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Abstract— Waste auditing is important for effectively
reducing the medical waste generated by resource-intensive
operating rooms. To replace the current time-intensive and
dangerous manual waste auditing method, we propose a system
named iWASTE to detect and classify medical waste based
on videos recorded by a camera-equipped waste container.
In this pilot study, we collected a video dataset of 4 waste
items (gloves, hairnet, mask, and shoecover) and designed a
motion detection based preprocessing method to extract and
trim useful frames. We propose a novel architecture named
R3D+C2D to classify waste videos by combining features learnt
by 2D convolutional and 3D convolutional neural networks.
The proposed method obtained a promising result (79.99%
accuracy) on our challenging dataset.

Clinical Relevance— iWaste enables consistent and effective
real-time monitoring of solid waste generation in operating
rooms, which can be used to enforce medical waste sorting
policies and to identify waste reduction strategies.

I. INTRODUCTION
A. Clinical Problem: Medical Waste Management

Approximately 1.8 billion kg of waste is produced by
healthcare facilities annually [1], one-third of which comes
from operating rooms (ORs) [2]. A reliable waste audit-
ing system can help hospitals quantify and characterize
waste generation among surgical teams. Data-driven resource
scheduling strategies can then be developed to reduce waste.
For example, knowing the resource consumption variations
among surgical teams can help hospitals standardize clinical
practices of low waste generating clinics and target surgeons
with high waste generation for intervention. To-date such
data collection is conducted manually, in a time-intensive
and potentially dangerous manner. To address this challenge,
we proposed iWASTE (Intelligent Waste Auditing System
for Tracking Emissions), a pilot study designed to replace
traditional garbage can in OR; it records entering waste items
in video and classifies these items. Such a system enables
efficient cataloging of waste generation in surgeries.

B. Waste Classification with Computer Vision

Since AlexNet [3] was introduced, convolutional neural
networks have been actively researched in image classifica-
tion. Recently, neural networks like R2Plus1D [4] proposed
different 3D convolutional blocks to solve classification
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problems in the video domain and achieved state-of-the-art
results in action classification benchmarks such as Kinetics
[5].

Research on deep learning in waste classification and
sorting is very limited compared to problems such as action
recognition, which have large benchmark datasets. Currently,
there is no prior work done on video classification of medical
wastes in a cluttered background. For example, AlexNet and
SVM classify only images of plastic, paper and metal [6].
Other benchmark datasets of general waste like VN-trash
[7] consists of images on simple backgrounds from multiple
classes, including organic trash, inorganic trash, and medical
waste. None of the above classify videos in an cluttered
background with many similar objects.

C. Challenge in iWASTE

The waste classification methods from Section I-B are not
sufficient for real-world application since they classify still
images and can not distinguish the newest target item from
the background items. To solve this problem, we propose
iWASTE, a camera-equipped waste container, which records
and classifies video clips of waste as it enters and lands in the
waste bin. Our dataset currently includes 4 classes (gloves,
hairnet, mask, and shoecover); examples are shown below
in Fig. 1. Among this dataset, misclassification of our four
classes are equally costly. This is collected as a pilot study
to explore the proposed system’s viability. We will extend
our work to more classes (needle, tissue, etc.) in the future.

SHOECOVER

GLOVE HAIRNET MASK

Fig. 1. Two sample frames for each of the four object classes

As shown in Fig. 2a, medical waste falls into the waste
container at a fast speed, which leads to blurry images of an
object while it is falling. Neural Networks tend to use rich
edge and corner information for object classification. This
is similar to how a human can tell a glove is a glove by
distinguishing the edges of the glove fingers and the corners

5794

Authorized licensed use limited to: INRIA. Downloaded on October 20,2022 at 06:37:49 UTC from IEEE Xplore. Restrictions apply.



where the fingers meet. However, when the glove is falling,
its image is often too blurry to correctly identify the object.

Figure 2a
Blurry Obiject in Motion

Figure 2b
Two Classes look Similar_| Multiple Poses Same Class|

Figure 2¢

Fig. 2. Various Challenges

Another problem is that many samples of different classes
resemble each other. In Fig. 2b, the shoecover on the top is
very similar to the hairnet on the bottom in both shape and
color. The only subtle differences is texture.

A further challenge is that the same object can fall in
multiple poses that do not resemble each other. In Fig. 2c,
both objects are shoecovers with little similarity because the
shoecover was tossed directly in the top figure, while the
shoecover in the bottom figure was scrunched into a ball
before disposal. In reality, people are likely to dispose of the
same waste item in many different ways.

In comparison, many other common datasets of trash
images such as VN-trash [7] have simple backgrounds. This
is unrepresentative of the real world as medical waste will
be discarded into a cluttered background with many sorts of
previously discarded objects, like the backgrounds of Fig.
1 and Fig. 2. For our dataset, the background objects share
similar color and are also rich in features. The newest object
may also take only a small fraction of the frame, as shown
in the bottom image of Fig. 2¢c. Therefore, a major challenge
is to distinguish the newest object added to the pile.

To solve this challenge, we assume one object is thrown
into the trash can at a time, and the camera is stationary
relative to the can. We further assume that a motion-based
segmentation algorithm can automatically recognize the start
and end time of each throw. In this project, we focus on
classifying the falling object in a short video covering the
period from when the object is just thrown until after it
lands. Together with the segmentation algorithm, the system
can recognize what type of object is thrown in, each time a
new object is discarded, thereby automatically cataloging all
items thrown into the trash can, until a reset button is hit.

II. MEDICAL WASTE DETECTION AND CLASSIFICATION
A. Data Collection

To demonstrate the viability of iWASTE in this pilot study,
we collected our dataset in lab with a camera-equipped
OR waste bin. Medical waste falling into a waste bin is
captured as short videos using a standard metal framed OR
linens waste container equipped with web-camera clipped
on the rim of the metal frame. The camera is positioned to

look down so that it can see the bottom of the plastic bag
hanging around the metal frame, as shown in Fig. 3. Four
classes of medical waste are collected: shoecover, gloves,
hairnet and masks, which are common medical wastes in the
OR. We choose these four items for our pilot study in part
because they are amorphous and similar in appearance and
color. A success in solving this restricted but challenging
classification problem will bode well for developing a future
system that has to separate many more waste categories.

Fig. 3.

Trash Can Set-up

We collected a total of 970 videos: 220 Glove videos,
250 hairnet videos, 200 mask videos, and 300 shoecover
videos. Each video is 5 second long and has a frame rate
of 24 FPS. For each class, 60 videos have spatial resolution
of 1920x1080 collected in an earlier set up; the rest have
640x480 resolution, collected in a later setup with a different
waste bin and camera. We used the videos collected in the
later phase as the training data, and those in the earlier phase
for testing, in order to ensure that the trained model can
generalize well to very different settings. Each video starts
just before a waste item is thrown in, and stops seconds after
the object lands. To increase the diversity of our dataset,
medical waste was thrown in various poses. The background
objects are shuffled for every video i.e. some objects are
removed or added and their positions are moved around.

B. Motion-Detection-Based Preprocessing

In our dataset, objects fall at a very fast speed taking only
5-10 frames to land out of a 120 frame video. The frames
before the falling object enters contain no useful information.
Once the object hits the bottom of the container and becomes
stationary, all subsequent frames are almost identical and do
not provide additional information. Therefore, we applied
motion detection to find and extract frames containing the
object’s falling process to remove the irrelevant or redundant
frames. We found removing these frames greatly improves
the accuracy of our neural network, while reducing the
computation and memory cost both for model training and
for classification using the trained model.

Adaptive GMM (Gaussian Mixture Model) background
modeling [8] is applied to detect the motion of falling waste,
which classifies pixels as either foreground (moving object)
or background. Basic morphological operations including
erosion and dilation are applied to post-process the mask
generated by GMM for denoising shown in Fig. 4.

With the mask provided by the GMM, the consecutive 16
frames containing the most foreground pixels are extracted as
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Fig. 4. Motion detection by GMM. Left: glove falling into waste container;
Right: moving region identified by GMM

keyframes and are used for classification. Though the GMM
background subtraction is not robust against illumination
change and background motion in individual frames, the 16-
frame window containing the most foreground pixel number
can robustly extract the falling process of different waste
objects with diverse shapes, poses and background objects.

Aside from removing redundancy in the temporal dimen-
sion, we also use the motion detected by GMM to remove the
spatial redundancy. As mentioned in Section I, medical waste
lacks definable feature when it is falling, and objects may
only occupy a small proportion of each frame. Therefore,
we applied an algorithm to remove most of the background
of each keyframe. For each key frame, a bounding box is
generated for the largest cluster of moving pixels. The union
of the bounding box area among each frame are taken to crop
each of the key frames. Finally, the frames are reshaped to
112x112 for our dataset as seen in Fig. 5 below.

UNTRIMMED IMAGE

bbb
RN

Fig. 5.

Spatial Trimming result

C. Deep Learning Model

In our project, we propose a new network architecture,
called R3D+C2D network, to classify medical waste based
on video. R3D [4] is used as the backbone due to its
high performance in 16-frame clips action recognition tasks.
Inspired by Tracknet [9], a 2D convolutional network branch
is added to R3D to extract useful spatial information for
object recognition, leading to the R3D+C2D network.

R3D [4] was proposed by applying residual block to
3D convolution. The architecture of R3D applied in our
paper is shown in Fig. 6, which has 13 convolutional layers.
The global spatiotemporal pooling converts the convolutional
layer’s feature maps to a 256 dimensional feature vector.

For R3D+C2D, we add a 2D convolution network branch
to R3D. We name this branch C2D, shown in Fig. 6.
MobileNetV2 [10] is applied in our C2D branch due to

its light weight, which is preferred for resource constrained
environments such as smart waste bin. Input video clip is
temporally downsampled by 2 and each of the remaining
frames is mapped into 32 key features by MobileNetV2,
which shares weights across frames.

32 key features from each of the 8 frames give a total
of 256 2D spatial features, which are concatenated with the
256 3D features extracted from R3D. These 512 features
are placed through a fully connected layer with a softmax
activation function at the end for classification as shown in
Fig. 6.
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Fig. 6. R3D+C2D architecture. The residual connections in R3D [4] branch
are omitted for better readability.

III. EXPERIMENTS AND RESULT
A. Training Details

Our neural network takes the 16-keyframes of the video
clip extracted by motion-detection based preprocessing as
an input. Each frame is reshaped to 112x112, making each
video a 3D tensor with size 16 (frames) x 3 (RGB) x
112 x 112. For each of the four classes, 60 videos with
1920x1080 original resolution are used as the test set, and the
remaining videos with 640x480 original resolution are used
as the training set. Since these two datasets are collected
with different backgrounds and cameras by different data
collectors, good performance on the test set would indicate
good generalization capability of the trained model. On
training, clips are horizontally flipped with 50% probability.
The MobileNetV2 was pretrained on the ImageNet [3].

The SGD (stochastic gradient descent) optimizer with
momentum 0.9 and weight decay 0.0005 is applied with an
initial learning rate of 0.01. The learning rate gets divided by
10 every 10 epochs while training. The total epoch number
is 100, at which time the training loss has converged.

B. Comparison of Results

In order to examine the contribution of R3D and C2D
branch, respectively, and the impact of motion-based prepro-
cessing, we trained 6 different models, with results shown in
Table 1. As expected, R3D+C2D on the spatially trimmed
video achieved highest accuracy of 79.99%. When using
only the R3D branch, the accuracy is reduced to 57.24%,
indicating that the C2D branch extracts additional useful
spatial features. However, C2D alone does not provide good
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test accuracy. This supports the need for a 3D convolutional
branch to extract spatiotemporal features from the object’s
motion. When the network acts on the untrimmed frames
which are temporally the same frames though spatially
different, the performance is reduced substantially in both
the R3D+C2D model and the C2D model. This suggests that
removing stationary regions helps the network to focus on
the falling object. Since the test set has significant differences
from the training set such as very different background and
different data collector, the test accuracy shows the good
generalization capability and viability of this pilot study.

TABLE I
COMPARISON OF ACCURACY

Network Test Accuracy, Untrim Test Accuracy, Trim
R3D+C2D 51.72% 79.99%
R3D 68.96% 57.24%
C2D 43.96% 67.27%

To demonstrate R3D+C2D has learned meaningful fea-
tures, we applied guided backpropagation [11] on sample
videos to generate the saliency maps for the input video
frames. Fig. 7 and Fig. 8 show the saliency maps derived
for the R3D branch and C2D branch, respectively. The video
is a falling mask with another mask and hairnet as the
background. The R channel of RGB denotes the focal area.

Fig. 7. Saliency map generated from the R3D branch of the trained
R3D+C2D model, red dot denotes pixels of high interest

Fig. 8.  Saliency map generated from the C2D branch of the trained
R3D+C2D model

From the saliency maps, we can see 3D convolutional
branch of R3D+C2D seems to track the falling mask as it
falls down, and the additional 2D branch, on the other hand,
seems to focus on the major outlines of all the objects in the
image. Overall, these saliency maps suggest that the network
has learnt to track and identify falling objects.

IV. CONCLUSIONS

In this project, a video dataset of 4 medical waste classes
was gathered with a variety of backgrounds. A new network
architecture, R3D+C2D network, was proposed which in
this use case outperformed R3D by a significant margin at
79.99% test accuracy with spatial trimming. This led us to
two main conclusions: 1) motion-based preprocessing can
help the network to focus on the moving object, which may
be particularly important when the training data is limited;
and 2) both 3D and 2D convolutions are necessary to provide
motion and appearance features necessary to discriminate
among similar falling objects.
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