Discounting in Time

Uli Fahrenberg Kim G. Larsen

Department of Computer Science Aalborg University Denmark

QAPL 2009

In formalisms with both time and weights, there is only one way to define total cost of infinite runs.

In formalisms with both time and non-negative weights, there is essentially only one way to define total cost of infinite runs.

In formalisms with both time and non-negative weights, there is essentially only one way to define total cost of infinite runs.

In particular, those people did it the wrong way:

In formalisms with both time and non-negative weights, there is essentially only one way to define total cost of infinite runs.

In particular, those people did it the wrong way:

And economists have been doing it right for 100s of years.

Uli Fahrenberg Kim G. Larsen Discounting in Time

The big picture: Optimal infinite scheduling

• Control for factory to achieve highest output

The big picture: Optimal infinite scheduling

- Control for factory to achieve highest output
- Control for car to achieve energy efficiency

The big picture: Optimal infinite scheduling

- Control for factory to achieve highest output
- Control for car to achieve energy efficiency
- etc.
- Weighted timed automata; weighted timed games; weighted time Petri nets
- UPPAAL; PHAVer; MATLAB[®] Simulink[®]; *etc.*

The big picture: Optimal infinite scheduling

- Control for factory to achieve highest output
- Control for car to achieve energy efficiency
- etc.
- Weighted timed automata; weighted timed games; weighted time Petri nets
- UPPAAL; PHAVer; MATLAB[®] Simulink[®]; *etc.*

Optimal finite scheduling:

- optimal reachability problem
- not difficult to solve for weighted timed automata
- \bullet tool support in UPPAAL

Find cheapest way from A to B

Optimal finite scheduling:

- optimal reachability problem
- not difficult to solve for weighted timed automata
- tool support in UPPAAL

Optimal infinite scheduling:

- optimal safety problem (?)
- difficult even to *define*: What is the price of an infinite run ?

Find cheapest infinite execution starting in A

What is the price of an infinite run

?

(and others ?)

What is the price of an infinite run in a weighted timed transition system with non-negative weights ?

(and others ?)

How to compute (finite) prices of infinite runs

• BBL, HSCC 2004: Mean-cost approach

$$P(\rho) = \liminf_{T \to \infty} \frac{P(\rho_1 \tau)}{T} \longleftarrow \operatorname{run} \rho \text{ up to time } T$$

How to compute (finite) prices of infinite runs

• BBL, HSCC 2004: Mean-cost approach

$$P(\rho) = \liminf_{T \to \infty} \frac{P(\rho_1 \tau)}{T} \longleftarrow \operatorname{run} \rho \text{ up to time } T$$

- JT, FORMATS 2008: Step-based discounting
 - fix discounting factor 0 $<\lambda<1$
 - $\bullet\,$ after each discrete step, weights are multiplied by λ
 - (as if the model was discrete:

$$P\big(\xrightarrow{p_1} \xrightarrow{p_2} \xrightarrow{p_3} \cdots \big) = p_1 + \frac{\lambda}{p_2} + \frac{\lambda^2}{p_3} + \cdots \quad \big)$$

How to compute (finite) prices of infinite runs

• BBL, HSCC 2004: Mean-cost approach

$$P(\rho) = \liminf_{T \to \infty} \frac{P(\rho_1 \tau)}{T} \longleftarrow \operatorname{run} \rho \text{ up to time } T$$

- JT, FORMATS 2008: Step-based discounting
 - fix discounting factor 0 < λ < 1
 - $\bullet\,$ after each discrete step, weights are multiplied by λ
 - (as if the model was discrete:

$$P\big(\xrightarrow[p_1]{} \xrightarrow{p_2} \xrightarrow{p_3} \cdots \big) = p_1 + \lambda p_2 + \lambda^2 p_3 + \cdots$$

- FL, INFINITY 2008: Time-based discounting
 - things which happen at time T, are discounted with λ^T

Discounting

- In economics: *future* loss or profit matters less than if it occurred *right now*
- Using *expected return rate r*, the *net present value* of a transaction x at time T is

$$x_{\text{NPV}} = \frac{1}{(1+r)^T} x = \lambda^T x$$

• with discount factor $\lambda = \frac{1}{1+r}$

Discounting

- In economics: *future* loss or profit matters less than if it occurred *right now*
- Using *expected return rate r*, the *net present value* of a transaction x at time T is

$$x_{\rm NPV} = \frac{1}{(1+r)^T} x = \lambda^T x$$

- with discount factor $\lambda = \frac{1}{1+r}$
- Expected return rate depends on
 - interest rates
 - perceived risk
 - greed, etc.

Discounting

- In economics: *future* loss or profit matters less than if it occurred *right now*
- Using *expected return rate r*, the *net present value* of a transaction x at time T is

$$x_{\rm NPV} = \frac{1}{(1+r)^T} x = \lambda^T x$$

• with discount factor $\lambda = \frac{1}{1+r}$

- Of interest for us: Using this form of discounting, most infinite paths have finite total price
- (because the geometric series $1+\lambda+\lambda^2+\cdots$ converges)

$$\left(S,\,T_{s},\,T_{d},\,w,\,r\right)$$
 :

• states *S*, switches $T_s \subseteq S \times S$, delays $T_d \subseteq S \times \mathbb{R}_{\geq 0} \times S$, weights $w : T_s \to \mathbb{R}$, rates $r : S \to \mathbb{R}$

- trivial loops: $\forall s \in S : s \xrightarrow{0} s$
- determinacy: $s \xrightarrow{t} s_1 \land s \xrightarrow{t} s_2 \Rightarrow s_1 = s_2$
- additivity: $s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'} \Rightarrow s \xrightarrow{t+t'} s^{t+t'}$
- density (?): $s \xrightarrow{t} s^t \land t' \leq t \Rightarrow s \xrightarrow{t'} s^{t'} \xrightarrow{t-t'} s^t$

$$(S, T_s, T_d, w, r)$$
:

• states *S*, switches $T_s \subseteq S \times S$, delays $T_d \subseteq S \times \mathbb{R}_{\geq 0} \times S$, weights $w : T_s \to \mathbb{R}$, rates $r : S \to \mathbb{R}$

- trivial loops: $\forall s \in S : s \xrightarrow{0} s$
- determinacy: $s \xrightarrow{t} s_1 \land s \xrightarrow{t} s_2 \Rightarrow s_1 = s_2$
- additivity: $s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'} \Rightarrow s \xrightarrow{t+t'} s^{t+t'}$
- density (?): $s \xrightarrow{t} s^t \land t' \leq t \Rightarrow s \xrightarrow{t'} s^{t'} \xrightarrow{t-t'} s^t$

$$(S, T_s, T_d, w, r)$$
:

• states *S*, switches $T_s \subseteq S \times S$, delays $T_d \subseteq S \times \mathbb{R}_{\geq 0} \times S$, weights $w : T_s \to \mathbb{R}$, rates $r : S \to \mathbb{R}$

- trivial loops: $\forall s \in S : s \xrightarrow{0} s$
- determinacy: $s \xrightarrow{t} s_1 \land s \xrightarrow{t} s_2 \Rightarrow s_1 = s_2$
- additivity: $s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'} \Rightarrow s \xrightarrow{t+t'} s^{t+t'}$
- density (?): $s \xrightarrow{t} s^t \land t' \leq t \Rightarrow s \xrightarrow{t'} s^{t'} \xrightarrow{t-t'} s^t$

$$(S, T_s, T_d, w, r)$$
:

• states *S*, switches $T_s \subseteq S \times S$, delays $T_d \subseteq S \times \mathbb{R}_{\geq 0} \times S$, weights $w : T_s \to \mathbb{R}$, rates $r : S \to \mathbb{R}$

- trivial loops: $\forall s \in S : s \xrightarrow{0} s$
- determinacy: $s \xrightarrow{t} s_1 \land s \xrightarrow{t} s_2 \Rightarrow s_1 = s_2$
- additivity: $s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'} \Rightarrow s \xrightarrow{t+t'} s^{t+t'}$
- density (?): $s \xrightarrow{t} s^t \land t' \leq t \Rightarrow s \xrightarrow{t'} s^{t'} \xrightarrow{t-t'} s^t$

$$(S, T_s, T_d, w, r)$$
:

• states *S*, switches $T_s \subseteq S \times S$, delays $T_d \subseteq S \times \mathbb{R}_{\geq 0} \times S$, weights $w : T_s \to \mathbb{R}$, rates $r : S \to \mathbb{R}$

Axioms for delays:

- trivial loops: $\forall s \in S : s \xrightarrow{0} s$
- determinacy: $s \xrightarrow{t} s_1 \land s \xrightarrow{t} s_2 \Rightarrow s_1 = s_2$
- additivity: $s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'} \Rightarrow s \xrightarrow{t+t'} s^{t+t'}$
- density (?): $s \xrightarrow{t} s^t \land t' \leq t \Rightarrow s \xrightarrow{t'} s^{t'} \xrightarrow{t-t'} s^t$

Can view a delay as a continuum of intermediate states !

Discounted price of infinite paths

• Discounted price of *finite* alternating path t_0 t_0 t_{n-1} t_{n-1}

$$\pi = s_0 \xrightarrow{\iota_0} s_0^{\iota_0} \to s_1 \to \cdots \xrightarrow{n-1} s_{n-1}^{\iota_{n-1}} \to s_n$$
:

$$P(\pi) = \sum_{i=0}^{n-1} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(s_i^t) dt + \lambda^{T_i} p(s_i^{t_i} \to s_{i+1}) \right)$$

with
$$T_i = \sum_{j=0}^i t_j$$
.

• Discounted price of *infinite* alternating path $\pi = s_0 \xrightarrow{t_0} s_0^{t_0} \rightarrow s_1 \rightarrow \cdots$: limit

$$P(\pi) = \lim_{n \to \infty} P(s_0 \xrightarrow{t_0} s_0^{t_0} \to \cdots \to s_{n-1}^{t_{n-1}} \to s_n)$$

provided that it exists. (!)

Discounted price of infinite paths

provided that it exists. (!)

INFINITY 2008 result

- Under certain assumptions, infinite paths with cheapest discounted price can be computed in weighted timed automata.
- (Similar results for mean-cost [BBL04] and for step-based discounting [JT08])
- But no efficient algorithms

Equivalent formulation of time-based discounting:

For s → s' a switch and π a path out of the target of the switch:

$$P(s \xrightarrow{p} s' \circ \pi) = p + P(\pi)$$

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^\tau r(s^\tau) d\tau + \lambda^t P(\pi)$$

Equivalent formulation of time-based discounting:

For s → s' a switch and π a path out of the target of the switch:

$$P(s \xrightarrow{p} s' \circ \pi) = p + P(\pi)$$

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^\tau r(s^\tau) d\tau + \lambda^t P(\pi)$$

Equivalent formulation of time-based discounting:

For s → s' a switch and π a path out of the target of the switch:

$$P(s \xrightarrow{p} s' \circ \pi) = p + P(\pi)$$

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^\tau r(s^\tau) d\tau + \lambda^t P(\pi)$$

- Nice recursive property
- Fixed-point computations ?
- Efficient, zone-based algorithms ?

Equivalent formulation of time-based discounting:

For s → s' a switch and π a path out of the target of the switch:

$$P(s \xrightarrow{p} s' \circ \pi) = p + P(\pi)$$

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^\tau r(s^\tau) d\tau + \lambda^t P(\pi)$$

- Nice recursive property
- Fixed-point computations ?
- Efficient, zone-based algorithms ?
- Mean-cost and step-based-discounting approach do not have this property

$$egin{aligned} & P(s \xrightarrow{p} s' \circ \pi) = p + P(\pi) \ & P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^ au r(s^ au) d au + \lambda^t P(\pi) \end{aligned}$$

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^{ au} r(s^{ au}) d au + \lambda^t P(\pi)$$

Inverse question: We want this property. What way can we define $P(\pi)$?

Forget about switches

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^{\tau} r(s^{\bigstar}) d\tau + \lambda^t P(\pi)$$

- Forget about switches
- Occlare rates a *discrete* property

$$P(s \xrightarrow{t} s^t \circ \pi) = \int_0^t \lambda^{\tau} r(s) d\tau + \lambda^t P(\pi)$$

- Forget about switches
- Occlare rates a *discrete* property

$$P(s \xrightarrow{t} s^t \circ \pi) = P(s \xrightarrow{t} s^t) + \lambda^t P(\pi)$$

- Forget about switches
- Occlare rates a *discrete* property
- Simplify

$$P(s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'}) = P(s \xrightarrow{t} s^t) + \lambda^t P(s^t \xrightarrow{t'} s^{t+t'})$$

- Forget about switches
- Occlare rates a discrete property
- Simplify
- Only look at paths of length 2

$$P(s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'}) = P(s \xrightarrow{t} s^t) + \lambda^t P(s \xrightarrow{t'} s^{t'})$$

- Forget about switches
- Occlare rates a discrete property
- Simplify
- Only look at paths of length 2
- Time shift

$$P(s \xrightarrow{t+t'} s^{t+t'}) = P(s \xrightarrow{t} s^{t}) + \lambda^t P(s \xrightarrow{t'} s^{t'})$$

- Forget about switches
- Occlare rates a discrete property
- Simplify
- Only look at paths of length 2
- Time shift
- Simplify

$$P(s \xrightarrow{t+t'} s^{t+t'}) = P(s \xrightarrow{t} s^{t}) + \lambda^t P(s \xrightarrow{t'} s^{t'})$$

$$f(t+t') = f(t) + \frac{g(t)}{g(t)}f(t')$$

- Is Forget about switches
- Occlare rates a discrete property
- Simplify
- Only look at paths of length 2
- Time shift
- Simplify
- Generalize; translate to functional equation

Uniqueness

Theorem: If P is a continuous price function in a weighted timed transition system in which rates are a discrete property, and if

$$P(s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'}) = P(s \xrightarrow{t} s^t) + g(t) P(s^t \xrightarrow{t'} s^{t+t'})$$

then

$$g(t) = \lambda^t$$
 and $P(s \xrightarrow{t} s') = \alpha(s) \int_0^t \lambda^t dt$

for some $\lambda \in \mathbb{R}_{\geq 0}$ and $\alpha : S \to \mathbb{R}$.

Uniqueness

Theorem: If P is a continuous price function in a weighted timed transition system in which rates are a discrete property, and if

$$P(s \xrightarrow{t} s^t \xrightarrow{t'} s^{t+t'}) = P(s \xrightarrow{t} s^t) + g(t) P(s^t \xrightarrow{t'} s^{t+t'})$$

then

$$g(t) = \lambda^t$$
 and $P(s \xrightarrow{t} s') = \alpha(s) \int_0^t \lambda^t dt$

for some $\lambda \in \mathbb{R}_{\geq 0}$ and $\alpha : S \to \mathbb{R}$.

If you want the nice recursive property, you *have* to use time-based discounting. And given additivity of delays, the property is quite natural.

Skip proof

Proof: (See paper for details) We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

Skip anyway

Proof: (See paper for details) We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^i\right)$$

Proof: (See paper for details) We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^i\right)$$

• Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$

Proof: (See paper for details) We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^{i}\right)$$

• Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$

• Put $\lambda = g(1)$, then $g(n) = \lambda^n$. Also, $g(n) = g(k\frac{n}{k}) = g(\frac{n}{k})^k$ hence $g(\frac{n}{k}) = \lambda^{\frac{n}{k}}$. By continuity, $g(x) = \lambda^x$

Proof: (See paper for details) We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^i\right)$$

- Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$
- Put $\lambda = g(1)$, then $g(n) = \lambda^n$. Also, $g(n) = g(k\frac{n}{k}) = g(\frac{n}{k})^k$ hence $g(\frac{n}{k}) = \lambda^{\frac{n}{k}}$. By continuity, $g(x) = \lambda^x$
- Put $\beta = f(1)$, then $f(n) = \beta \cdot \sum_{i=1}^{n-1} \lambda^i = \beta \frac{1-\lambda^n}{1-\lambda}$ etc.

Conclusion

- If you want to discuss optimal scheduling problems in formalisms with both time and weight, use time-based discounting
- (unless you have your own good reasons not to).
- Then, and only then, you'll get a natural and useful recursive property ("additivity").
- Also, for weighted timed automata, optimal infinite paths are computable under timed-based discounting,
- and the recursive property lets us hope for an efficient, zone-based algorithm.