f p}$ as

$$\mathbf{J}(\mathbf{p}) = \mathbb{E}_{w,\mathbf{p}} \left([\nabla I_x(\mathbf{r}), \ \nabla I_y(\mathbf{r})]^{\top} [\nabla I_x(\mathbf{r}), \ \nabla I_y(\mathbf{r})] \right)$$

which gives

$$\mathbf{J}(\mathbf{p}) = \begin{pmatrix} \sum_{\mathbf{r}} w(\mathbf{r}) \nabla I_x (\mathbf{p} - \mathbf{r})^2 & \sum_{\mathbf{r}} w(\mathbf{r}) \nabla I_x (\mathbf{p} - \mathbf{r}) \nabla I_y (\mathbf{p} - \mathbf{r}) \\ \sum_{\mathbf{r}} w(\mathbf{r}) \nabla I_x (\mathbf{p} - \mathbf{r}) \nabla I_y (\mathbf{p} - \mathbf{r}) & \sum_{\mathbf{r}} w(\mathbf{r}) \nabla I_y (\mathbf{p} - \mathbf{r})^2 \end{pmatrix}$$

if w comes from G_{σ} , a Gaussian kernel centered around ${f p}$, we have

$$\mathbf{J}(\mathbf{p}) = \begin{pmatrix} (G_{\sigma} * \nabla I_x^2)(\mathbf{p}) & (G_{\sigma} * \nabla I_x \nabla I_y)(\mathbf{p}) \\ (G_{\sigma} * \nabla I_x \nabla I_y)(\mathbf{p}) & (G_{\sigma} * \nabla I_y^2)(\mathbf{p}) \end{pmatrix}$$

Structure Tensor

Pixel Organisation T. Maugey

Pixel organisatio problem 360 images

Light fields

Tensor's structure property:

The orientation ${\bf n}$ is the solution of the following equation:

$$\mathbf{J}(\mathbf{p})\mathbf{n} = \lambda \mathbf{n}$$

So the eigenvectors of $\mathbf{J}(\mathbf{p})$ are the major orientation at position \mathbf{p} and their corresponding energy is given by the eigenvalues λ_1 and λ_2 (with $\lambda_1 > \lambda_2$).

The major orientation (λ_1) is given by the first eigenvector

$$\mathbf{n} = \begin{pmatrix} J_{2,2}(\mathbf{p}) - J_{1,1}(\mathbf{p}) \\ 2J_{1,2}(\mathbf{p}) \end{pmatrix}$$

with a level of confidence equal to

$$C = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} = \frac{(J_{2,2}(\mathbf{p}) - J_{1,1}(\mathbf{p}))^2 + 4J_{1,2}^2}{(J_{1,1}(\mathbf{p}) + J_{2,2}(\mathbf{p}))^2}$$

Depth Estimation

Light fields

Table of Contents

Pixel Organisatio

Pixel organisation

oroblem

Light fields

Light fields

Reference

- Pixel organisation problem
- **2** 360 images
- Light fields
- 4 Reference

References

T. Maugey

360 images Light fields

Reference

- C. Grunheit, A. Smolic, and T. Wiegand, "Efficient representation and interactive streaming of high-resolution panoramic views," in International Conference on Image Processing, vol. 3, 2002, pp. 209–212.
- M. Yu, H. Lakshman, and B. Girod, "Content adaptive representations of omnidirectional videos for cinematic virtual reality," in 3rd International Workshop on Immersive Media Experiences. ACM, 2015, p. 16.
- Ren, N. G. (2006). Digital light field photography. Ph. D. thesis Stanford University.
- http://clim.inria.fr/