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ABSTRACT

Block-based compression tends to be inefficient when blocks contain
arbitrary shaped discontinuities. Recently, graph-based approaches
have been proposed to address this issue, but the cost of transmitting
graph topology often overcome the gain of such techniques. In this
work we propose a new Superpixel-driven Graph Transform (SDGT)
that uses clusters of superpixels, which have the ability to adhere
nicely to edges in the image, as coding blocks and computes inside
these homogeneously colored regions a graph transform which is
shape-adaptive. Doing so, only the borders of the regions and the
transform coefficients need to be transmitted, in place of all the struc-
ture of the graph. The proposed method is finally compared to DCT
and the experimental results show how it is able to outperform DCT
both visually and in term of PSNR.

Index Terms— Image compression, graph transform, superpix-
els, clustering

1. INTRODUCTION

Block transform based compression is by far the most widespread
approach to lossy image coding: an image is first subdivided into
non-overlapping blocks of pixels, then each block is projected into
a chosen transform domain. The most common compression codecs
(e.g. JPEG, H.264) use this approach because it can easily adapt to
the non-stationary statistics of natural images, it is computationally
efficient and amenable to parallel implementation.

The Discrete Cosine Transform (DCT) is widely used for block-
based image and video compression [1]. One of the main drawbacks
of the DCT is that it becomes inefficient when a block contains arbi-
trarily shaped discontinuities. In this case, the DCT will generate a
non-sparse signal representation, having high-frequency coefficients
with large magnitude. This will result in poor coding performance.

To solve this problem, in the past years different solutions have
been proposed. Some variations of the DCT have been developed,
such as directional DCT [2], adaptive block-size transform [3] or
shape-adaptive DCT [4], in which the block size and shape are de-
fined taking into account the edge location or the transform is evalu-
ated avoiding to cross edge discontinuities. Wavelet approaches have
also been introduced. To avoid filtering across edges, researchers
have studied different wavelet filter-banks based on the image ge-
ometry, e.g. bandelets [5], directionlets [6] and curvelets [7]. How-
ever, all the proposed methods produce an efficient signal represen-
tation only when edges are straight lines, making them inefficient in
presence of shaped contours. Recently, a novel graph-based trans-
form approach has been proposed. Any image can be viewed as a
graph, where each pixel is a node of the graph and weighted edges
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Fig. 1. An image divided into 100 regions by the proposed algo-
rithm.

describe the connectivity relations among the pixels, e.g. in terms of
similarity. In the last years, researchers have made some attempts to
develop graph-based compression techniques. Indeed, the graph rep-
resentation allows one to design an edge-aware and shape-adaptive
transform in an elegant and effective way. Block-based method us-
ing graph Fourier transform have been proposed in [8, 9]. Instead,
in [10] a method for image compression using graph-based wavelet
transform is presented. However, they all reported unsatisfactory
results on natural images that are not piece-wise smooth. One of
the main drawbacks of graph-based compression techniques lies in
the cost required to represent and encode the graph, which may out-
weigh the coding gain provided by the edge adaptive transform.

In this work, we propose a novel graph transform approach aim-
ing at reducing the cost of transmitting the graph structure while re-
taining the advantage of a shape-adaptive and edge-aware operator.
To this end, the image is first segmented into uniform regions that
adhere well to image boundaries. Such a goal can be achieved using
the so-called superpixels, which are perceptually meaningful atomic
regions which aim at replacing rigid pixel grid. Examples of algo-
rithms used to generate these kind of regions are Turbopixel [11],
VCells [12] and the widely used and very fast SLIC algorithm [13].
Then, we propose to apply a graph transform within each superpixel
that, being homogeneous region, can be efficiently represented us-
ing an uniform graph, i.e. all graph edges are given the same weight.
In this way, the overhead of representing the graph structure within
each superpixel is avoided. Nonetheless, we need to transmit ad-
ditional information to describe region boundaries. To limit such
coding overhead, we design a clustering method that is able to ag-
gregate superpixels, thus reducing the number of regions that need
to be coded.
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The use of superpixels in compression is still an almost unex-
plored research field and up to date only few works investigated
the topic. Moreover, the proposed approaches work in very specific
cases, e.g. texture compression [14] or user-driven compression [15].
On the contrary, the joint exploitation of graph transforms and su-
perpixels as a general approach to image compression is completely
novel and represents the key idea in this work. The contributions of
the paper are the definition of superpixel-driven graph transform, its
rate/distortion analysis using a bitplane encoding approach and the
comparison with standard DCT transform.

The paper is organized as follows: in Section 2 the proposed
algorithm is going to be presented in detail, while in Section 3 the
results of our experimental tests are going to be presented. A final
discussion on the method is going to be conducted in Section 4.

2. THE PROPOSED TECHNIQUE

Given an image I = {xi}Ni=1 of N pixels, the proposed Superpixel-
driven Graph Transform (SDGT) performs the following steps:

• divide I in m regions by using SLIC [13];

• cluster similar superpixels, to reduce the number of borders
to be coded to a desired number m′;

• inside each region, compute a piece-wise smooth graph trans-
form.

Superpixels are used to get a computationally efficient segmen-
tation of the image into homogeneous regions, that can be mod-
eled with simple uniform graph structure for the following transform
stage.

2.1. Superpixel clustering

In this section the preliminary segmentation step based on superpixel
is described.

We define an m-regions segmentation of an image I as a parti-
tion Pm = {li}mi=1 of the pixels in I; more precisely:

∀x ∈ I, ∃l ∈ Pm | x ∈ l
∀l ∈ Pm, @l′ ∈ Pm − {l} | l ∩ l′ 6= ∅ (1)

Starting from an image I and a partition Pm composed ofm re-
gions, output by some superpixel algorithm, the proposed algorithm
aims at merging at each iteration the pair of labels representing the
most similar regions between the ones determined in the previous
step until the desired number of regions m′ < m is reached. In par-
ticular at the k-th iteration the two most similar segments of P k are
merged to obtain a new set P k−1 composed of k−1 segments. This
process can be iterated for k = m,m−1, . . . ,m′, generating a hier-
archy of regions in terms of their respective similarity. The number
of regions m′ to be clustered must be chosen as a tradeoff between
the segmentation accuracy and the coding overhead required to rep-
resent and compress the borders of the regions as discussed in more
detail in Section 3.

We represent the merging process using a weighted graph. An
initial undirected weighted graph Gm = (Pm,Wm) is constructed
over the superpixel set Pm, where

Wm = {wm
ij , ∀i 6= j | lmi , lmj ∈ Pm ∧ C(lmi , l

m
j ) = 1} (2)

for some region adjacency functionC, i.e. 4-connectivity. SinceGm

is an undirected graph we have that wm
ij = wm

ji ; the weights repre-
sent the distance (or dissimilarity measure) between a pair of regions
wm

ij = δ(lmi , l
m
j ).

The approach proposed here can be used in conjunction with
several distance metrics capable to capture the dissimilarity between
a pair of segmented regions. In this study, CIELAB color space
and the standard CIEDE2000 color difference [16] have been chosen
thanks to their ability to reliably cluster similar superpixels as shown
in [17]. Given two regions li and lj , we compute the mean values
of the L*a*b* components Mi = (µL∗,i, µa∗,i, µb∗,i) and Mj =
(µL∗,j , µa∗,j , µb∗,j), and we define the distance between the two
labels as

δ(li, lj) = ∆E00(Mi,Mj) (3)

where ∆E00 is the CIEDE2000 color difference [16].
At each iteration, we pick the pair of labels lkp , lkq ∈ P k having

wk
pq = min{W k} and merge them; as a consequence a new partition

P k−1 = P k−{lkq} having all the pixels x ∈ lkp ∪ lkq assigned to the
label lk−1

p is formed, where P k−1 now comprises k − 1 segments.
After that, edges and corresponding weights needs to be updated as
well. W k−1 is generated according to the following rule:

wk−1
ij =

{
δ(lk−1

p , lk−1
j ) if i = p ∨ i = q

wk
ij otherwise

(4)

It must be noted that wk
pq is no longer included in W k−1 since the

corresponding label has been merged into a single one.
When k = m′, the algorithm stops returning the partition Pm′

composed of the desired number of regions. A segmentation exam-
ple with m′ = 100 is shown Figure 1.

2.2. Intra-region graph transform

Now we move to the description of the graph transform employed
within each region that leads to the computation of the proposed
SDGT.

Given a m′-regions segmentation Pm′ of the image I , in each
segment l of Pm′ we can define a graph Gl = (l, E), where the
nodes are the pixels of the segment l and E ⊂ l × l is the set of
edges. The adjacency matrix A is defined in the following way:

Aij =

{
1 if j ∈ Ni ∧ i, j ∈ l
0 otherwise

(5)

where Ni is the set of 4-connected neighbors of the pixel i.
The adjacency matrix is used to compute the Laplacian matrix

L = D − A, where D is a diagonal matrix whose i-th diagonal
element di is equal to the sum of the weights of all edges incident
to node i. The Laplacian matrix L is a symmetric positive semi-
definitive matrix. Then, it has an eigen decomposition:

L = UT ΛU (6)

where U is the matrix whose rows are the eigenvectors of the graph
Laplacian and Λ is the diagonal matrix whose diagonal elements are
the corresponding eigenvalues.

The matrix U is used to compute the graph Fourier transform
(GFT): for any signal f ∈ RN defined on the vertices of the graph,
its GFT f̂ is defined in [18] as:

f̂ = Uf (7)

The inverse graph Fourier transform is then given by

f = UT f̂ (8)
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Fig. 2. Three of the sample images (top), for each of them the performance of the proposed SDGT and DCT 8×8 is presented in term of
PSNR values over bitrate (bottom).

It is important to underline that to construct the graph we only
need the information about the coordinates of the region borders,
that can be easily summarized in a binary image. In this way, the
cost for transmitting the graph structure is considerably reduced and
the GFT is used as an effective transform for the arbitrarily shaped
regions computed by the algorithm described in Section 2.1. Finally,
we refer to the whole set of transformed regions as the SDGT of the
entire image.

3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed SDGT, we need to take
into account its energy compaction ability and the cost for coding
overhead information, i.e. the region-borders.

A popular and simple method for evaluating the transform com-
paction efficiency is to study the quality of the reconstructed image,
e.g. using PSNR with respect to the original image, as a function of
the percentage of retained transformed coefficients [19]; albeit inter-
esting, this approach would neglect the cost required to encode the
ancillary information required to compute the inverse transform.

To overcome this, in the following we estimate the coding ef-
ficiency provided by SDGT by considering bit plane encoding of
SDGT transformed coefficients. Each bitplane is progressively ex-
tracted, from the most significant down to least significant one, and
the bitrate of each bitplane is estimated by its entropy. To this end,
each bitplane is modeled as an independent and memoryless binary
source.

It is worth pointing out that such an estimate represents an up-
per bound to the actual bitrate that would be obtained using a proper
entropy coding algorithm that is likely to exploit further the resid-
ual spatial correlation of the transformed coefficients and the depen-
dency between different bitplanes. Nonetheless, the proposed bit-
plane approach can be replicated on any other transform, e.g. the
standard 8×8 DCT, allowing us to analyze the achievable gain in a
fair way.

Finally, to estimate the SDGT penalty due to coding of the re-
gion borders, we use the standard compression algorithm for bi-level
images JBIG [20]. The regions boundaries are represented as a bi-
nary mask that is then compressed with JBIG, whose bitrate is con-
sidered as coding overhead; from our experimentation we have seen
that this overhead is, on average, around 0.06 bpp. The use of other
more specific methods for transmitting the region borders, such as
[21], will be evaluated in future.

Therefore using bitplane coding and JBIG we get a rough esti-
mation of the total bitrate needed to code the image with the SDGT
transform. We compare the obtained results with the standard DCT
computed on 8×8 blocks. As proved by Zhang and Florêncio in [22],
if the graph is a uniform 4-connected grid the 2D DCT basis func-
tions are eigenvectors of the graph Laplacian, and thus the transform
matrix U used in (6) turns to be the 2D DCT matrix. Therefore, the
8×8 DCT can be seen as a graph transform like the SDGT, with the
major difference that instead of using superpixels as coding blocks
it uses a fixed grid of 8×8 blocks.

We have tested the transforms on several images from a dataset
of lossless images widely used in compression evaluation [23]. All
the images in that dataset are either 768×512 or 512×768 in size.
In Figure 2 three sample images are shown along with the respective
coding results (PSNR in dB vs. bitrate measured in bit per pixel);
these results have been obtained setting m = 600, m′ = 100 and
coding the luminance component only.

We can see that SDGT significantly outperforms the DCT, in
particular at low bitrate, where it is able to achieve a maximum gain
of more than 2 dB. Overall, the average gain obtained is approxi-
mately 1 dB. This achievement is particularly significant if one recall
that the SDGT bitrate includes the constant penalty yielded by JBIG
coding of the borders. A detail of the significant improvement at low
bitrate obtained by SDGT can be visually appreciated in Figure 3.

Since standard image compression data set are historically bi-
ased by low resolution images we conclude our analysis by consid-
ering high resolution images that are typically acquired by current
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(a) DCT 8×8

(b) SDGT

Fig. 3. A detail on the luminance component of one image com-
pressed with both DCT 8×8 and the proposed SDGT at bitrate of
0.75 bpp.

imaging devices. We have tested our method and the 8×8 DCT on
some HD images acquired using a DSLR camera; in particular, for
complexity reasons, we have applied SDGT to non trivial 512×512
patches cropped from the original images. In Figure 4 the results ob-
tained on a sample image are shown; it is worth pointing out that the
SDGT gain over DCT is larger in this case and span all the consid-
ered bitrate range. This is due to the fact that regions in HD images
are usually wider and smoother and therefore the segmentation al-
gorithm and, consequently, the graph transform can be even more
effective.

4. CONCLUSIONS AND FUTURE WORK

In this study we have explored a new graph transform for image
compression applications. It is shown that the proposed algorithm
achieves better performance than DCT, especially at lower bitrates
and on high-resolution images.

The main contribution of this work is to set the foundation for
a new approach to graph-based image compression. Thanks to ex-
ploitation of superpixel ability to adhere to image borders, we can
subdivide the image in uniform regions and use the graph transform

Fig. 4. A 2592×3888 sample image with a 512×512 cropped patch
(top) and the performance of the proposed SDGT and 8×8 DCT on
the cropped region in term of PSNR values over bitrate (bottom).

inside each region as a shape adaptive transform.
Future work on the proposed algorithm might include trying to

interpolate the pixels inside the regions starting from the ones on
the borders and then encode only the prediction errors, reducing in a
significant way the information needed to be encoded.
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