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Generative diffusion models

T. Mauge

o General concept
Diffusion models

{courtesy of Tom Train a denoiser and use it to generate realistic images

Noiser

zo~q(zo) |= = o T4

q(@t|zi-1)

Decoder

zp ~N(O,I) = = o 2z

Tyq |= = w

Po(Ti-1lae)

zo ~ po(z0) ‘

[SONG, Jiaming, MENG, Chenlin, et ERMON, Stefano. Denoising Diffusion Implicit Models. In : International
Conference on Learning Representations. 2020.]
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Forward diffusion

T. Mauge

Natural images follow a probability distribution, denoted by

Diffusion models
(courtesy of Tom
Bordin)

x ~ q(x)

Forward diffusion process consists in adding noise to original data,
gradually switching from ¢ to a normal distribution:

X0 ~ q(z) (1)
Xe|xe—1 ~ q(xe|xi—1) = N (V1 = Bexy—1, Bed) (2)
x¢|x0 ~ N (Varxo; V1 — aqI) (3)

With a; going from 0 at 1 when ¢ goes from T" at 0. We thus obtain
XT ~ N(O, I)
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Training

T. Mauge

Diffusion models

The role of the diffusion model is to be able to estimate x;_1 from
Seichll  the pair (x;,1). We note the model €.

while not converged do
X0 ~ q(X0);
t~U(Q1,..,T);

e~ N(0,I);

Gradient descent step on:

2
VgHe —eo(vVarxg + V1 — e, t)H

end
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Backward Sampling

Using the diffusion model €y, we can predict x;_1:

T. Mauge

Diffusion models

(courtesy of Tom

i X: — /1 — apeg(Xe, t

o Xp1 = /A1 \/a_t (e, 1) + /1 —ai1eg(xs,t)  (4)
t

We can estimate the current image at the step ¢ that we note g,
with:

x: — V1 — azep(x4, 1)
VOt

(5)

Xot(€0(xt, 1)) =
and thus we can rewrite:

X1 = /o 17o(€o(Xe, 1)) + /1 — ap_1€0(x¢, 1) (6)

x;—1 becomes a combination between, the estimated sample g, and
what is commonly called the direction pointing to
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[llustration

Diffusion models
(courtesy of Tom
Bordin)




[llustration

T. Mauge

Diffusion models
(courtesy of Tom
Bordin)

Data Forward SDE Prior Reverse SDE Data

de = f(a, Ot + g(t)dw —»@— de = [f(@t) — (V. logpi(z)] dt + g(t)dw
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Guided diffusion models

Given a criterion o, a diffusion model can be guided:

Diffusion models €0 (Xta t) = €9 (xt, t) + )‘(t)vxt'c(xﬂlt(EG (xt7 t))a U) (7)

(courtesy of Tom
Bordin)
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Guided diffusion models

Given a criterion o, a diffusion model can be guided:

Diffusion models €0 (Xta t) = €9 (Xt, t) + )‘(t)vxt'c(xﬂlt(EG (xt» t))v U) (7)

(courtesy of Tom

Bordin) Application to compression:

[T. Bordin, T. Maugey Semantic based image generative compression, IEEE MMSP 2023]
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Guided diffusion models

Given a criterion o, a diffusion model can be guided:

Diffusion models @) (Xt, t) = €9 (Xta t) + )\(t)vxt E(x0|t(€9 (xt» f)) U) (7)
(courtesy of Tom
Bordn) Application to compression:

[T. Bordin, T. Maugey Semantic based image generative compression, IEEE MMSP 2023]
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Image lying on irregular domain

Geometric deep
learning

How to perform Deep learning on such data ?




A deep review of the field

Michael M. Bronslein, Joon Bruna, Yonn LeCun,
Athur Szlam, and Pierre Vandergheynst

Geometric deep
learning

which have recently proven to be powerful tools for a broad -
Fange of problems from computer vision, natura-language °
processing, and audio anaysi. However, these tools hae:

trcturesare bl ntonetworks wsed o model e, [
Geomerricdecp leamning is an umbrela term for eme

els to non-Euclidean domains, such as graphs and manifolds. The

purpose ofthis articl is to overview different examplesof geometric &
decp-learning problems and present available solutons, key difficul-
ties, applications, and future rescarch directions in this nascen feld.

Overview of deep learning d
\¢ complicated concepts by building them from )
simpler onesin a hierarchical or malil 1 neursl nevworks are .
st fow years, the growing
ool ool mode sing unit (GPU)-based computers and the
abily of ' dat sets have allowed successfully rining neural networks wilh masy layers .
ogree o tesdon Do [1. This ks 1o o v breskiroughs on il vty of ks, rom e
(2], [3] and (4] 10 image er vision [5]-{11] (see [12] q
.

Geometric Deep Learning - .

Going beyond Euclidean data .

12/47



CNN on graphs, what's the problem ?

CNN — Convolution —

Geometric deep
learning
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Geometric deep
learning
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CNN on graphs, what's the problem ?
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learning




CNN on graphs, what's the problem ?

CNN — Pooling (downsampling)

Geometric deep
learning
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CNN on graphs, what's the problem ?

CNN — Pooling (downsampling)

Geometric deep
learning

50% of the nodes ?
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CNN on graphs, what's the problem ?

Geometric deep
learning




CNN on graphs, what's the problem ?

CNN — Fixed grid

Geometric deep
learning
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CNN on graphs, what's the problem ?

CNN — Fixed grid

Geometric deep
learning

o

From left to right: a signal, frequency-domain edge detection, same detection applied when the topology slightly changes

[Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.]
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Spectral definition

Filtering

In classical signal processing:

In graph signal processing:

Translation and

convolution

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to metworks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]
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Spectral definitions

Filtering

In classical signal processing:
four(@) = fin(w)h(w)
In graph signal processing:

Translation and

convolution

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]
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Spectral definitions

Filtering

In classical signal processing:
four(@) = fin(w)h(w)

In graph signal processing:

Lo e Fout (M) = Fin )R

which gives

N—-1

Four(m) =Y~ fin )R )ui(n)
it can also be written as B
h(Xo) 0
four = h(L)fin, with A(L)=TU u’
0 h(An—1)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to metworks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]

17/47



Spectral definition

Convolution
In classical signal processing:

Translation and

convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions

Convolution
In classical signal processing:

(F * h)(t) = / F()h(t — 7)dr
R

Translation and which can be written as

convolution

(Fh)(t) = / Fe)h(w) ™ du
R

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions

Convolution
In classical signal processing:

(fwmwz/}wma—ﬂw
R

Translation and which can be written as

convolution

U*M@%i/fWka”“Ww
R

In graph signal processing:

2
L

(fxh)(n) =Y  F)h(N\)u(n)

Il
=

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definition

Translation
In classical signal processing:

Translation and

convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions

Translation
In classical signal processing:

(T-)(#) = f(t=7)

which can be written as

(T- 1)) = (f * 67)(t)

convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions

Translation
In classical signal processing:

(T-)(#) = f(t=7)

which can be written as

(T- 1)) = (f * 67)(t)

In graph signal processing:
(Tef)(n) = VN(f % 8)(n)

which becomes

N—
(Tef)(n Z FW)w(k)ui(n)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions, a good solution?




Spectral definitions, a good solution?

Translation and

convolution

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions, a good solution?

Translation and

convolution

The spectrum is the same, however, the spatial shape is different. It
can be a problem

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Recall of Shannon-Nyquist theorem

Let us consider a signal f that contains no frequencies higher than B:

Vw, s.t. |w|> B, then f(w)=0.
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Let us consider a signal f that contains no frequencies higher than B:
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f
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Recall of Shannon-Nyquist theorem

Let us consider a signal f that contains no frequencies higher than B:

Vw, s.t. |w|> B, then f(w)=0.

f

B w
This signal can be sampled at a frequency of 2B and fully recovered.
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Extension to graphs

Let us consider a signal f defined on a graph G that is bandlimited with a
bandwidth Apmax:

VA > Amaxs  f(AN) =

The set of bandlimited signals Amax with bandwidth is called the
Paley-Wiener space PW,. (G).
i

Amax A

A uniqueness set for PW, . (G) is a subset of vertices S C V for which

Vg€ PWi(9), f(S)=9(S)=f=y

The smallest uniqueness set for PW),(G) has a size of [

uction:
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Recovering the missing samples

Let f € PW,,, and S be a minumum uniqueness set.
Estimate the graph Fourier coefficients

f(1)
f= |: £(S) :| _ |: ui(S) ... un(S)
£(5°) w (89 ... un(S°) £n)
0
Thus X
(1)
L = (0a(8)TH(S)
f(n)
with fjn being the n first eigenvectors.
Finally,
f(1)
£(S8°)=TUn(S%) |
f(n)

[Narang, S. K., Gadde, A., Sanou, E., and Ortega, A. (2013, December).-Localized iterative methods for

interpolation in graph structured data. In 2013 IEEE Global Conference on Signal and Information Process /a7
(pp. 491-494) . IEE;?



Graph sampling

In the equation : = (U,(S))"f(S), the matrix U,(S)
f(n)

should be invertible. ~

Sampling algorithms consist in finding the set S for which, U,,(S) is

invertible

Initialize: S < V; where i is the index of any nonzero element offirst
eigenvector
for m =2 — n do
Compute x = null(U,,(S))
Compute b = U,,,(8%)x
i+ argmax;(|b(i)])
S+ SUS.(i)
end

4

[ D. E. Tzamarias, P. Akyazi, and P. Frossard, \A novel method for sampling bandlimited graph signals," in
Proceedings of EUSIPCO, no. CONF, 2018. ]
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Graph Coarsening

Coarsening: From an initial graph G = {V,€,L} with N nodes and
a signal x, build a new coarsened graph G. with N, nodes:

x. = Px

x=Ptx,

Graph reduction
Coarsening

where P € RN<*N are matrices with more columns than rows and
P the pseudo-inverse.

-l lam

[A. Loukas and P. Vandergheynst, ’’Spectrally approximating large graphs with smaller graphs,’’ arXiv
preprint arXiv:1802.07510, 2018]
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Graph Coarsening

With the constraint that L. is a graph Laplacian, we have:

L if o, (r)
P ={ P ®)

0 otherwise

. 1 ifv; ey
+ _ (3
P(i,r) = { 0 otherwise ©)
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Graph Coarsening

Results of the recursive coarsening available in
https://github.com/loukasa/graph-coarsening
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Motivations

For different graph structure Ly and Ly, the graph transform ® and
W may drastically vary

Topology change

V4

[Kovnatsky, A., Bronstein, M. M., Bronstein, A. M., Glashoff, K., and Kimmel, R. (2013, May). Coupled
quasi-harmonic bases. In Computer Graphics Forum (Vol. 32, No. 2pt4, pp. 439-448). Oxford, UK: Blackwell
Publishing Ltd.]
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A priori step

Set correspondences

And register them in matrices F and G
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Joint Laplacian diagonalization

Solve the problem

min = of f(& L1 ®) + of f(¥ T Lo®) + u||FT® - GT ||

st. @ d=Tand P & =1
Solved with

® Rotation and permutation of the original eigenvectors

® Gradient descent
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Results




Results

Moving object
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Results

Application for motion generation

Topology change

[Rong, G., Cao, Y., and Guo, X. (2008). Spectral mesh deformation. The Visual Computer, 24, 787-796.]
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Results

Topology change

[Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. (2017). Geometric deep
learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 5115-5124).]
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HEALPix sampling

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

cos(d)

On-the-sphere w025

learning
-050

-075

-1.00 ' ' '
0.00 025 050 075 1.00 125 150

o/m

cylindrical projection
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HEALPix sampling

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

® Finer pixelization is achieved by dividing each region into 4

equal-area regions.

025 050 075 1.00 125 150 175 2.00
o/m

cylindrical projection
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HEALPix sampling

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

® Finer pixelization is achieved by dividing each region into 4
equal-area regions.

® Hierarchical partitioning is repeated to reach the desired
resolution.

AT AT
ARG
CIRIRIKIRIKRKS
XKLL
SRR

On-the-sphere

learning

IQSISQ LS

025 050 075 1.00 125 150 17

o/m

cylindrical projection

All pixel centers are placed on rings of constant latitude.
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HEALPix sampling

Fig. 6. Some pixelizations of the sphere. Left: the equirectangular grid, using
equiangular spacing in a standard spherical-polar coordinate system. Middle: an
equiangular cubed-sphere grid, as described in Ronchi et al. (1996). Right: graph

On-the-sphere built from a HEALPix pixelization of half the sphere (N4 = 4). By construction,
learning each vertex has eight neighbors, except the highlighted ones which have only
4
seven.

Source: Left and middle figures are taken from Boomsma and Frellsen (2017)

[N. Perraudin, M. Defferrard, T. Kacprzak, R. Sgier, DeepSphere: Efficient spherical convolutional neural
network with HEALPix sampling for cosmological applications, Astronomy and Computing, Volume 27, 2019, Pages
130-146, ISSN 2213-1337]
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Eigenvectors on HEALPix sampling

® Remember that
L=UAU"

® The transformed of a signal f is given by

Mode 3: {=1, |m|=0

On-the-sphere

learning

,Im|=3 Mode

[N. Perraudin, M. Defferrard, T. Kacprzak, R. Sgier, DeepSphere: Efficient spherical convolutional neural
network with HEALPix sampling for cosmological applications, Astronomy and Computing, Volume 27, 2019, Pages
130-146, ISSN 2213-1337]
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Spatial convolution on the graph

Let a be the convolution kernel. The DeepSphere convolution is:

L
X*x Q= g aL'x,
1=0

where L is the polynom degree. It controls the kernel widows size.
— Only one weight per neighborhood (isotropic filter).

On-the-sphere

learing Example of 1-hop:

8
(x*a)(i) == i + 1. (Z li,M(’cWM(’C))

k=1

where N; (k) is the k' neighbor of pixel i.
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Alternatives on the sphere

On-the-sphere
learning

One weight per neighbor: expressive and anistropic filter

8
(xx0)(i) := 0y - z; + Zﬁk CTNG () WNG (k)i
k=1

[Mahmoudian Bidgoli, N., Azevedo, R. G. D. A., Maugey, T., Roumy, A., and Frossard, P. (2021). OSLO:
On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression. arXiv
e-prints, arXiv-2107.]
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Alternatives on the sphere

+0216

-0325

2
+0.026

~0.034

+0.033

On-the-sphere

—0204

+0239

+0.19
(d) Forth layer of d trained for high bit rates

Fig 12, Random sclection of leamed fles at diffrent laers of ¢ and
The weight corresponding to the central pixels own in the mu for
better visibility. Left column represents filters with De e that
eculs i sotopic flers. Right column represents the flers. eamed. with
OSLO solution.

[Mahmoudian Bidgoli, N., Azevedo, R. G. D. A., Maugey, T., Roumy, A., and Frossard, P. (2021)= DSLD‘

On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression. arX:
e-prints, arXiv- 2107‘“1/47



Alternatives on the sphere

On-the-sphere
learning

(b) 936.65 KB

(a) 2408.43 KB

Fig. 13. D images in projection. The zoomed versions of red, green, and blue rectangular regions are shown in the bottom row. (a)
DeepSphere result stored in 2408.43 KB with 29.54 dB and 29.51 dB for SPSNR and WSPSNR respectively. (b) OSLO result stored in 936.65 KB with
4091 dB and 41.65 dB for SPSNR and WSPSNR respectively.

[Mahmoudian Bidgoli, N., Azevedo, R. G. D. A., Maugey, T., Roumy, A., and Frossard, P. (2021). OSLO:
On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression. arXiv
e-prints, arXiv-2107.]
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Paper study

Paper-1: Optimal transport methodology for climate modeling
Barré et al. 2020: Averaging atmospheric gas concentration data using
wasserstein barycenters

Paper-2: Deep learning for waste sorting
Chen et al. 2020: iWaste: video-based medical waste detection and classification.

Paper-3: Deep super resolution for climate modeling
Vandal et al. 2017. Deepsd: Generating high resolution climate change
projections through single image super-resolution.

Answer the following questions
® \What is the societal challenge that is tackled ?

Image processing
for Ecological
challenges

® \What is the scientific problem that is tackled ?
® What is the contribution ?
® \What is the obtained result ?
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Image Processing & Ecology

Societal challenges:

® Climate change measurement and modeling
® Energy Consumption reduction (automation, optimization)
e ..
Scientific challenges:
® Image super-resolution

® Image/Video compression

Image processing

for Ecological ® Image understanding

challenges

® Data modeling
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Some awareness: the rebound effect
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Some awareness: the rebound effect

Jevon's paradox (or rebound effect):

As technological improvements increase
the efficiency with which a resource is
employed, the total consumption of that
resource may increase rather than
decrease. (Wikipedia)

® Direct vs indirect

Image processing
for Ecological

challenges ‘ - ® comes when the usage of the
technology is not questioned

S ® |imited by sensitization and by
e B thinking the problem globally
Katy Freeway, Houston (Wikipedia)
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Image processing
for Ecological
challenges

Some awareness: maintain conviviality

In Tools for Conviviality (Ivan lllich 1973):

Recent development brings:

® modernized poverty

® dependency

® out-of-control system
Instead we should "invert the present deep structure of tools” in
order to "give people tools that guarantee their right to work with
independent efficiency” — technology for emancipation

‘THE CRITERIA FOR ANY LOW-TECH INNOVATION APPROACH:

STRONG SUSTAINABILITY

1 sobriety 2 ebicioncy.
=
b e

3 Durabiliy

COLLECTIVE RESILENCE

4 Maintainbitity 5 accossiviy 6 Avtonomization
O

CULTURAL TRANSFORMATION

[eP— 47/ 47



	Diffusion models (courtesy of Tom Bordin)
	Geometric deep learning
	Translation and convolution
	Graph reduction: Sampling
	Graph reduction: Coarsening
	Topology change
	On-the-sphere learning

	Image processing for Ecological challenges

