
Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Master SIF - REP (Part 5)
Image filtering

Thomas Maugey (courtesy of Olivier Le Meur)
thomas.maugey@inria.fr

Fall 2023

1 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

1 Introduction

2 Linear filtering

3 Frequency domain filtering

4 Non-Linear filtering

5 Derivative filters (Edge detection)

2 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

1 Introduction

3 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Introduction (1/3)

I : Ω ⊂ Nn → Rm

with n, m ∈ N .

I : Ω ⊂ N 2 → R3

with Ω = [H ×W].
4 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Introduction (2/3)

The goal of a transformation is to get a new representation of the
incoming picture. This new representation can be more convenient
for a particular application or can ease the extraction of particular

properties of the picture.

What is a transformation?

im[x, y] T−→ IM [u, v]

• im is the original image;
• IM is the transformed image;
• x, y represents the spatial coordinates of a pixel.

5 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Introduction (2/3)

There exist 3 types of transformation:

ß Point to point transformation:
The output value at a specific
coordinate is dependent only on one
input value but not necessarily at the
same coordinate (e.g. LUT,
Histogram...);

ß Local to point transformation:
The output value at a specific
coordinate is dependent on the input
values in the neighborhood of that
same coordinate;

ß Global to point transformation:
The output value at a specific
coordinate is dependent on all the
values in the input image (e.g. Fourier,
Wavelet...).

6 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

2 Linear filtering
I Linear filtering and convolution
I Smoothing by averaging
I Smoothing with a Gaussian kernel

7 / 77

Color

T. Maugey

Introduction

Linear filtering
Linear filtering and
convolution

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering and convolution

ß Let I : Ω ⊂ N 2 → Rm an input image;
ß Let I : Ω ⊂ N 2 → Rn the transformed image.

Our goal is to fill in each location of I with a weighted sum of the
pixel values from the locations surrounding the corresponding

location in the image, using the same set of weights each time.

ß Shift-invariant = the value of the output depends on the image
neighbourhood; the position of the neighbourhood does not
matter;

ß Linear = the output for the sum of two images is the same as
the sum of the outputs obtained for the images separately. An
operator T is linear if:
• T (f + g) = T (f) + T (g), ∀f, g;
• T (αf) = αT (f), ∀f , scalars α.

Any linear shift-invariant operation can be represented by
convolution.

8 / 77

Color

T. Maugey

Introduction

Linear filtering
Linear filtering and
convolution

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering and convolution

The convolution of a 2D filter K of size 2N + 1× 2N + 1
([−N,N]× [−N,N]) with an image I:

I(i, j) =
N∑

l=−N

N∑
p=−N

K(l, p)I(i− l, j − p) (1)

We denote convolution as I(i, j) = K ∗ I.

ß K is called the filter, kernel or mask.
ß K(0, 0) is aligned with I(i, j).

The output pixel’s value is determined as a weighted sum of input
pixel values.

9 / 77

Color

T. Maugey

Introduction

Linear filtering
Linear filtering and
convolution

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering

Convolution: shift-invariant linear systems
ß Commutative: F ∗H = H ∗ F ;

ß Associative: F ∗ (H ∗ L) = (F ∗H) ∗ L
• (((F ∗H1) ∗H2) ∗H3) is equivalent to applying one filter
F ∗ (H1 ∗H2 ∗H3)

ß Linearity, distributes over addition:
F ∗ (H1 +H2) = (F ∗H1) + (F ∗H2)

ß Scalars factor out: kF ∗H = F ∗ kH = k (F ∗H)

ß Shift-invariance: H ∗ shift(f) = shift(H ∗ F)
• same behavior regardless of pixel location.

ß Identity: unit impulse.
10 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing by
averaging

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing by averaging

The simplest filter is the average or box filter, which simply averages the
pixel values in a 2N + 1× 2N + 1 window. This is equivalent to
convolving the image with a kernel of all ones and then scaling:

K = 1
9

[1 1 1
1 1 1
1 1 1

]
K = 1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


Three examples of averaging for different sizes of kernel. From the
left-hand side to the right-side, N = {1, 3, 8}:

The amount of blur increases with the kernel’s size.
11 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

The multivariate normal distribution of dimension k is defined by:

GΣ(x1, . . . , xk) = 1
(2π)k/2

√
|Σ|

exp
(
−1

2(X − µ)TΣ−1(X − µ)
)

where, X = [x1, . . . , xk]T and µ = [µ1, . . . , µk]T are vectors of size
k, the symmetric covariance matrix Σ is positive definite, |Σ| is the
determinant of the covariance matrix.

Σ =

σ11 . . . σ1k
...

...
σk1 . . . σkk


A symmetric matrix n× n composed of real numbers, noted M , is said to
be positive definite if zTMz is positive for every non-zero column vector z
of n real numbers.

12 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

GΣ(x1, . . . , xk) = 1
(2π)k/2

√
|Σ|

exp
(
− 1

2 (X − µ)TΣ−1(X − µ)
)

Bivariate case (for k=2) considering µ = 0:

ß Isotropic: Σ = σ2I2 =
[
σ2 0
0 σ2

]

Gσ(x, y) = 1
2πσ2 exp

(
−x

2 + y2

2σ2

)
(2)

where σ is the standard deviation, σ2 the variance.

Important remark:
Gσ(x, y) = gσ(x)gσ(y) is separable, gσ(k) = 1√

2πσ exp(−
k2

2σ2).

13 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

GΣ(x1, . . . , xk) = 1
(2π)k/2

√
|Σ|

exp
(
− 1

2 (X − µ)TΣ−1(X − µ)
)

Bivariate case (for k=2) considering µ = 0:

ß Diagonal covariance matrix: Σ =
[
σ2
X 0
0 σ2

Y

]

GΣ(x, y) = 1
2πσXσY

exp

(
− x2

2σ2
X

− y2

2σ2
Y

)
(3)

Important remark:
GΣ(x, y) = gσX (x)gσY (y) is separable,
gσ(k) = 1√

2πσ exp(−
k2

2σ2).

14 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

GΣ(x1, . . . , xk) = 1
(2π)k/2

√
|Σ|

exp
(
− 1

2 (X − µ)TΣ−1(X − µ)
)

Bivariate case (for k=2) considering µ = 0:

ß Anisotropic filtering: Σ =
[
σ2
X σXY

σXY σ2
Y

]
=
[

σ2
X ρσXσY

ρσXσY σ2
Y

]
with ρ the correlation coefficient: ρ = σXY

σXσY
.

GΣ(x, y) = 1
2πσXσY

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
x2

σ2
X

+ y2

σ2
Y

− 2ρxy
σXσY

])
• the direction of the filtering is defined by the first eigenvector of

the covariance matrix Σ;
• its strength is defined by its corresponding eigenvalue.

15 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

ß Isotropic Gaussian kernel, Σ = σ2I2:

K = 1
16

1 2 1
2 4 2
1 2 1


K = 1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



From left to right: orig. image; σ = 1, σ = 4, σ = 16.

16 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

ß Diagonal covariance matrix, Σ =
[
σ2
X 0
0 σ2

Y

]
:

Example: σX = 1 and σY = 16

Kx = [0.0544 0.244 0.402 0.244 0.0544]
Ky = [0.199 0.2 0.2 0.2 0.199]
K = KT

y ∗Kx

From left to right: orig. image; σX = 16 and σY = 1, σX = 1 and σY = 16.

Reminder: given that h1 is a column vector, and h2 a row vector, we have
h = h1 ∗ h2 = h1 × h2 .

17 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

ß Anisotropic filtering, Σ =
[

σ2
X ρσXσY

ρσXσY σ2
Y

]
:

GΣ(x, y) = 1
2πσXσY

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
x2

σ2
X

+ y2

σ2
Y

− 2ρxy
σXσY

])
can be reformulated as

Gθ(x, y) = 1
2πσu

exp
(
−1

2

[
u2

σ2
u

])
∗ 1

2πσv
exp

(
−1

2

[
v2

σ2
v

])
where, [

u
v

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x
y

]
(4)

the u-axis being in the direction of θ, and the v-axis being orthogonal
to θ. A fast implementation is presented in (Geusebroek et al., 2003).

18 / 77

Color

T. Maugey

Introduction

Linear filtering
Smoothing with a
Gaussian kernel

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Linear filtering
Smoothing with a Gaussian kernel

Some helpful information:
ß For a normal distribution, 68.27%, 95.45% and 99.73% of the

values lie within one, two and three standard deviations of the
mean, respectively:

ß The parameter a controls the decay of the Gaussian function,
g(k) = e−

|k|2

2a2 , a ∈ R+. For a N ×N patch, a reasonable choice
for a is a = N−1

4 . The Gaussian weights vary in[
e−4, e−2] ' [0.018, 0.05] on the patch boundary.

19 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

3 Frequency domain filtering
I Ideal low pass filter
I Butterworth low pass filter
I Gaussian low pass filter
I High pass filtering
I Laplacian in the frequency domain

20 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Frequency domain filtering

ß Discrete and bi-dimensional Fourier transformation of an image
im having a size N ×M .

Inverse Fourier Transform:

im[k, l] =
N−1∑
u=0

M−1∑
v=0

IM [u, v]exp(j2π(k
N
u+ l

M
v))

Fourier Transform:

IM [u, v] = 1√
NM

N−1∑
k=0

M−1∑
l=0

im[k, l]exp(−j2π(k
N
u+ l

M
v))

21 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Frequency domain filtering

where H is the convolution kernel.

IM [x, y] = (im ∗ h)[x, y] (5)

im1[x, y] ∗ im2[x, y] F→ IM1[u, v]× IM2[u, v]

im1[x, y]× im2[x, y] F→ IM1[u, v] ∗ IM2[u, v]

When the size of the kernel is large, it is better to apply the filter in
the frequency domain.

For more information:
Digital Image Processing, by R. C. Gonzalez and R. E. Woods, 3rd edition, Pearson Prentice Hall, 2008.

22 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Frequency domain filtering

We can spatially filter an image by Fourier transforming and applying
a frequency filter:

IM [x, y] = im[x, y] ∗ h[x, y]
˜IM [u, v] = IM [u, v]×H[u, v]

where, H[u, v] is the filter in the frequency function.

23 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Ideal low pass filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Ideal low pass filter (1/2)

From the left-hand side to the right: Ideal low pass filter transfert
function, filter displayed as an image, filter radial cross section.

H(u, v) =
{

1 D(u, v) ≤ D0
0 D(u, v) > D0

With D the euclidean distance from the spectrum center (N2 ,
N
2).

24 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Ideal low pass filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Ideal low pass filter (2/2)

Low pass filtering:

Ringing and blurring

25 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Butterworth low pass
filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Butterworth low pass filter (1/2)

H(u, v) = 1

1 +
(
D(u,v)
D0

)2n

26 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Butterworth low pass
filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Butterworth low pass filter (2/2)

Top: spatial representation of the filter for different orders;
Bottom: intensity profiles through the center of the filters.

Butterworth low pass filtering:

Smooth transition in blurring, no ringing is present.
27 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Gaussian low pass
filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Gaussian low pass filter (1/1)

H(u, v) = exp

(
−D(u, v)2

2D2
0

)
with D0 = σ. Gaussian low pass filtering:

Smooth transition in blurring, no ringing is present.
28 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Gaussian low pass
filter

Non-Linear
filtering

Derivative filters
(Edge detection)

Low pass filter (1/1)

Ideal

Butterworth

Gaussian

29 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
High pass filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

High pass filtering (1/2)

HHP (u, v) = 1−HLP (u, v) (6)

30 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
High pass filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

High pass filtering (2/2)

ß Ideal high-pass filters enhance edges but suffer from ringing
artifacts, just like Ideal LPF;

ß Smoother results with the two others.

31 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Laplacian in the
frequency domain

Non-Linear
filtering

Derivative filters
(Edge detection)

Laplacian in the frequency domain (1/2)

We remind:
ß ∇2im[k, l] = ∂2im

∂2k [k, l] + ∂2im
∂2l [k, l]

ß
dnx(t)
dtn

F−→ (j2πf)nX(f).

It follows that

∂2im

∂2k
[k, l] + ∂2im

∂2l
[k, l] F−→ −(2π

N
)2(u2 + v2)IM [u, v]

The Laplacian filter is then implemented in the frequency domain by

H(u, v) = −(2π
N

)2(u2 + v2) (7)

32 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering
Laplacian in the
frequency domain

Non-Linear
filtering

Derivative filters
(Edge detection)

Laplacian in the frequency domain (2/2)

Finally, to compute the Laplacian, we need :
1 to compute the Fourier transform of the picture;

2 to multiply the spectrum by −(2π
N)2(u2 + v2);

3 to compute the inverse Fourier transform.

33 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

4 Non-Linear filtering
I Objective
I Median
I Adaptive filtering
I Conditional mean
I Anisotropic Kuwahara filtering
I Yaroslavsky filter
I Bilateral filter
I Joint bilateral filter
I Non-Local means
I Guided filter

34 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Objective

Derivative filters
(Edge detection)

Objective

ß Linear filter: T (f + g) = T (f) + T (g), ∀f, g; T (αf) = αT (f),
∀f , scalars α.
Each output pixel is a weighted summation of some number of

input pixels using the same set of weights each time.
• Tend to blur edges and other image detail;
• Perform poorly with non-Gaussian noise.

ß Non-linear filter: T (f + g) 6= T (f) + T (g)
• Can preserve edges;
• Very effective at removing impulsive noise.
Non-linear filters are able to tailor themselves to the local

properties and structures of an image.

35 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Median

Derivative filters
(Edge detection)

Median (1/2)

The median filter consists in selecting the middle pixel intensity in
the sorted list of neighborhood pixels as the output.

I(x) = med ({I(y)|I(y) ∈ N (x)})

where N (x) the neighbourhood centered at x = (i, j).
ß very good to remove impulse noise!

36 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Median

Derivative filters
(Edge detection)

Median (2/2)

However, when the number of the samples is large, the ordering
procedure becomes cumbersome.

Idea: the median filter is taken over the outputs of several FIR
substructures and the number of the substructures is much smaller
than the number of the data samples inside the filter window.

IM [x, y] = MED (y(1), . . . , y(m))

where, m is linear FIR filters.

37 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Adaptive filtering

Derivative filters
(Edge detection)

Adaptive filtering (1/1)

An adaptive filter is a filter that self-adjusts its transfer function
according to an optimizing algorithm.

The goal is still to smooth the signal. However, we want to preserve
edges...

ß Filtering by pixel grouping;

ß Conditional mean, Bilateral filtering and mean shift filter;

ß Diffusion (linear, non-linear, isotropic, anisotropic).

38 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Conditional mean

Derivative filters
(Edge detection)

Conditional mean (1/1)

Pixels in a neighbourhood are averaged only if they differ from the
central pixel by less than a given threshold:

IM [x, y]︸ ︷︷ ︸
Output

=
∑

k∈V (x,y)

∑
l∈V (x,y)

h(k, l)︸ ︷︷ ︸
Filter coeff.

im[x− k, y − l]︸ ︷︷ ︸
Input

h(k, l) =
{

1 if |im[x− k, y − k]− im[k, l]| < TH
0 Otherwise.

Example with a neighbourhood equal (2×3 + 1)(2×3 + 1),TH = 32:

39 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Anisotropic
Kuwahara filtering

Derivative filters
(Edge detection)

Anisotropic Kuwahara filtering (1/2)

Method proposed by Kuwahara and adapted by Nagao in 1980.

ß Selection of the sub-domain
that has the minimum
variance (9 windows for
Nagao);

ß Replace the value of the
central pixel by the average
value of the sub-domain
having the minimum variance.

Example for a window 5× 5:

40 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Anisotropic
Kuwahara filtering

Derivative filters
(Edge detection)

Anisotropic Kuwahara filtering (2/2)

41 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Yaroslavsky filter

Derivative filters
(Edge detection)

Yaroslavsky filter (1/1)

Yaroslavsky filter consists in averaging neighboring pixels which also
have a similar color value (Yaroslavsky and Yaroslavskij, 1985).

ß Spatial neighborhood: Nρ(x) = {y ∈ Ω|‖y− x‖ < ρ}

I(x) = 1
C(x)

∑
y∈Nρ(x)

I(y)wr(x, y)

where,
• the weighting coefficients wr(x, y) = exp

(
−‖I(y)−I(x)‖2

4h2

)
are

data-dependent;
• normalization factor, C(x) =

∑
y∈Nρ(x) wr(x, y).

42 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (1/7)

(Tomasi and Manduchi, 1998) improve Yaroslavsky’s method by
involving a bilateral gaussian function depending on both grey level
and space. The output pixel value depends on a weighted
combination of neighboring pixel values.

I(x) = 1
C(x)

∑
y∈N (x)

I(y)w(x, y)

where,
• The weighting coefficients w(x, y) = wr(x, y)× wd(x, y);
• Range coefficients wr(x, y) = exp

(
−‖I(y)−I(x)‖2

4h2
r

)
;

• Space-dependent coefficients wd(x, y) = exp
(
−‖y−x‖2

4h2
d

)
• Normalization factor, C(x) =

∑
y∈N (x) wr(x, y)wd(x, y).

43 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (2/7)

44 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (3/7)

Left: input mage. Right: Kernel of the bilateral filter centered on the red
dot.

45 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (4/7)

ß Bilateral Filtering for color images:

I(x) = 1
C(x)

∑
y∈N (x)

exp

(
−‖I(x)− I(y)‖2

4h2
r

)
exp

(
−‖y− x‖2

4h2
d

)
I(y)

where, I is a vector (RGB, Lab, RGB-D...).

ß Iterating the bilateral filter:

I(n+1) = BF
[
I(n)

]
Used for generating more piecewise-flat images.

46 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (5/7)

Iterated bilateral filtering in Lab space. From left to right: orig.; one
iteration, 5 and 9 iterations.

Low contrast texture has been removed and edges are well preserved.

47 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (6/7)

Limitations of bilateral filter

ß Staircase effects: Piecewise constant assumption;
ß Gradient reversal artifacts: Over-sharpening effect.

Extracted from (He et al., 2010, 2013).

48 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Bilateral filter

Derivative filters
(Edge detection)

Bilateral filter (7/7)

To conclude:
ß Not always the best result but often good;

ß Easy to understand;

ß Bilateral goals are:
• Local smoothing within similar regions
• Edge-preserving smoothing
• Separate large structure & fine detail
• Eliminate outliers
• Filter within edges, not across them

New variants: joint bilateral Filtering, trilateral filter, non-local
means.

Extracted from Image Filtering 2.0: Efficient Edge-Aware Filtering and Their Applications, A Tutorial at IEEE ICIP 2013

49 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Joint bilateral filter

Derivative filters
(Edge detection)

Joint bilateral filter (1/3)

Given an image I, the cross bilateral filter smoothes I while
preserving the edges of a second image E. In practice, the range
weight is computed using E instead of I (Eisemann and Durand,
2004, Petschnigg et al., 2004).

I(x) = 1
C(x)

∑
y∈N (x)

I(y)w(x, y)

where,
• The weighting coefficients w(x, y) = wr(x, y)× wd(x, y);
• Range coefficients wr(x, y) = exp

(
−‖E(y)−E(x)‖2

4h2
r

)
;

• Space-dependent coefficients wd(x, y) = exp
(
−‖y−x‖2

4h2
d

)
• Normalization factor, C(x) =

∑
y∈N (x) wr(x, y)wd(x, y).

50 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Joint bilateral filter

Derivative filters
(Edge detection)

Joint bilateral filter (2/3)

I(x) = 1
C(x)

∑
y∈N (x)

exp

(
−‖E(y)− E(x)‖2

4h2
r

)
exp

(
−‖y− x‖2

4h2
d

)
I(y)

Output, Guide and Input noisy image.

51 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Joint bilateral filter

Derivative filters
(Edge detection)

Joint bilateral filter (3/3)

I(x) = 1
C(x)

∑
y∈N (x)

exp

(
−‖E(y)− E(x)‖2

4h2
r

)
exp

(
−‖y− x‖2

4h2
d

)
I(y)

Output, Guide and Input noisy image.

52 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Non-Local means

Derivative filters
(Edge detection)

Non-Local means (NLM) (1/3)

Take advantage of high degree of redundancy of natural images
The most similar pixels to a given pixel

may be also quite far from the current pixel....

From (Buades et al., 2005).

53 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Non-Local means

Derivative filters
(Edge detection)

Non-Local means (NLM) (2/3)

I(x) = 1
C(x)

∑
y∈Ω

I(y)w(x, y)

where,
• The weighting coefficient is given by:

w(x, y) = exp

(
−
‖ψpx − ψpy‖22,a

h2

)

ψpx represents a patch of texture centered at x, ‖.‖22,a is the
Gaussian weighted squared Euclidean distance.

Main steps:
ß Looking for the most similar patches;
ß Compute w between the current and similar patches;
ß Compute the output value by a weighted linear combination.

54 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Non-Local means

Derivative filters
(Edge detection)

Non-Local means (NLM) (3/3)

55 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (1/8)
Introduction

The Color Lines model of an image is a list of lines representing the
image’s colors along with a metric for calculating the distance
between every pixel and each Color Line (Omer and Werman, 2004).

Model for representing a color image in the RGB space.
56 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (2/8)

The guided filter involves an input image p, a guidance image I, and
an output image q. Both I and p are given beforehand according to
the application, and they can be identical (He et al., 2010, 2013).

The key assumption of the guided filter is a local linear model
between the guidance I and the filtering output q.

57 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (3/8)

The key assumption of the guided filter is a local linear model
between the guidance I and the filtering output q.

qi = akIi + bk, ∀i ∈ wk

where, wk is a window centered at the pixel k. (ak, bk) are some
linear coefficients assumed to be constant in wk.
The coefficients (ak, bk) are computed by minimizing the following
cost function in wk:

min
(ak,bk)

E(ak, bk) = min
(ak,bk)

∑
i∈wk

(
(akIi + bk − pi)2 + εa2

k

)
Linear regression: ∂E

∂ak
= 0 and ∂E

∂bk
= 0.

ak = covk(I, p)
vark(I) + ε bk = p− akI

58 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (4/8)

ß Extension to the entire image by simple summation:
1 Compute ak and bk, for all windows wk.
2 Compute the average of akIi + bk in all wk that covers pixel qi.

qi = 1
|w|

∑
k,i∈wk

(akIi + bk)

qi = aiIi + bi

59 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (5/8)

ß Smoothing:

60 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (6/8)

ß Flash/no flash denoising:

61 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (7/8)

ß Beyond smoothing! Texture transfer (ε small):

62 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering
Guided filter

Derivative filters
(Edge detection)

Guided filter (8/8)

ß Matlab code and OpenCV code available;

ß Avantages:
• fast, accurate;
• edge-preserving;
• non-iterative.

ß Limitations:
• lacking of a rigorous justification of the aggregation step;
• lacking of spatial adaptivity;
• ineffective if more color models present in a patch.

Materials are coming from:
Image Filtering 2.0: Efficient Edge-Aware Filtering and Their Applications.

A Tutorial at IEEE Int. Conf. on Image Processing (ICIP) 2013.
https://sites.google.com/site/filteringtutorial/

63 / 77

https://sites.google.com/site/filteringtutorial/

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)

Outline

5 Derivative filters (Edge detection)
I Derivatives with Finite Differences
I Image gradient
I Canny edge detector
I Laplacian

64 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Derivatives with
Finite Differences

Estimating Derivatives with Finite Differences
(1/3)

From Taylor’s theorem (approximation of a k-times differentiable
function f around a given point x0), we can write:

f(x) =
n∑
k=0

f (k)(x0)
k! (x− x0)k +Rn(x)

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2! (x− x0)2 + · · ·

By a simple variable change:

f(x0 + δx) = f(x0) + f ′(x0)δx+ f ′′(x0)
2! δx2 + · · ·

f(x0 − δx) = f(x0)− f ′(x0)δx+ f ′′(x0)
2! δx2 + · · ·

65 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Derivatives with
Finite Differences

Estimating Derivatives with Finite Differences
(2/3)

f(x0 + δx) = f(x0) + f ′(x0)δx+ f ′′(x0)
2! δx2 + · · · (8)

f(x0 − δx) = f(x0)− f ′(x0)δx+ f ′′(x0)
2! δx2 + · · · (9)

We deduce:
ß First order forward finite difference:

f ′(x0) ≈ f(x0 + δx)− f(x0)
δx

(10)

ß First order backward finite difference:

f ′(x0) ≈ f(x0)− f(x0 − δx)
δx

(11)

ß Central (or second order) finite difference:

f ′(x0) ≈ f(x0 + δx)− f(x0 − δx)
2δx (12)

66 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Derivatives with
Finite Differences

Estimating Derivatives with Finite Differences
(3/3)

Derivatives of an image: I : Ω ⊂ R2 → R

∂I

∂x
= ∇xI = I(x− 1, y)− I(x+ 1, y)

2 (13)

∂I

∂y
= ∇yI = I(x, y − 1)− I(x, y + 1)

2 (14)

This can be rewritten as

∇xI = I ∗Hx (15)
∇yI = I ∗Hy (16)

where Hx =
[1

2 0 − 1
2
]

and Hy =
[1

2 0 − 1
2
]T are the convolution

kernel.

67 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Image gradient

Image gradient (1/3)

An image gradient is a directional change in the intensity or color in
an image.

The gradient of a two-variable function I at each image point is a 2D
vector with the components given by the derivatives in the horizontal
and vertical directions:

∇I =
[
∇xI
∇yI

]
(17)

ß The gradient magnitude: ‖∇I‖ =
√
∇xI2 +∇yI2

ß The gradient direction: θ = atan2(∇yI,∇xI)

68 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Image gradient

Image gradient (2/3)

69 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Image gradient

Image gradient (3/3)

Derivatives of an image: I : Ω ⊂ R2 → R
ß Finite difference filters respond strongly to noise
ß Smoothing and Differentiation: Smoothing an image and then

differentiating it is the same as convolving it with the derivative
of a smoothing kernel (convolution is associative):

∇x ∗ (Hx ∗ I) = (∇x ∗Hx) ∗ I
∇y ∗ (Hy ∗ I) = (∇y ∗Hy) ∗ I

∇x =

1
2
1

 ∗ [−1 0 +1
]

=

−1 0 +1
−2 0 +2
−1 0 +1


∇y =

−1
0

+1

 ∗ [1 2 1
]

=

−1 −2 −1
0 0 0

+1 +2 +1


70 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Canny edge detector

Canny edge detector (1/2)

The Canny Edge detector, developed by J. Canny in 1986, aims to
satisfy three main criteria:

ß Low error rate: Meaning a good detection of only existent edges;
ß Good localization: The distance between edge pixels detected

and real edge pixels have to be minimized;
ß Minimal response: Only one detector response per edge.

From the image gradient, Canny uses two thresholds (upper and lower):
(a) If a pixel gradient is higher than the upper threshold, the pixel is

accepted as an edge.
(b) If a pixel gradient value is below the lower threshold, then it is

rejected.
(c) If the pixel gradient is between the two thresholds, then it will be

accepted only if it is connected to a pixel that is above the upper
threshold.

71 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Canny edge detector

Canny edge detector (2/2)

72 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Laplacian

Laplacian (1/2)

The gradient operator dot product with the gradient is called the
Laplacian. This is defined by:

∆I = δ2I

δx2 + δ2I

δy2 (18)

This is equivalent to convolve the input image with the following
kernel:

K =

0 1 0
1 -4 1
0 1 0


Then, for a particular location (i, j), ∆I(i, j) is given by
∆I(i, j) = −4I(i, j)+I(i+1, j)+I(i−1, j)+I(i, j+1)+I(i, j−1).

73 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Laplacian

Laplacian (2/2)

74 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Laplacian

Structure Tensor

Let I(p) be an image realization at a pixel position p.
Let ∇Ix(p) and ∇Iy(p) be the horizontal and vertical gradients
respectively.
We define the tensor structure at position p as

J(p) = Ew,p
(
[∇Ix(r), ∇Iy(r)]>[∇Ix(r), ∇Iy(r)]

)
which gives

J(p) =
(∑

r w(r)∇Ix(p− r)2
∑

r w(r)∇Ix(p− r)∇Iy(p− r)∑
r w(r)∇Ix(p− r)∇Iy(p− r)

∑
r w(r)∇Iy(p− r)2

)
if w comes from Gσ, a Gaussian kernel centered around p, we have

J(p) =
(

(Gσ ∗ ∇I2
x)(p) (Gσ ∗ ∇Ix∇Iy)(p)

(Gσ ∗ ∇Ix∇Iy)(p) (Gσ ∗ ∇I2
y)(p)

)

75 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Laplacian

Structure Tensor

Tensor’s structure property:

The orientation n is the solution of the following equation:

J(p)n = λn
So the eigenvectors of J(p) are the major orientation at position p
and their corresponding energy is given by the eigenvalues λ1 and λ2
(with λ1 > λ2).

The major orientation (λ1) is given by the first eigenvector

n =
(
J2,2(p)− J1,1(p)

2J1,2(p)

)
with a level of confidence equal to

C = λ1 − λ2

λ1 + λ2
=

(J2,2(p)− J1,1(p))2 + 4J2
1,2

(J1,1(p) + J2,2(p))2

Bigun, J. (1987). Optimal orientation detection of linear symmetry.
76 / 77

Color

T. Maugey

Introduction

Linear filtering

Frequency
domain filtering

Non-Linear
filtering

Derivative filters
(Edge detection)
Laplacian

References

The following slides rely heavily upon the following documents:

Rafael Gonzalez and Richard Woods, Digital Image
Processing, 3rd edition, Pearson Prentice Hall, 2008.

Richard Szeliski, Computer Vision: Algorithms and
Applications, 2010.

David Forsyth and Jean Ponce, Computer Vision: A
Modern Approach, 2003.

77 / 77

Color

T. Maugey

References

References
Pravin Bhat, Brian Curless, Michael Cohen, and C Lawrence Zitnick. Fourier analysis of the 2d screened poisson equation for

gradient domain problems. In European Conference on Computer Vision, pages 114–128. Springer, 2008.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image denoising. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 60–65. IEEE, 2005. 53

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. Communications, IEEE Transactions on, 31
(4):532–540, 1983.

Elmar Eisemann and Frédo Durand. Flash photography enhancement via intrinsic relighting. ACM transactions on graphics
(TOG), 23(3):673–678, 2004. 50

David A Forsyth and Jean Ponce. A modern approach. Computer Vision: A Modern Approach, 2003.

Jan-Mark Geusebroek, Arnold WM Smeulders, and Joost Van de Weijer. Fast anisotropic gauss filtering. Image Processing, IEEE
Transactions on, 12(8):938–943, 2003. 18

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In European conference on computer vision, pages 1–14.
Springer, 2010. 48, 57

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE transactions on pattern analysis and machine intelligence,
35(6):1397–1409, 2013. 48, 57

Ido Omer and Michael Werman. Color lines: Image specific color representation. In Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–946. IEEE, 2004. 56

Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe, and Kentaro Toyama. Digital photography
with flash and no-flash image pairs. ACM transactions on graphics (TOG), 23(3):664–672, 2004. 50

Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International
Conference on, pages 839–846. IEEE, 1998. 43

Leonid P Yaroslavsky and LP Yaroslavskij. Digital picture processing. an introduction. Digital picture processing. An introduction..
LP Yaroslavsky (LP Yaroslavskij). Springer Seriesin Information Sciences, Vol. 9. Springer-Verlag, Berlin-Heidelberg-New
York-Tokyo. 12+ 276 pp. Price DM 112.00 (1985). ISBN 3-540-11934-5 (FR Germany), ISBN 0-387-11934-5 (USA)., 1,
1985. 42

77 / 77

	Introduction
	Linear filtering
	Frequency domain filtering
	Non-Linear filtering
	Derivative filters (Edge detection)
	*
	References

