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Motivation Weighted timed transition systems Uniqueness

One-slide summary (tongue in cheek!)

In formalisms with both
time and

non-negative

weights,
there is

essentially

only one way
to define total cost of infinite runs.

In particular, those people did it the wrong way:

And economists have been doing it right for 100s of years.
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Motivation

The big picture: Optimal infinite scheduling

Control for factory to achieve
highest output

Control for car to achieve
energy efficiency

etc.

Weighted timed automata;
weighted timed games;
weighted time Petri nets

Uppaal; PHAVer;
MATLAB® Simulink®; etc.

Underlying semantic model: Weighted timed transition systems

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Motivation

The big picture: Optimal infinite scheduling

Control for factory to achieve
highest output

Control for car to achieve
energy efficiency

etc.

Weighted timed automata;
weighted timed games;
weighted time Petri nets

Uppaal; PHAVer;
MATLAB® Simulink®; etc.

Underlying semantic model: Weighted timed transition systems

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Motivation

The big picture: Optimal infinite scheduling

Control for factory to achieve
highest output

Control for car to achieve
energy efficiency

etc.

Weighted timed automata;
weighted timed games;
weighted time Petri nets

Uppaal; PHAVer;
MATLAB® Simulink®; etc.

relWhite!

getWhite!

rel[col]!

c = 0

c = 0,
col = i

c = 0

level[col]++,
col = 0

get[i]!

DoneColor

FillingColor

Idle

Emptying

FillingWhite

DoneWhite

c == fill[id][col]

c == empty[id][col]

i : color_t

c <= fill[id][col]

level[col] <= max[col]

c == fill[id][2]

c <= empty[id][col]

c <= fill[id][2]

Underlying semantic model: Weighted timed transition systems

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Motivation

The big picture: Optimal infinite scheduling

Control for factory to achieve
highest output

Control for car to achieve
energy efficiency

etc.

Weighted timed automata;
weighted timed games;
weighted time Petri nets

Uppaal; PHAVer;
MATLAB® Simulink®; etc.

relWhite!

getWhite!

rel[col]!

c = 0

c = 0,
col = i

c = 0

level[col]++,
col = 0

get[i]!

DoneColor

FillingColor

Idle

Emptying

FillingWhite

DoneWhite

c == fill[id][col]

c == empty[id][col]

i : color_t

c <= fill[id][col]

level[col] <= max[col]

c == fill[id][2]

c <= empty[id][col]

c <= fill[id][2]

Underlying semantic model: Weighted timed transition systems

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Motivation

Optimal finite scheduling:

optimal reachability
problem

not difficult to solve for
weighted timed automata

tool support in Uppaal

Optimal infinite scheduling:

optimal safety problem (?)

difficult even to define:
What is the price of an
infinite run ?

A

B

Find cheapest way from A to B
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Motivation

Optimal finite scheduling:

optimal reachability
problem

not difficult to solve for
weighted timed automata

tool support in Uppaal

Optimal infinite scheduling:

optimal safety problem (?)

difficult even to define:
What is the price of an
infinite run ?

A

Find cheapest infinite execution
starting in A
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Motivation

What is the price
of an infinite run

in a weighted timed transition system
with non-negative weights

?

(and others ?)
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How to compute (finite) prices of infinite runs

BBL, HSCC 2004: Mean-cost approach

P(ρ) = lim inf
T→∞

P(ρ�T )

T

←− run ρ up to time T

JT, FORMATS 2008: Step-based discounting

fix discounting factor 0 < λ < 1
after each discrete step, weights are multiplied by λ
(as if the model was discrete:

P
(
−→p1
−→p2
−→p3
· · ·
)

= p1 + λp2 + λ2p3 + · · · )

FL, INFINITY 2008: Time-based discounting

things which happen at time T ,
are discounted with λT

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

How to compute (finite) prices of infinite runs

BBL, HSCC 2004: Mean-cost approach

P(ρ) = lim inf
T→∞

P(ρ�T )

T

←− run ρ up to time T

JT, FORMATS 2008: Step-based discounting

fix discounting factor 0 < λ < 1
after each discrete step, weights are multiplied by λ
(as if the model was discrete:

P
(
−→p1
−→p2
−→p3
· · ·
)

= p1 + λp2 + λ2p3 + · · · )

FL, INFINITY 2008: Time-based discounting

things which happen at time T ,
are discounted with λT

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

How to compute (finite) prices of infinite runs

BBL, HSCC 2004: Mean-cost approach

P(ρ) = lim inf
T→∞

P(ρ�T )

T

←− run ρ up to time T

JT, FORMATS 2008: Step-based discounting

fix discounting factor 0 < λ < 1
after each discrete step, weights are multiplied by λ
(as if the model was discrete:

P
(
−→p1
−→p2
−→p3
· · ·
)

= p1 + λp2 + λ2p3 + · · · )

FL, INFINITY 2008: Time-based discounting

things which happen at time T ,
are discounted with λT

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Discounting

In economics: future loss or profit matters less than if it
occurred right now

Using expected return rate r , the net present value of a
transaction x at time T is

xNPV =
1

(1 + r)T
x = λT x

with discount factor λ =
1

1 + r
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Discounting

In economics: future loss or profit matters less than if it
occurred right now

Using expected return rate r , the net present value of a
transaction x at time T is

xNPV =
1

(1 + r)T
x = λT x

with discount factor λ =
1

1 + r
Expected return rate depends on

interest rates
perceived risk
greed, etc.
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Discounting

In economics: future loss or profit matters less than if it
occurred right now

Using expected return rate r , the net present value of a
transaction x at time T is

xNPV =
1

(1 + r)T
x = λT x

with discount factor λ =
1

1 + r

Of interest for us: Using this form of discounting, most
infinite paths have finite total price

(because the geometric series 1 + λ+ λ2 + · · · converges)
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Weighted timed transition systems

��
??

??
??

??
??

??
??

??
?

(S ,Ts ,Td ,w , r) :

states S , switches Ts ⊆ S × S , delays Td ⊆ S ×R≥0 × S ,
weights w : Ts → R, rates r : S → R

Axioms for delays:

trivial loops: ∀s ∈ S : s
0−→ s

determinacy: s
t−→ s1 ∧ s

t−→ s2 ⇒ s1 = s2

additivity: s
t−→ st t′−→ st+t′ ⇒ s

t+t′−−−→ st+t′

density (?): s
t−→ st ∧ t ′ ≤ t ⇒ s

t′−→ st′ t−t′−−−→ st

Can view a delay as a continuum of intermediate states !

Uli Fahrenberg Kim G. Larsen Discounting in Time
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Discounted price of infinite paths

Discounted price of finite alternating path

π = s0
t0−→ st0

0 → s1 → · · ·
tn−1−−→ s

tn−1

n−1 → sn :

P(π) =
n−1∑
i=0

(∫ Ti

Ti−1

λtr(st
i )dt + λTi p(sti

i → si+1)
)

with Ti =
∑i

j=0 tj .

Discounted price of infinite alternating path

π = s0
t0−→ st0

0 → s1 → · · · : limit

P(π) = lim
n→∞

P
(
s0

t0−→ st0
0 → · · · → s

tn−1

n−1 → sn

)
provided that it exists. (!)
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Discounted price of infinite paths

TL;DR
(Just a minute. . . )
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INFINITY 2008 result

Under certain assumptions, infinite paths with cheapest
discounted price can be computed in weighted timed
automata.

(Similar results for mean-cost [BBL04] and for step-based
discounting [JT08])

But no efficient algorithms

Uli Fahrenberg Kim G. Larsen Discounting in Time
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Recursive property

Equivalent formulation of time-based discounting:

For s −→p s ′ a switch and π a path out of the target of the

switch:
P(s −→p s ′ ◦ π) = p + P(π)

For s
t−→ st a delay and π a path out of the end state of the

delay:

P(s
t−→ st ◦ π) =

∫ t

0
λτ r(sτ )dτ + λtP(π)

Nice recursive property

Fixed-point computations ?

Efficient, zone-based algorithms ?

Mean-cost and step-based-discounting approach do not have
this property

Uli Fahrenberg Kim G. Larsen Discounting in Time
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Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st ◦ π) =

∫ t

0
λτ r(sτ )dτ + λtP(π)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st ◦ π) =

∫ t

0
λτ r(sτ )dτ + λtP(π)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st ◦ π) =

∫ t

0
λτ r(sτ×)dτ + λtP(π)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st ◦ π) =

∫ t

0
λτ r(s)dτ + λtP(π)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st ◦ π) = P(s

t−→ st) + λtP(π)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st t′−→ st+t′) = P(s

t−→ st) + λtP(st t′−→ st+t′)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t−→ st t′−→ st+t′) = P(s

t−→ st) + λtP(s
t′−→ st′)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s −→p s ′ ◦ π) = p + P(π)

P(s
t+t′−−−→ st+t′) = P(s

t−→ st) + λtP(s
t′−→ st′)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation

Uli Fahrenberg Kim G. Larsen Discounting in Time



Motivation Weighted timed transition systems Uniqueness

Recursive property

P(s
t+t′−−−→ st+t′) = P(s

t−→ st) + λtP(s
t′−→ st′)

f (t + t ′) = f (t) + g(t)f (t ′)

Inverse question: We want this property.
What way can we define P(π) ?

1 Forget about switches

2 Declare rates a discrete property

3 Simplify

4 Only look at paths of length 2

5 Time shift

6 Simplify

7 Generalize; translate to functional equation
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Uniqueness

Theorem: If P is a continuous price function in a weighted timed
transition system in which rates are a discrete property, and if

P(s
t−→ st t′−→ st+t′) = P(s

t−→ st) + g(t) P(st t′−→ st+t′)

then

g(t) = λt and P(s
t−→ s ′) = α(s)

∫ t

0
λtdt

for some λ ∈ R≥0 and α : S → R.

If you want the nice recursive property, you have to use time-based
discounting.
And given additivity of delays, the property is quite natural.

Skip proof

Uli Fahrenberg Kim G. Larsen Discounting in Time
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Proof

Skip anyway

Proof: (See paper for details) We need to solve the functional
equation

f (x + y) = f (x) + g(x)f (y)

and we find inspiration in Cauchy’s 1821 textbook Cours d’analyse:

By induction:

f (kx) = f ((k − 1)x) + g((k − 1)x)f (x) = f (x)
(∑k−1

i=0
g(ix)

)
f (kx) = f (x) + g(x)f ((k − 1)x) = f (x)

(∑k−1

i=0
(g(x))i

)
Can show that f (x) 6= 0 for x 6= 0, hence g(ix) = g(x)i

Put λ = g(1), then g(n) = λn. Also, g(n) = g
(
k n

k

)
= g

(
n
k

)k
hence g

(
n
k

)
= λ

n
k . By continuity, g(x) = λx

Put β = f (1), then f (n) = β ·
∑n−1

i=1 λ
i = β 1−λn

1−λ etc.

Uli Fahrenberg Kim G. Larsen Discounting in Time
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Put λ = g(1), then g(n) = λn. Also, g(n) = g
(
k n

k
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= g

(
n
k

)k
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(
n
k

)
= λ

n
k . By continuity, g(x) = λx

Put β = f (1), then f (n) = β ·
∑n−1

i=1 λ
i = β 1−λn

1−λ etc.
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Conclusion

If you want to discuss optimal scheduling problems in
formalisms with both time and weight, use time-based
discounting

(unless you have your own good reasons not to).

Then, and only then, you’ll get a natural and useful recursive
property (“additivity”).

Also, for weighted timed automata, optimal infinite paths are
computable under timed-based discounting,

and the recursive property lets us hope for an efficient,
zone-based algorithm.
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