Infinite Runs in Priced Timed Automata: Discounting

Uli Fahrenberg

Department of Computer Science Aalborg University Denmark

Quasimodo 3

(中) (종) (종) (종) (종) (종)

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Motivation				

- The overall goal: Find optimal infinite paths in priced timed automata
- (Priced timed automaton; PTA: timed automaton with weights ("prices") in locations and on the edges)
- Different versions:
 - Bouyer, Brinksma, Larsen, HSCC'04: *Staying alive as cheap as possible*: Given a PTA with *two* non-negative price functions, *cost* and *reward*, find infinite path with lowest ratio accumulated cost/accumulated reward
 - Bouyer, Fahrenberg, Larsen, Markey, Srba, FORMATS'08: *Infinite Runs in Weighted Timed Automata with Energy Constraints*: Given a PTA with positive or negative weights and possibly a pre-assigned threshold b, find infinite path for which accumulated cost ≥ 0 and possibly ≤ b

.

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Motivation				

- This stuff: In the spirit of the HSCC'04 paper:
- One price function, all non-negative
- Interested in infinite paths with lowest accumulated cost
- But we apply discounting:
- Things which happen t time units in the future are taken into account only with a discount λ^t , for some fixed discounting factor λ
- (with Kim Larsen)
- INFINITY'08; QAPL'09

Motivation	Problem & Solution	Proof	Summary	Fixed-point property

Motivation

2 Problem & Solution

3 Proof

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets

 $x, y \leftarrow$

v > 2

 $x, y \leftarrow$

Finite automaton

 $v > \overline{2}$

+ finite set of clocks $C = \{x, y, \ldots\}$

 $x, y \leftarrow$

- + location invariants
- + edge constraints
- + edge resets

Timed automaton:

- Priced timed automaton:
 - + price rates in locations (cost per time unit)

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets
- Priced timed automaton:
 - + price rates in locations (cost per time unit)
 - + prices on transitions

• An example (finite) run:

loc.	H	d	Н	5	Μ	d	Μ	5	L	d	L	5	Μ	d	Μ	5	Н
x	0		3		0		3		3		4		0		2		0
y	0		3		3		6		6		7		0		2		0
t	0		3		3		6		6		7		7		9		9

• An example (finite) run:

э

• An example (finite) run:

loc.	Н	d	Н	5	Μ	d	Μ	5	L	d	L	5	Μ	d	М	5	Н
X	0		3		0		3		3		4		0		2		0
y	0		3		3		6		6		7		0		2		0
t	0		3		3		6		6		7		7		9		9
$\lambda = .9$		5.14		0		9.38		0	4	4.54	ł	.48		4.31		.77	

- Total discounted price of run: 24.62
- Total discounted price of infinite loop: 40.2

Formally: Let A be a priced timed transition system and $\lambda \in]0, 1]$.

• Discounted price of *finite* alternating path

 $\pi = s_0 \xrightarrow{t_0} s'_0 \to s_1 \to \cdots \xrightarrow{t_{n-1}} s'_{n-1} \to s_n$:

$$P(\pi) = \sum_{i=0}^{n-1} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(s_i^t) dt + \lambda^{T_i} p(s_i' \to s_{i+1}) \right)$$

with $T_i = \sum_{j=0}^i t_j$.

• Discounted price of *infinite* alternating path

$$\pi = s_0 \xrightarrow{t_0} s'_0 \rightarrow s_1 \rightarrow \cdots$$
 : limit

$$P(\pi) = \lim_{n \to \infty} P(s_0 \to s'_0 \to \cdots \to s'_{n-1} \to s_n)$$

provided that it exists. (!)

伺 と く ヨ と く ヨ と

Problem:

- Given: priced timed transition system A, state $s \in A$
- Find: an infinite path from s with lowest discounted price
- (or one that comes arbitrarily close)

Solution:

- For priced timed automata,
- which are bounded
- and time-divergent,
- and rational λ ,
- starting in the *initial state*,
- our problem is computable

Given priced timed automaton A:

- Use corner point abstraction to construct finite weighted graph cp(A) (refinement of region graph; Bouyer, Brinksma, Larsen, HSCC'04)
- Find infinite path π with lowest discounted price in cp(A) using linear programming (*discounted payoff games*; Andersson, MSc. thesis, Uppsala '06)
- **③** Find cheapest path lying over $\tilde{\pi}$ in A

This needs a soundness and completeness result:

- Given an infinite path π̃ in cp(A) for which P(π̃) converges, then for all ε > 0 there exists an infinite path π ∈ cp⁻¹(π̃) for which |P(π) P(π̃)| < ε.
- Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in cp(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Proof deta	ils			

Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in cp(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

Write
$$\pi = (q_0, \nu_0) \rightarrow (q_0, \nu_0 + t_0) \xrightarrow{p_0} (q_1, \nu_1) \rightarrow (q_1, \nu_1 + t_1) \xrightarrow{p_1} \cdots$$

Then
$$P(\pi) = \sum_{i=0}^{\infty} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(q_i) dt + \lambda^{T_i} p_i \right)$$

$$= \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) (\lambda^{T_i} - \lambda^{T_{i-1}}) + p_i \lambda^{T_i} \right)$$

– a function in variables T_0, T_1, \ldots

 \implies Optimization problem: Minimize $P(\pi) = f(T_0, T_1, ...)$ under the constraint that $T_0, T_1, ...$ lie in a specific *zone* defined by π above.

$$P(\pi) = f(T_0, T_1, \dots) = \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) \left(\lambda^{T_i} - \lambda^{T_{i-1}} \right) + p_i \lambda^{T_i} \right)$$

Task: Minimize $f(T_0, T_1, ...)$ under the constraint that $(T_0, T_1, ...) \in Z$ for a given (bounded, closed) zone Z.

- (can be shown that) f is (weakly) monotonic
- easy to see: monotonic functions over *finite-dimensional* closed zones attain their minimum in a *corner point*
- \implies for *finite paths*, the corner point abstraction can "see" the path with lowest price (because it goes through corners) \implies done
 - Need: Generalization of the above to infinite-dimensional zones
 - not easy, because infinite-dimensional zones are not compact
 - difficult part: show that infimum is attained somewhere

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ Standard argument: Z is compact $\Longrightarrow x$ contains converging subsequence $x' \Longrightarrow \det z = \lim x' \Longrightarrow \det z$.

伺 と く ヨ と く ヨ と … ヨ

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

Standard argument: Z is compact $\implies x$ contains converging subsequence $x' \implies \text{let } z = \lim x' \implies \text{done.}$

But Z is not compact.

伺 と く き と く き と …

- f_1, f_2, \ldots continuous functions $pr_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ $x = x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$

- f_1, f_2, \ldots continuous functions $pr_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ $x = \bullet \bullet$

伺 と イ ヨ と イ ヨ と

- f_1, f_2, \ldots continuous functions $pr_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

x =	•	•	•	•	•	•	•	•	•	•	•	•	•	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
	•	•	•	•	٠	•	•	•	٠	•	•	•	•	
	•	٠	٠	•	٠	٠	•	•	٠	٠	٠	•	•	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
												5 ▶ ◄	臣▶ ★ 臣▶	

Uli Fahrenberg Infinite Runs in Priced Timed Automata: Discounting

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

x =	٠	•	•	٠	•	٠	•	•	•	٠	•	•	•		
	٠	٠	٠	•	•	٠	٠	•	•	٠	•	٠	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	٠	•	•	•	•	•	•	•	•	•	•	•		
	•	٠	•	•	•	•	•	•	•	•	•	•	•		
	•	٠	•	•	•	•	•	•	•	•	•	•	•		_
												⇒ ► ◄	문제 소문제	12 4	0

Uli Fahrenberg Infinite Runs in Priced Timed Automata: Discounting

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

x =		٠			٠		٠	٠			٠	٠	•	$\rightarrow z_1$	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		
	•	•	•	•	•	•	•	•	٠	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•		
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		
												5 ► ◄	$\mathbb{E} \mapsto \mathbb{A}$	≜▶ ≡ の	

Uli Fahrenberg Infinite Runs in Priced Timed Automata: Discounting

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

					< • • • • • • •	P • •	≣ ► I < ≣ ►	き の	Ċ
	•	•	•	•	٠	•	•		
	•	•	•	•	•	•	•		
		_				_			
	•	•	•	•	•	•	•		
	•	٠	•	•	•	•	•		
	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•		
	•	•	٠	•	•	•	•		
x =	•	•	٠	•	•	•	• -	$\rightarrow z_1$	

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{v∈Z} f(y)

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{v∈Z} f(y)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Corollary: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed zone

- f_1, f_2, \ldots monotonous continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists corner point z of Z for which $f(z) = \inf_{y \in Z} f(y)$

So corner point abstraction can see the path with lowest price \Longrightarrow done

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Summary				

- The discount-optimal infinite path problem is computable for priced timed automata
- (with arbitrarily many clocks)
- (under certain restrictions; only "real" restriction: time divergence)
- (time-divergence assumption similar to reward-divergence assumption in HSCC'04 paper; can it be avoided?)
- Uses generalization of a well-known fact about monotonous functions defined on zones, to infinite zones
- (Other applications?)

• For zone-based iterative computations: need some fixed-point property / additivity

[•] Computable yes, feasible NO

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Additivity				

• For \rightarrow a switch and π a path out of the target of the switch:

$$P(\rightarrow \circ \pi) = p(\rightarrow) + P(\pi)$$

For \xrightarrow{t} a delay and π a path out of the end state of the delay:

$$P(\xrightarrow{t} \circ \pi) = p(\xrightarrow{t}) + \lambda^t P(\pi)$$

- Similar property not satisfied for other formalisms (*e.g.* cost / reward, or step-wise discounting)
- Question: What do we know about the cost function if we require

$$P(\stackrel{t}{\rightarrow} \circ \pi) = p(\stackrel{t}{\rightarrow}) + g(t)P(\pi)$$

- (Natural property also because of additivity of delays!)
- Answer: Everything!

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Additivity				

Theorem: If P is an accumulated price function in a PTA which satisfies

$$P(s \xrightarrow{t_1} s' \xrightarrow{t_2} s'') = P(s \xrightarrow{t_1} s') + g(t_1) \, P(s' \xrightarrow{t_2} s'')$$

for all states and delays, then

$$g(t) = \lambda^t$$
 and $P(s \xrightarrow{t} s') = lpha(s) \int_0^t \lambda^t dt$

for some $\lambda \in \mathbb{R}_{\geq 0}$ and $\alpha : S \to \mathbb{R}$.

Reason: The functional equation

$$f(t_1 + t_2) = f(t_1) + g(t_1) f(t_2)$$

has essentially only one solution.

Proof: Just do like Cauchy in 1821 !

Motivation	Problem & Solution	Proof	Summary	Fixed-point property
Conclusion				

- If you want to discount in real-time formalisms, use our kind of discounting
- (unless you have your own good reasons not to; but you'll lose additivity)
- Then you'll get computability of optimal infinite paths
- And if you give us a little more time, maybe you'll even have an efficient zone-based algorithm