Quantitative Analysis: Examples, Applications, Generalities

Uli Fahrenberg

Department of Computer Science Aalborg University Denmark

IST 2010

- Priced timed automata
- 2 Discount-optimal infinite runs
- 3 Additivity of discounting
- Infinite runs with energy constraints
- 5 Quantitative analysis
- 6 Acknowledgment

Priced timed automata

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets

Priced timed automata

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets
- Priced timed automaton:
 - + price rates in locations (cost per time unit)

Priced timed automata

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets
- Priced timed automaton:
 - + price rates in locations (cost per time unit)
 - + price updates on transitions

Problem: Find cheapest infinite run

• (Motivation: Production plant with High, Medium and Low productivity mode)

Problem: Find cheapest infinite run

- (Motivation: Production plant with High, Medium and Low productivity mode)
- What is the price of an infinite run?

Problem: Find cheapest infinite run

- (Motivation: Production plant with High, Medium and Low productivity mode)
- What is the price of an infinite run?
 - Well, 🗙 !
- Use mean-payoff
- Or, discounting

An example (finite) run:

loc.	H	d	Н	5	Μ	d	Μ	s	L	d	L	s	Μ	d	Μ	S	Н
x	0		3		0		3		3		4		0		2		0
у	0		3		3		6		6		7		0		2		0
t	0		3		3		6		6		7		7		9		9

An example (finite) run:

loc.	Н	d	Н	5	Μ	d	Μ	5	L	d l	S	Μ	d	I
x	0		3		0		3		3	2	1	0		
y	0		3		3		6		6	7	7	0		
t	0		3		3		6		6	7	7	7		
		-2				-6				-7	_		-0	
		$2\int_0^3 \lambda^t dt$	t	0		$5\int_{3}^{0}\lambda^{t}dt$		0	Ģ		$1\lambda'$	5	$\int_7^9 \lambda^t dt$	

An example (finite) run:

loc.	Н	d	Н	5	Μ	d	М	5	L	d	L	5	Μ	d	Μ	5	Н
x	0		3		0		3		3		4		0		2		0
у	0		3		3		6		6		7		0		2		0
t	0		3		3		6		6		7		7		9		9
$\lambda = .9$		5.14		0		9.38		0	4	4.54	ł	.48		4.31		.77	

- Total discounted price of run: 24.62
- Total discounted price of infinite loop: 40.2

Discounted price

Formally: Let A be a priced timed transition system and $\lambda \in [0, 1]$.

• Discounted price of *finite* alternating path

$$\pi = s_0 \xrightarrow{t_0} s'_0 \to s_1 \to \cdots \xrightarrow{t_{n-1}} s'_{n-1} \to s_n$$
:

$$P(\pi) = \sum_{i=0}^{n-1} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(s_i^t) dt + \lambda^{T_i} p(s_i' \to s_{i+1}) \right)$$

with $T_i = \sum_{j=0}^i t_j$.

• Discounted price of *infinite* alternating path

$$\pi = s_0 \xrightarrow{t_0} s'_0 \rightarrow s_1 \rightarrow \cdots$$
 : limit

$$P(\pi) = \lim_{n \to \infty} P(s_0 \to s'_0 \to \cdots \to s'_{n-1} \to s_n)$$

provided that it exists. (!)

Problem and solution

Problem:

- Given: priced timed transition system A, state $s \in A$
- Find: an infinite path from s with lowest discounted price
- (or one that comes arbitrarily close)

Solution:

- For priced timed automata
- with non-negative price rates and updates,
- which are *bounded*
- and time-divergent,
- and rational λ .
- starting with an *integer valuation*,
- our problem is computable

Given priced timed automaton A:

- **(**) Use corner point abstraction to construct *finite weighted graph* cp(A)
- Find infinite path π with lowest discounted price in cp(A) using linear programming
- **③** Find cheapest path lying over $\tilde{\pi}$ in A

This needs a soundness and completeness result:

- Given an infinite path π̃ in cp(A) for which P(π̃) converges, then for all ε > 0 there exists an infinite path π ∈ cp⁻¹(π̃) for which |P(π) P(π̃)| < ε.
- Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in cp(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

Corner point abstraction

Corner point abstraction

Quantitative analysi

Acknowledgment

Corner point abstraction

Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in cp(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

Write
$$\pi = (q_0, \nu_0) \rightarrow (q_0, \nu_0 + t_0) \xrightarrow[\rho_0]{} (q_1, \nu_1) \rightarrow (q_1, \nu_1 + t_1) \xrightarrow[\rho_1]{} \cdots$$

Then

$$P(\pi) = \sum_{i=0}^{\infty} \left(\int_{\mathcal{T}_{i-1}}^{\mathcal{T}_i} \lambda^t r(q_i) dt + \lambda^{\mathcal{T}_i} p_i \right)$$

$$= \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) (\lambda^{\mathcal{T}_i} - \lambda^{\mathcal{T}_{i-1}}) + p_i \lambda^{\mathcal{T}_i} \right)$$

– a function in variables T_0, T_1, \ldots

 \Rightarrow Optimization problem: Minimize $P(\pi) = f(T_0, T_1, ...)$ under the constraint that $T_0, T_1, ...$ lie in a specific *zone* defined by π above.

$$P(\pi) = f(T_0, T_1, \dots) = \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) \left(\lambda^{T_i} - \lambda^{T_{i-1}} \right) + p_i \lambda^{T_i} \right)$$

Task: Minimize $f(T_0, T_1, ...)$ under the constraint that $(T_0, T_1, ...) \in Z$ for a given (bounded, closed) zone Z.

- (can be shown that) f is (weakly) monotonic
- easy to see: monotonic functions over *finite-dimensional* closed zones attain their minimum in a *corner point*
- \Rightarrow for *finite paths*, the corner point abstraction can "see" the path with lowest price (because it goes through corners) \Rightarrow done
 - Need: Generalization of the above to infinite-dimensional zones
 - not easy, because infinite-dimensional zones are not compact
 - difficult part: show that infimum is attained somewhere

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{i=1}^{\infty} f(y)$
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ Standard argument: Z is compact $\Rightarrow x$ contains converging subsequence $x' \Rightarrow \text{let } z = \lim x' \Rightarrow \text{done.}$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \Rightarrow ovists $z \in Z$ for which $f(z) = \inf_{i=1}^{\infty} f(x_i)$
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ Standard argument: Z is compact $\Rightarrow x$ contains converging subsequence $x' \Rightarrow \text{let } z = \lim x' \Rightarrow \text{done.}$

But Z is not compact.

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ $x = x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$
- (2) (3) (2) (2) (3) (3) (2) (3) (3)

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$ $x = \bullet \bullet$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

x =	•	٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠
	٠	٠	•	٠	•	٠	•	•	•	•	•	•	٠
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠	٠	•	٠	•	٠	•	٠	•	•	٠	٠	٠
	٠	٠	•	٠	•	٠	•	٠	•	•	٠	٠	٠
	•	•	•	•	•	•	•	•	•	•	•	•	٠

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

x =	٠	•	٠	٠	•	٠	•	•	٠	٠	•	•	•
	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	•	•	•	•	•	٠	•	•	•	•	•	•	•

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
⇒ exists z ∈ Z for which f(z) = inf_{y∈Z} f(y)

x =		•			٠		•	٠			•	•	٠	$\rightarrow z_1$
	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	
	•	•	•	٠	•	•	٠	•	٠	٠	•	٠	٠	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	•	•	•	•	•	•	•	•	•	•	•	•	•	

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
 f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

x =	•	•	• •	•	٠	٠	$\rightarrow z_1$
	•	•	• •	•	٠	•	
	•	•	• •	•	•	٠	
	•	•	• •	•	•	•	
	•	•	• •	•	•	•	
	•	•	• •	•	٠	•	
	•	•	• •	•	•	•	

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
 f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
- ⇒ exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

x =	•	•	• •	٠	• •	$\rightarrow z_1$
	•	•	• •	•	• •	
	•	•	• •	•	• •	
	•	•	• •	•	• •	
	•	•	• •	•	• •	
	•	•	• •	•	• •	
	•	•	• •	•	• •	

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f₁, f₂,... continuous functions pr_i Z → ℝ_{≥0} (non-negative values!)
 f(x₁, x₂,...) = ∑_{i=1}[∞] f_i(x_i) : Z → [0,∞] converges for some x ∈ Z
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

x =	•	•	• •	• • •	$\rightarrow z_1$
	•		•	• •	$\rightarrow z_2$
	•	•	• •	• • •	
	•	•	• •	• • •	
	•	•	• •	• • •	
	•	•	• •	• • •	
	•	•	• •	• • •	

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions pr_i $Z \to \mathbb{R}_{\geq 0}$ (*non-negative* values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \Rightarrow exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Corollary: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed zone

- f_1, f_2, \ldots monotonous continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \Rightarrow exists corner point z of Z for which $f(z) = \inf_{y \in Z} f(y)$

So corner point abstraction *can* see the path with lowest price \Rightarrow done

Summary

- The discount-optimal infinite path problem is computable for priced timed automata
- (with arbitrarily many clocks)
- (under certain restrictions; only "real" restriction: time divergence)
- Uses generalization of a well-known fact about monotonous functions defined on zones, to infinite zones
- (Other applications?)

- Computable yes, feasible NO
- (The corner point abstraction is HUGE, and the Linear Programming problem to solve is also HUGE)
- For zone-based iterative computations: need some fixed-point property / additivity

• For \rightarrow a switch and π a path out of the target of the switch:

$$P(\rightarrow \circ \pi) = p(\rightarrow) + P(\pi)$$

For \xrightarrow{t} a delay and π a path out of the end state of the delay:

$$P(\xrightarrow{t} \circ \pi) = p(\xrightarrow{t}) + \lambda^t P(\pi)$$

- Similar property not satisfied for other formalisms (*e.g.* mean-payoff, or discounting by discrete steps)
- Question: What do we know about the cost function if we require

$$P(\stackrel{t}{\rightarrow} \circ \pi) = p(\stackrel{t}{\rightarrow}) + g(t)P(\pi)$$

- (Natural property also because of additivity of delays !)
- Answer: Everything!

Theorem: If P is an accumulated price function in a PTA which satisfies

$$P(s \xrightarrow{t_1} s' \xrightarrow{t_2} s'') = P(s \xrightarrow{t_1} s') + g(t_1) P(s' \xrightarrow{t_2} s'')$$

for all states and delays, then

$$g(t) = \lambda^t$$
 and $P(s \xrightarrow{t} s') = lpha(s) \int_0^t \lambda^t dt$

for some $\lambda \in \mathbb{R}_{\geq 0}$ and $\alpha : S \to \mathbb{R}$.

Reason: The functional equation

$$f(t_1 + t_2) = f(t_1) + g(t_1) f(t_2)$$

has essentially only one solution.

Proof: Just do like Cauchy in 1821 !

(or skip)

Proof: We need to solve the functional equation

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^i\right)$$

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction: $f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$ $f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^{i}\right)$

• Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^{i}\right)$$

- Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$
- Put $\lambda = g(1)$, then $g(n) = \lambda^n$. Also, $g(n) = g(k\frac{n}{k}) = g(\frac{n}{k})^k$ hence $g(\frac{n}{k}) = \lambda^{\frac{n}{k}}$. By continuity, $g(x) = \lambda^x$

$$f(x+y) = f(x) + g(x)f(y)$$

and we find inspiration in Cauchy's 1821 textbook Cours d'analyse:

• By induction:

$$f(kx) = f((k-1)x) + g((k-1)x)f(x) = f(x)\left(\sum_{i=0}^{k-1} g(ix)\right)$$
$$f(kx) = f(x) + g(x)f((k-1)x) = f(x)\left(\sum_{i=0}^{k-1} (g(x))^i\right)$$

- Can show that $f(x) \neq 0$ for $x \neq 0$, hence $g(ix) = g(x)^i$
- Put $\lambda = g(1)$, then $g(n) = \lambda^n$. Also, $g(n) = g(k\frac{n}{k}) = g(\frac{n}{k})^k$ hence $g(\frac{n}{k}) = \lambda^{\frac{n}{k}}$. By continuity, $g(x) = \lambda^x$
- Put $\beta = f(1)$, then $f(n) = \beta \cdot \sum_{i=1}^{n-1} \lambda^i = \beta \frac{1-\lambda^n}{1-\lambda}$ etc.

• computability of cheapest infinite runs in non-negatively priced timed automata,

- computability of cheapest infinite runs in non-negatively priced timed automata,
- a nice additivity property,

- computability of cheapest infinite runs in non-negatively priced timed automata,
- a nice additivity property,
- feasible zone-based algorithms ?

- computability of cheapest infinite runs in non-negatively priced timed automata,
- a nice additivity property,
- feasible zone-based algorithms ?

And additivity you can only have for time-based discounting.

• Is additivity necessary and / or sufficient for a zone-based approximation algorithm ?

Infinite runs with energy constraints

New problem: Given some initial value of p, does there exist an infinite run in which p always is > 0?

- (Same motivation as before)
- No discounting this time
- (Can we introduce discounting here ?)

Quantitative ar

Acknowledgment

Quantitative ana

Acknowledgment

Energy constraints

Quantitative analy

Acknowledgment

Energy constraints

ΡΤΑ

lower-upper-bound problem

Energy constraints

ΡΤΑ

lower-upper-bound problem

Quantitative analys

Acknowledgment

lower-upper-bound problem

lower-upper-bound problem

lower-upper-bound problem

lower-upper-bound problem

Quantitative analys

Acknowledgment

lower-upper-bound problem

lower-upper-bound problem

lower-upper-bound problem

ΡΤΑ

lower-upper-bound problem

Quantitative analys

Acknowledgment

lower-weak-upper-bound problem

Problems and solutions

Problems:

- Given: priced transition system A, state $s \in A$, initial credit p
- Find: an infinite path from s with initial credit p in which the accumulated credit
 - (L) never goes below 0, or
- (L+W) never goes below 0, under restricted capacity, or
 - (L+U) always stays within interval bounds [0, u]
 - (or one that comes arbitrarily close)
 - Also: Does the above hold for all infinite paths from s?
 - And can we solve games ?

Solutions:

- For finite priced transition systems: almost completely solved
- For 1-clock priced timed automata: some results
- For priced timed automata with 2 clocks: open
- For > 3 clocks: probably all undecidable

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	€P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

• Bellman-Ford algorithm

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

- PSPACE: guess an infinite path in the configuration graph
- NP-hardness: encode SUBSET-SUM:

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

• EXPTIME: play the game in the configuration graph

• EXPTIME-hardness: encode COUNTDOWN-GAME

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

- Mean-payoff games
- (See also recent work by Raskin-Doyen-Henzinger)

Results for the 1-clock case (without discrete updates !)

	exist. problem	univ. problem	games
L	$\in P$	$\in P$?
L+W	∈P	$\in P$?
L+U	?	?	undecidable

Results for the 1-clock case (without discrete updates !)

	exist. problem	univ. problem	games
L	∈P	€P	?
L+W	∈P	€P	?
L+U	?	?	undecidable

• corner-point abstraction

Results for the 1-clock case (without discrete updates !)

	exist. problem	univ. problem	games
L	$\in P$	$\in P$?
L+W	∈P	∈P	?
L+U	?	?	undecidable

• two-counter machines

• For 1-clock PTA with discrete updates, the corner point abstraction is not complete:

• For 1-clock PTA with discrete updates, the corner point abstraction is not complete:

• Completely different approach necessary:

- Optimize along reset-free paths
- Compute "energy automaton" abstraction
- Extends also to exponential price laws in locations: $\dot{p} = k p$ instead of $\dot{p} = k$

• "Hybridization" ?

x=1, x:=0

x=1, x:=0

x=1, x:=0

x=1, x:=0

x=1, x:=0

x=1

x:=0
Quantitative Analysis

Quantitative Quantitative Analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$[\![\varphi]\!](s)=3.14$

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distance d_L
Bisimilarity \sim	Branching distance <i>d</i> _B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
$s\models arphi$ or $s ot\models arphi$	$\llbracket arphi rbracket (s)$ is a quantity
$s \sim t \text{ iff } \forall \varphi : s \models \varphi \Leftrightarrow t \models \varphi$	$d_B(s,t) = \sup_arphi dig(\llbracket arphi rbracket(s), \llbracket arphi rbracket(t)ig)$

Weighted automata and traces

Definition

A weighted automaton: states *S*, transitions $T \subseteq S \times \mathbb{R} \times S$

(Yes, we can deal with more general weights than ${\mathbb R}.$ Also: labels.)

Definition

A trace is an infinite sequence of weights.

Definition: Trace distances		(values in $\mathbb{R}\cup\{\infty\}$)		
	point-wise	accumulating		
	$d_{L}^{\bullet}(\sigma,\tau) = \sup_{i} \lambda^{i} \sigma_{i} - \tau_{i} $	$d_L^+(\sigma,\tau) = \sum_i \lambda^i \sigma_i - \tau_i $		

 $\lambda \in [0, 1]$ is a fixed discounting factor. (Yes, there are other interesting trace distances.)

Linear distance

Linear distance between states: use Hausdorff distance:

Definition

$$d'_{L}(s,t) = \sup \begin{cases} \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d'_{L}(\sigma,\tau) \\ \sup_{\tau \in \mathsf{Tr}(t)} \inf_{\sigma \in \mathsf{Tr}(s)} d'_{L}(\sigma,\tau) \end{cases}$$

Lemma

$$d_{L}^{\bullet}(s,t) \leq \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} \max\left(|x-y|, \lambda d_{L}^{\bullet}(s',t')\right) \\ \sup_{t \to t'} \inf_{s \to s'} \max\left(|x-y|, \lambda d_{L}^{\bullet}(s',t')\right) \end{cases}$$

and similarly for d_L^+

Quantitative analysis

Branching distances

Definition: Branching distances are minimal fixed points

$$d_{B}^{\bullet}(s,t) = \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} \max\left(|x-y|, \lambda d_{B}^{\bullet}(s',t')\right) \\ \sup_{t \to t'} \inf_{s \to s'} \max\left(|x-y|, \lambda d_{B}^{\bullet}(s',t')\right) \end{cases}$$
$$d_{B}^{+}(s,t) = \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} |x-y| + \lambda d_{B}^{+}(s',t') \\ \sup_{t \to t'} \inf_{s \to s'} |x-y| + \lambda d_{B}^{+}(s',t') \end{cases}$$

Theorem

 $d_L^{\cdot}(s,t) \leq d_B^{\cdot}(s,t)$

Metric properties

- d_L^{\bullet} and d_B^{\bullet} are topologically inequivalent
- Likewise, d_L^+ and d_B^+ are topologically inequivalent
- For $\lambda = 1$,
 - d_L^{\bullet} and d_L^+ are topologically inequivalent
 - and so are d^{\bullet}_B and d^+_B
- For $\lambda < 1$,
 - d_L^{\bullet} and d_L^+ are Lipschitz equivalent
 - and so are d_B^{\bullet} and d_B^+

Logical characterization

For both point-wise and accumulating branching distance, there is an adequate logical characterization using weighted CTL (with two different semantics).

Where to go from here?

• Other interesting distances: *e.g.* maximum-lead distance (Henzinger-Majumdar-Prabhu)

$$d_L^{\pm}(\sigma, au) = \sup_i \lambda^i \Big| \sum_{j=0}^i \sigma_j - \sum_{j=0}^i au_j \Big|$$

Corresponding branching distance \checkmark

- General picture: Linear distances are easy to define, branching distances are easy to compute
- General framework for linear distances on $\mathbb K\text{-weighted}$ automata (for a semiring $\mathbb K)$ and general recipy for how to go from linear to branching distances

Quantitative analysis

Acknowledgment

Co-workers

40 40

Kim G. Larsen Aalborg

Patricia Bouyer-Decitre Cachan

Nicolas Markey Cachan

Jiří Srba Aalborg

Claus Thrane Aalborg

- UF, Larsen: Discount-optimal infinite runs in priced timed automata. INFINITY 2008.
- UF, Larsen: Discounting in time. QAPL 2009.
- Bouyer, UF, Larsen, Markey, Srba: Infinite runs in weighted timed automata with energy constraints. FORMATS 2008.
- Bouyer, UF, Larsen, Markey: Timed automata with observers under energy constraints. HSCC 2010.
- Thrane, UF, Larsen: Quantitative analysis of weighted transition systems. JLAP, to appear.
- UF, Larsen, Thrane: A quantitative characterization of weighted Kripke structures in temporal logic. CAI, to appear.
- UF, Thrane, Larsen: Linear and branching distances for weighted automata. WATA 2010.