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Morphological Component Analysis

X is an image that is vectorized.
N is the number of pixels in the image.

Dictionary-based

Inpainting The Morphological Component Analysis consists in decomposing
an image as the sum of a cartoon image and a texture image:

[Elad, M., Starck, J. L., Querre, P., and Donoho, D. L. (2005). Simultaneous cartoon and texture image
inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19(3),
340-358.]

[Starck, J.-L., Murtagh, F. and J. Fadili, A., Sparse Image and Signal Processing: Wavelets, Curvelets,
Morphological Diversity , Cambridge University Press, 2010‘]/74
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Morphological Component Analysis

X is an image that is vectorized.
N is the number of pixels in the image.

Dictionary-based

Inpainting The Morphological Component Analysis consists in decomposing
an image as the sum of a cartoon image and a texture image:

X =X, + X;

2.
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Texture image modeling

Let Ty of dimension N x K (with K >> N) be a dictionary of
texture. X; is a texture image if it exists a sparse decomposition:

Dictionary-based
Inpainting

x; = Ticy, with ¢, sparse

The sparsity can be modeled with:

* llecllo = [{k, (k) # 0}
* ledlly = (i alkyr)”

Hypothesis:

® | ocalization: T should include multi-scale and local of textural
information

® Incoherence: cartoon images cannot be sparsely described with
T,
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Cartoon image modeling

Let T,, of dimension N x K (with K >> N) be a dictionary of
texture. X, is a texture image if it exists a sparse decomposition:

Dictionary-based
Inpainting

x, = T,c,, with c, sparse

The sparsity can also be modeled with:
® llenllo = {k, cn(k) # O}
1

 lleally = (s eak)?)”

Similar hypothesis:

® | ocalization: T, should include multi-scale and local of textural
information

® Incoherence: texture images cannot be sparsely described with
T,
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Morphological Component Analysis

T. Mauge

The MCA decomposition is thus denoted as:
Dictionary-based
Inp;ming
x = Thren + Ticy
Given the dictionaries, the decomposition is found by solving:

{ch,ci} = arg min ||ca||o + ||ct]lo st x = Tre, + Tice
Cn,Ct

This formulation can be relaxed such that the decomposition becomes an
approximation (with a small approximation error ¢):

{ci,ci} = arg min |[cnllo + ||cello st ||x — Then — Tici|]3 < e
Cn,Ct
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Matching pursuit

An optimization problem as
c* = argming |[c||o s.t. ||x — Tc||3 < €
el (with T being the dictionary) can be

T. Mauge

P | S
Inpainting
solved as using a matching pursuit N
algorithm -
x T c
[ ]

A residual vector ry that is initialized with x

Initialize ¢ as a zero vector of size K
® At every iteration J > 0,
® Find the column of T = {tx}x<x for which the inner product
rE'—J)tk is maximal
kz‘J) — arg maxg<g rgrj)tk
T 2
® STty /it 2

® Tyt Ty — ck?J)thJ)

® Stop when the residue is sufficiently small ||rx||3 < e
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Orthogonal Matching Pursuit

The main difference from MP is that after every step, all the coefficients

T. Maugey extracted so far are updated, by computing the orthogonal projection of
S the signal onto the set of atoms selected so far. This can lead to better
Inpainting results than standard MP, but requires more computation.

® A residual vector rg that is initialized with x
® Initialize c as a zero vector of size K and A =0
® At every iteration J > 1,

® Find the column of T = {t}x<k for which the inner product
r(TJ)tk is maximal
k(7)< argmaxp<x r(TJ)tk
° A(J) +— A(J,l) U {tsz)}
* Py < Au(ALAu) AL,
® rsy = A=Puyry-y

® Stop when the residue is sufficiently small ||ry||3 < ¢

4

[Cai, T., and Wang, L. (2011). Orthogonal matching pursuit for sparse signal recovery with noise. IEEE
Transactions on Information theory, 57(7), 4680-4688.]

9/74



Alternatives formulations

Other formulations are possible, using for example the I; norm in
U e order to make the problem convex:

Dictionary-based 5 " .

Inpainting {c’,c;} =argmin ||c,||1 + ||ce]]1 st. x = Tphe, + Tiee
Cn,Ct

Regularization terms might be added to make the convergence easier

(e.g., total variation of cartoon image).

{ch,ci} = arg min |len|[1+|lee|[1+Allx—Tnen—Tie:|[3+9TV (Tren)
n,Ct

Possible solvers:

[S.S. Chen, D.L. Donoho, M.A. Saunder, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20
(1998) 33{61.]

[D.L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence
of noise, IEEE Trans. Inform. Theory (2004),]

[L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation noise removal algorithm, Physica D 60 (1992)
259{268.]

Convex programming methods for subset selection and sparse approximation, IEEE

[T.A. Tropp, Just relax:
Trans. Inform. Theory (2004)]
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MCA-based Inpainting

T. Mauge

Dictionary-based
Inpainting

Let us define a mask M, which is a diagonal matrix of dimension N x N,
whose ‘" diagonal element is 1 if the pixel i is visible (and 0 otherwise).

The inpainting formulation becomes

{ci,ci} = arg min |[cn||1+][ce| |1 4+A|[M(x—Tpcn—Tico)|[34+7TV (Trcy)
CnCt

This formulation is very similar to the image decomposition, and can be
solved similarily
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lllustrative example

Let us consider the following dictionary of hand-written digits
numbers (N = 64 and K = 1790)
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[F. Alimoglu, E. Alpaydin, "Methods of Combining Multiple Classifiers Based on Different Representations for
Pen-based Handwriting Recognition," Proceedings of the Fifth Turkish Artificial Intelligence and Artificial
Neural Networks Symposium (TAINN 96), June 1996, Istanbul, Turkey.]
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lllustrative example

T. Mauge We pick one digit from the database

Dictionary-based

ol from sklearn import datasets
Inpainting

import matplotlib.pyplot as plt

digits = datasets.load-digits()

imissing = 20

plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[imissing], cmap=plt.cm.gray.r,
interpolation=’nearest’)

0 2 4 6

# We take the vectorized version of this image
im = digits.data[imissing,:]
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T. Mauge

Dictionary-based
Inpainting

lllustrative example

We remove some pixels of the selected digit

import numpy as np

# We create a mask with 50% of the pixels
vecRand = np.random.rand(64)
mask_ = vecRand > 0.5

# We mask the vector

im masked = digits.datalimissing,:]

im_masked[mask.-] = 0

im masked2d = im_masked.reshape(8,8,order="C’).copy()

plt.figure(2, figsize=(3, 3))
plt.imshow(immasked2d, cmap=plt.cm.gray.r, interpolation=’nearest’)

o]
1
24
3 |
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lllustrative example

T. Mauge

Dictionary-based
Inpainting

We find the best decomposition of the masked vector in the masked
dictionary

import sklearn.linear_model

7# We build the dictionary in its masked version, and without the selected digit
index_item = np.append(np.arange(imissing), np.arange(imissing+l, 1790))
dicom = digits.datal[index_item, :]

dicom[:, mask.] = 0

# We perform the OMP

coeff_ = sklearn.linear model.orthogonal mp(dico.m.transpose(),
im-masked.transpose(), n-nonzero_coefs=2, tol=None, precompute=False,
copy_X=True, return_path=False, returnn_iter=False)
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T. Mauge

Dictionary-based
Inpainting

lllustrative example

We retrieve the full image from the complete dictionary

# We build the complete dictionary without the selected digit
dico = digits.data[index_item, :]

# We estimate the full digit
im_recon = dico.transpose() @ coeff_..transpose()
im_recon[im_recon < 0] = 0O

im_recon2d = im_recon.reshape(8,8,order=’C’).copy()
plt.figure(3, figsize=(3, 3))
plt.imshow(im-recon2d, cmap=plt.cm.gray.r, interpolation=’nearest’)
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More complex Dictionaries

Dictionaries might be designed “by hand”, choosing for example:
e ® known transforms
Inpaintg e fast to compute and to inverse
For texture dictionary T,

® local DCT

® Oscillatory wavelets

® Gabor transform
For structure dictionary T,

® curvelet

® ridgelet

® contourlet

® wavelet

[Elad, M., Starck, J. L., Querre, P., and Donoho, D. L. (2005). Simultaneous cartoon and texture image
inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19(3),
340-358.]
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Results

T. Maugey

Dictionary-based
Inpainting




Results

Dictionary-based y i § L. .
e " A ; ®  20% of missing pixels

50% of missing pixels

80% of missing pixels
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Results

T. Mauge

Dictionary-based
Inpainting




Learn the dictionary

Instead of building manually the dictionary, one can learn it from a set of data
T. Mauge that has the same statistical properties than the processed ones.

Dictionary-based

Inpainting Given a set of M training signals Y = {y;}, we seek the dictionary T that leads

to the best representation for each y;:

{T*,C*} = arggliélz llcillo st [][Y = TCl|% <«
i

or equivalently

{T*,C*} = arg%igHY —TCJ||% st Vi, ||cillo <7

. . . 2 2
where ||.||p is the Frobenius norm: ||A]|3. = ZZ Zj az;.

-
=
M K
Y T
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K-means algorithm

Vo RN K-means algorithm deals with an extreme case of sparsity

Dictionary-based decomposition where each training signal y; is represented by one of
Inpainting

pemne the K columns of T:
Yi ~ Tek

where

® Vk € [1, K], ey is a vector of dimension L that is 1 at the index
k and 0 elsewhere.

* Vi#k, |lyi — Tex|l3 <[y — Tey|3

M K
=
N =
L
Y T
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K-means algorithm

Objective of the K-means algorithm:
e e Find the best possible codebook T to represent {y;}:

Dictonary based {T",C"} = argmin [[Y = TC[[ st.¥i, 3k € [1, K], c; = ey
e Initialize T, and J =0
® At each iteration J

® Sparse coding stage: Partition the training set {y;} into
(Rg“’), c Rg)), where

R = {i | VI # k, [lyi = TVex][3 < llys = TV eul3}
® Codebook update: for each column k of T, update

(J+1) _
k

iR

o J+ J+1




K-means illustration

T. Mauge

Dictionary-based
Inpainting

Sparse coding stage Codebook update
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K-SVD algorithm

T. Mauge

The sparse representation problem

Dictionary-based
Inpainting

{T*,C*} = argr%liélﬂY —TC|]% st Vi, ||cillo <n

can be viewed as a generalization of the K-means, in which we allow
each input signal y; to be represented by a linear combination of
columns of T.

As K-means, the algorithm will alternate between

1 Find the best representation C, given a dictionary T

2 Update each column t; one after the other, and finding, for each
one, a better corresponding coefficients in C (based on SVD).

[Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11), 4311.]
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K-SVD algorithm

1- Find the best representation C, given a dictionary T

T. Mauge

s Solve a sparse representation problem for each training signal y;:

Inpainting

Vi, c¢f = argrréi_n llyi — Teil|2 st leillo < n

This is done using the "pursuit algorithms” introduced before.

If 1 is small enough, their solution is a good approximation of the
ideal one.

M K
Y T

OIIIII
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K-SVD algorithm

2- Update each column t;
T. Mauge We assume that T and C are fixed, and we put in question t; and the
coefficients that correspond to it c¥ (the kt* row of C).

The penalty term becomes 2

K
IY-Tcl} = [[Y-> td
=1

Dictionary-based
Inpainting

F

= Y — Z tlcl - tkck

I#k F

= e

The term TC is decomposed
into a sum of K rank—1

k
. . . | | o C
matrices, in which K — 1 are

fixed. M K
Ej stands for the errors for the
samples when atom k is N =
removed.
Y t, T C
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K-SVD algorithm

2- Update each column t;
T. Mauge An SVD finds the closest rank—1 matrix that approximate Ej. Use that to
update t;, and c* ?

Dictionary-based
Inpainting

e P

M
Y
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K-SVD algorithm

2- Update each column t;
T. Mauge An SVD finds the closest rank—1 matrix that approximate Ej. Use that to
update t;, and ¢ ? No because c¥ would not be sparse.

Dictionary-based
Inpainting

e P

M
Y
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K-SVD algorithm

2- Update each column t;
T. Mauge An SVD finds the closest rank—1 matrix that approximate Ej. Use that to
update t;, and ¢ ? No because c¥ would not be sparse.

Dictionary-based
Inpainting

][] ] Ck

M K

wr Y ty T C
We define wy, as the group of indices pointing to {y;} that use the atom ty:
wp={m|1<m <M, c*(m) #0}

And EkR, c’j;{ as the respective restrictions of E; and ¢ whose columns are in wy,.

2
. . .. . R k
The aim is to minimize HEk — tch| ‘F
We compute the SVD of EkR leading to EkR =UAVT. We update t;, with the
first column of U and le-z with the first column of V.
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K-SVD algorithm

Objective:{T*,C*} = argmint c ||[Y — TC||% s.t. Vi, |lcillo <7

e Initialize T(® with I5 normalized columns, J = 0
® Sparse Coding stage: Vi, solve
) _ 9 R \(COPSATP: )
c;”’ = argmine, ||y; cillz st |leilo <n
using any for example OMP algorithm.
® Code update Stage: for each column k € [1, K], update t;‘])
and its corresponding coefficients:
® Define the group of training signals that use this atom,

wg={m|1<m< M, C?J)(m);aéO}

® Compute the overall representation error matrix

_ (J) ot
Ep, =Y - Zl;ﬁk e
by choosing the column that belongs to wyg

Dictionary-based
Inpainting

k
(J)

and obtain EkR and CI(CJ),R

® Apply SVD Ef =UAV', and

MCARY)
k

® Restrict E; and ¢

< first column of U

C?J+1) R first column of 'V

° J+—J+1
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Example of learned dictionaries

Learning a dictionary on patches ( 8 x 8) of several image (K =2
T. Maugey

Dictionary-based
Inpainting

———
[

I

I

I

I

|
Ik
[y
|

I

= =
Overcomplete DCT Learned Dictionary

ke ld—me T NPl P=
| mh "Ngl ™ N |

[Elad, M., and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image processing, 15(12), 3736-3745.]




Example of learned dictionaries

Learning a dictionary on patches ( 8 x 8 X 3) of image (a) results in dictionary (b)

Dictionary-based
Inpainting

[J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions
on Image Processing, 17(1):53{69, January 2008b.]

31/74



Advanced DIP

T. Maugey

Dictionary-based
Inpainting

80% missing pixels

[J. Mairal, G. Sapiro, and M. Elad.

restoration.

SIAM Multiscale Modelling and Simulation, 7(1):

Recovered Image

Learning multiscale sparse representations for image and video

214{241, April 2008d.]




Application to inpainting

T. Maugey

Dictionary-based
Inpainting

Original image 80% missing pixels Recovered Image

[J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions
on Image Processing, 17(1):53{69, January 2008b.]




Super resolution or Digital Zooming

When you increase the size of an image (e.g., by a factor of 4), you may :
Naively increase the size of each pixel

Dictionary-based
Inpainting

[Couzinie-Devy, F., Mairal, J., Bach, F., and Ponce, J. (2011). Dictionary learning for deblurring and
digital zoom. arXiv preprint arXiv:1110.0957.]
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Super resolution or Digital Zooming

When you increase the size of an image (e.g., by a factor of 4), you may :
Locally interpolate between pixels

Dictionary-based
Inpainting

[Couzinie-Devy, F., Mairal, J., Bach, F., and Ponce, J. (2011). Dictionary learning for deblurring and
digital zoom. arXiv preprint arXiv:1110.0957.]
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Super resolution or Digital Zooming

When you increase the size of an image (e.g., by a factor of 4), you may :
Use dictionary-based formulation

Dictionary-based
Inpainting

[Couzinie-Devy, F., Mairal, J., Bach, F., and Ponce, J. (2011). Dictionary learning for deblurring and
digital zoom. arXiv preprint arXiv:1110.0957.]
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Inverse Half-Toning

T. Maugey

Dictionary-based
Inpainting

and many other applications ...




Application to compression

T. Mauge

Dictionary learning can be useful when the case of study can be
Dictionary-based H'H
el specific

For example, when compressing faces

Transforms can be learned for each specific parts of the face

[Bryt, 0., and Elad, M. (2008). Compression of facial images using the K-SVD algorithm. Journal of Visual
Communication and Image Representation, 19(4), 270-282.]
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Face dictionary learning

S Align the faces and split them into blocks

Dictionary-based
Inpainting | |

‘u

AT

Learn the dictionaries for each block
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Examples of learned dictionaries

T. Maugey

The Dictionary obtained by K-SVD for Patch No. 80 (the left eye)

Dictionary-based
Inpainting




Examples of learned dictionaries

U Mk The Dictionary obtained by K-SVD for Patch No. 87 (the right
Dictionary-based nOStl’”)

Inpainting




T. Mau

Dictionary-based
Inpainting

Results

Original and Compressed images (632 bytes, 358 x 441 pixels )
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Results

T. Maugey

Dictionary-based
Inpainting

Original

Original

JPEG2000 (16.12)

PCA (12.3)

PCA (11.38)

K-SVD (7.61)

K-SVD (6.34)




Table of Contents

Exemplar-based
inpainting

® Exemplar-based inpainting
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Object or region removal

Need for a new type of inpainting

Exemplar-based
inpainting

80% of the pixels
have been
removed.

damaged portions
in black, scratches

Original image

Diffusion-based
methods

Sparsity and
low-rank methods

object removal*

Examplar-based
methods*
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Examplar-based inpainting (1/4)

Texture synthesis

Examplar-based inpainting methods rely on the assumption that the
Eeemplar based known part of the image provides a good dictionary which could be
inpainting used efficiently to restore the unknown part.

The recovered texture is therefore
inferred from similar regions.
= Simply by sampling, copying
or combining patches from
the known part of the image;
Template Matching

Patchto fill

= Patches are then stitched
together to fill in the missing
area.

[A. A. Efros and T. K. Leung. Texture synthesis by
non-parametric sampling. In IEEE Computer Vision and
Pattern Recognition (CVPR), pages 1033{1038, 1999.]
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Examplar-based inpainting (2/4)

Notations:

i

a patch 1), is a discretized
N x N neighborhood
centered on the pixel p,.
This patch can be vectorized
in a raster-scan order as a
NZ-dimensional vector;

Exemplar-based
inpainting

= 4% denotes the unknown
pixels of the patch;

40,0 = 1h¥ denotes its known
1,(0.) Pa
" pixels;
I,(N-2.N-2) = 1y, denotes the i""
L,(N-LN-1 nearest neighbor of ¢, ;

= U is the front line;
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Examplar-based inpainting (3/4)

Criminisi et al.'s algorithm

It has brought a new momentum to inpainting applications and meth-
ods. They proposed a new method based on two sequential stages:

Exemplar-based
inpainting

@ Filling order computation;
® Texture synthesis.

@ Filling order computation: P(p,) = C(ps) x D(pz)

Confidence term Data term
> gepr Cla) VIt (ps) - 7, |
Clps) = =1 — D(p,) = D el
Pax

where « is a normalization
constant in order to ensure that
D(p;) is in the range 0 to 1.

where |1, | is the area of ¢, .

[A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by examplar-based image
inpainting. IEEE Trans. On Image Processing, 13:1200{1212, 2004.]
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Examplar-based inpainting (4/4)

® Texture synthesis:

A template matching is performed within a local neighborhood:

Exemplar-based
inpainting

: k ok
Py = arggrellvr\gd( e Upos)
w= )V C S is the window search;
g 1/)51* are the known pixels of the patch 1), . with the highest
priority;
g 1/)52 are the known pixels of the nearest patch neighbor;

"= d(a,b) is the sum of squared differences between a and b.

The pixels of the patch «dz;)“f“ are then copied into the unknown pixels
q

of the patch 9, . .
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Filling order computation (1/4)

P(pfv) = C(px) X D(P.q:)

Exemplar-based
inpainting

Two variants are here presented:
»= Tensor-based data term

[0. Le Meur, J. Gautier, and C. Guillemot. Examplar-based inpainting based on local geometry. In
ICIP, 2011.]

= Sparsity-based data term

[Z. Xu and J. Sun. Image inpainting by patch propagation using patch sparsity. IEEE Trans. on
Inage Processing, 19(5): 1153{1165, 2010]

Many others: edge-based data term, transformation of the data term
in a nonlinear fashion, entropy-based data term...

[P. Buyssens, M. Daisy, Tschumperlé, and 0. L ezoray. Exemplar-based inpainting: Technical review and new
heuristics for better geometric reconstructions. IEEE Trans. On Image Processing, 2015.]

4774



Filling order computation (2/4)

Tensor-based data term

Instead of using the gradient, we can used the structure tensor which
is more robust:

Exemplar-based

inpaining D(p.) = a+ (1 — a)exp (—ﬁ)

where 7 is a positive value and « € [0,1].

The structure tensor is a symmetric, positive semi-definite matrix:
Jpo 1) =K, [ Y V(I x K,)V(Ii % K;)"
=1

where K, is a Gaussian kernel with a standard deviation a. The
parameters p and o are called integration scale and noise scale,
respectively.

[J. Weickert. Coherence-enhancing diffusion filtering. International Journal of Computer Vision,
32:111{127, 1999.]
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Filling order computation (3/4)

T. Maugey

Exemplar-based
inpainting

When A1 ~ Ao, the data term tends to «. It tends to 1 when
AL >> Ao




Filling order computation (4/4)

Sparsity-based data term

Sparsity-based data term is based on the sparseness of nonzero patch
Exemplar-based similarities:

inpainting

|Ns(pe)
D(ps) = | =ball s w2
D Wl <2 e

where Ng and N are the numbers of valid and candidate patches in
the search window.

Weight w,, . is proportional to the similarity between the two patches
centered on p; and p; (3_; wp, p; = 1).

A large value of the structure sparsity term means sparse similarity
with neighboring patches
= a good confidence that the input patch is on some structure.
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Texture synthesis (1/4)

Texture synthesis with more than one candidate
From K patches ¢, which are the most similar to the known part

wgw of the input patch, the unknown part of the patch to be filled Jgf

Exemplar-based is then obtained by a linear combination of the sub-patches ;jk(,).
inpainting x (7

A K
T Tuk E o uk
¢ Vectorization Four | /l’bpz - w; DPx(i)
oftheknown ~ vectorized  weights .
par patches =1
f O
U [lollolfellof11P How can we compute the weights
= 5|~ ([al|al[al[al||m 0. Mo . .
A (el w; of this linear combination?
S ‘! w11 [ | [
| 1{|2|[3]|a
| Note: K is locally adjusted by using
i an e-ball including patches within a
K"no@nk T wow  uweown  certain radius.
v, =Axw

51/74



Texture synthesis (2/4)

K
Tuk o uk
Pz Zwlwpz(i)
=1

Different solutions exist:
Exemplar-based

T »= Average template matching: w; = % Vi;

= Non-local means approach:

d(wp’; ) wp:(i) )

w; =exp | — W2

[A. Buades, B. Coll, and J.M. Morel. A non local algorithm for image denoising. In IEEE Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 60{65, 2005.]

» |east-square method minimizing
E(w) = |ly,, — Avl3,
*

w* = argmin E(w)

52/74



Texture synthesis (3/4)

S » Constrained Least-square optimization with the sum-to-one
xemplar-base . .
inpainting constraint of the weight vector = LLE method

E(w) = Iy, — Avl3,

w* = argmin E(w) s.t. wilg =1

[L.K. Saul and S.T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional
manifolds. Journal of Machine Learning Research, 4:119{155, 2003.]

» Constrained Least-square optimization with positive weights =
NMF method

* .
w* = argmin F(w) s.t. w; >0
w
[D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In In NIPS, pages
556{562. MIT Press, 2001.]

53/74



Texture synthesis (4/4)

Similarity metrics:
= Using a Gaussian weighted Euclidean distance
2
dpe (¢pm7¢py) = ||1/Jpz - 1ppyllz,a
where a controls the decay of the Gaussian function

g(k) = 67%, a>0;

w= A better distance:

d(¥p,, Vp,) = drz(Vp,, ¥Yp,) X (1 +du(yp,,1p,))

where dg (vp,,1p,) is the Hellinger distance

(d’pzﬂ/}py 1 _val p2

Exemplar-based
inpainting

where p; and ps represent the histograms of patches v, , ¥,
respectively.

[A. Bugeau, M. Bertalm 1o, V. Caselles, and G. Sapiro. A comprehensive framework for image inpainting.
IEEE Trans. on Image Processing, 19(10):2634{2644, 2010,

[0. Le Meur and C. Guillemot. Super-resolution-based inpainting. In ECCV, pages 554{567, 2012.]
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Some Examples

Inpainted pictures with Criminisi's method (Courtesy of P. Pérez):

B - S

Exemplar-based
inpainting

[A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by examplar-based image
inpainting. IEEE Trans. On Image Processing, 13:1200{1212, 2004.]
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Table of Contents

Super-resolution-
based inpainting
method

© Super-resolution-based inpainting method
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Problems we want to solve... (1/4)

w The linear combination of several candidates induces blur.

RO R

Super-resolution-
based inpainting
method
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Problems we want to solve... (2/4)

= Very sensitive to the parameter settings such as the filling order
and the patch size:

Super-resolution-
based inpainting
method




Problems we want to solve... (3/4)

= Very sensitive to the parameter settings such as the filling order
and the patch size:

Super-resolution-
based inpainting
method




Problems we want to solve... (4/4)

= Examplar-based methods are one-pass greedy algorithms.

A greedy algorithm is an algorithm which makes the locally optimal

Super-resolution-
based inpainting
method

choice at each stage with the hope of finding a global optimum.
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The main idea (1/1)

Objectives of the proposed method

We apply an examplar-based inpainting algorithm several times and
fuse together the inpainted results.

"= |ess sensitive to the inpainting setting;

Super-resolution- = relax the greedy constraint.
based inpainting
method
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The main idea (1/1)

Objectives of the proposed method
We apply an examplar-based inpainting algorithm several times and
fuse together the inpainted results.

"= |ess sensitive to the inpainting setting;

Super-resolution-

resolut = relax the greedy constraint.
based inpainting

method
The inpainting method is applied on a coarse version of the input

picture:
@ less demanding of computational resources;

@ less sensitive to noise;
©@ K candidates for the texture synthesis without introducing blur.

Need to fuse the inpainted images and to retrieve the highest

frequencies

Loopy Belief Propagation and Super-Resolution algorithms.
61/74



More than one inpainting (1/1)

The baseline algorithm is an
examplar-based method:

= Filling order
computation;

Super-resolution-
based inpainting
method

= Texture synthesis.

= Decimation factor n = 3

= 13 sets of parameters

Setting

Parameters

Patch’s size 5 X 5
Decimation factor n = 3
Search window 80 x 80
Sparsity-based filling order

default + rotation by 180 degrees
default + patch's size 7 X 7
default + rotation by 180 degrees
+ patch’s size 7 X 7
default + patch's size 11 x 11
default + rotation by 180 degrees
+ patch’'s size 11 X 11
default + patch's size 9 X 9
default + rotation by 180 degrees
+ patch’s size 9 X 9
default + patch's size 9 X 9
+ Tensor-based filling order
default + patch's size 7 X 7
+ Tensor-based filling order
default + patch’'s size 5 X 5
-+ Tensor-based filling order
default + patch’'s size 11 X 11
+ Tensor-based filling order
default + rotation by 180 degrees
+ patch’s size 9 X 9
+ Tensor-based filling order

Table: Thirteen inpainting configurations.
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Loopy Belief Propagation (1/4)

e e - e

Loopy Belief Propagation is

used to fuse together the 13 inpainted
images.

Super-resolution-
based inpainting
method

Let be a finite set of labels L composed of M = 13 values.

E(l) = Z Va(lp,) + A Z Vs(lns ln)

P €U (n,m)EN,
where,
= 1, is the label of pixel p,;
= Ny is a neighbourhood system;

= )\ is a weighting factor.
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Loopy Belief Propagation (2/4)

E(l) = Z Va(lp,) + A Z Vs(lns ln)

P €U (n,m)€Ny

= Vy(lp,) represents the cost of assigning a label [, to a pixel py:

Vallp,) => " {f(lpw>(x +u) = T (z + u)}2

neL ucv

Super-resolution-
based inpainting
method

where, 7' is an inpainted image (ne{1,...,M}).

= Vi(ln,lm) is the discontinuity cost:
Vs(lnylm) = (ln - lm)2

The minimization is performed iteratively (less than 15 iterations)
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BEs [nees T
Super-resolution-
based inpainting
method LBP convergence:

= Random initialization;

= 13 inpainted image in
input;

= 25 iterations;

= resolution=80 x 120.
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Loopy Belief Propagation (3/4)

Super-resolution-

based inpainting

method LBP convergence:

= Random initialization;

= 13 inpainted image in
input;

= 25 iterations;

= resolution=80 x 120.
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PAS Loopy Belief Propagation (4/4)

Advanced DIP

T. Maugey Initialization Iterated minimization

Dictionary-based
Inpainting

Exemplar-based
inpainting

Super-resolution-
based inpainting
method




PAS Loopy Belief Propagation (4/4)

Advanced DIP

T. Maugey Initialization Iterated minimization

Dictionary-based
Inpainting

Exemplar-based
inpainting

Super-resolution-
based inpainting
method




Super-resolution (1/1)

From the LR patch corresponding
to the HR patch having the {} Leveli-l
highest priority: (fine)

= We look for its best
:uper—.resol.ution— neighbour in the LR

ased inpainting . . .

method inpainted image;

»= Only the best candidate is

kept; .
Level i
" The corresponding HR (coarse)

patch is simply deduced.

= |ts pixel values are then
copied into the unknown
parts of the current HR
patch.
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Results (1/6

Super-resolution-
based inpainting
method

Resolution=440 X 600




Results (1/6)

Super-resolution-
based inpainting
method

Resolution=440 X 600




Results (2/6)

Super-resolution-
based inpainting
method




Results (3/6)

Super-resolution-
based inpainting
method




Results (4/6)

Super-resolution-
based inpainting
method




Results (5

Super-resolution-
based inpainting
method




Results (6/6)

Super-resolution-
based inpainting
method

Much more results on the link:

http://people.irisa.fr/0livier.Le_Meur/publi/2013_TIP/
index.html
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