# From Linear to Branching Distances and Back (via Games)

#### Uli Fahrenberg

Department of Computer Science Aalborg University Denmark

MT-Lab:8



- 2 Weighted automata and traces
- 3 Linear vs. branching distance



# Quantitative Analysis



## Quantitative Quantitative Analysis



### Quantitative Quantitative Quantitative Analysis

| Quantitative Models            | Quantitative Logics                     | Quantitative Verification                              |
|--------------------------------|-----------------------------------------|--------------------------------------------------------|
| $\xrightarrow{x \ge 4}_{x:=0}$ | $Pr_{\leq .1}(\Diamond \mathit{error})$ | $\llbracket arphi  rbracket (s) = 3.14$<br>d(s,t) = 42 |

| Boolean world                   | "Quantification"                     |
|---------------------------------|--------------------------------------|
| Trace equivalence $\equiv$      | Linear distance <i>d<sub>L</sub></i> |
| Bisimilarity $\sim$             | Branching distance $d_B$             |
| $s \sim t$ implies $s \equiv t$ | $d_L(s,t) \leq d_B(s,t)$             |

## Weighted Automata and Traces

#### Definition

A weighted automaton: states *S*, transitions  $T \subseteq S \times \mathbb{K} \times S$ 

- K: Set of weights. Maybe some extra structure. (Lattice? Semiring?)
- Standard example:  $\mathbb{K} = L \times \mathbb{R}$ . Discrete labels *L*, real weights  $\mathbb{R}$ .

### Definition

A trace is an infinite sequence of weights; an element of  $\mathbb{K}^{\omega}$ .

• Notation: For  $s \in S$  in a weighted automaton (S, T), Tr(s) is the set of traces from s.

#### Trace distance

Assume given a hemimetric  $d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$ .

### **Examples of Trace Distances**

- Let  $\mathbb{K} = L \times \mathbb{R}$  and  $\lambda \in [0,1]$  some discounting factor.
- Notation: Trace  $\sigma = ((\sigma_0^{\ell}, \sigma_0^{w}), (\sigma_1^{\ell}, \sigma_1^{w}), \dots).$

#### Definition: Point-wise trace distance

$$d_{T}^{\bullet}(\sigma,\tau) = \begin{cases} \sup_{i} \lambda^{i} |\sigma_{i}^{w} - \tau_{i}^{w}| & \text{if } \sigma_{i}^{\ell} = \tau_{i}^{\ell} \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Definition: Accumulating trace distance

$$d_T^+(\sigma,\tau) = \begin{cases} \sum_i \lambda^i |\sigma_i^w - \tau_i^w| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

#### Definition: Maximum-lead trace distance

$$d_T^{\pm}(\sigma,\tau) = \begin{cases} \sup_i \left| \sum_{j=0}^i \lambda^j \sigma_j^w - \sum_{j=0}^i \lambda^j \tau_j^w \right| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Uli Fahrenberg From Linear to Branching Distances and Back

### Linear Distance

- (Recall: We assume given a hemimetric  $d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$  on traces.)
- Let  $(S, T \subseteq S \times \mathbb{K} \times S)$  be a weighted automaton.
- Linear distance between states  $s, t \in S$ : use Hausdorff construction:

#### Definition: Linear distance

 $d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_{\tau}(\sigma,\tau)$ 

## Linear vs. Branching Distance

Definition: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_T(\sigma,\tau)$$

- This is a game!
- Player 1 chooses the worst trace  $\sigma \in \mathsf{Tr}(s)$ .
- Player 2 matches it with the best trace  $au \in \mathsf{Tr}(t)$ .
- $d_L(s, t)$  = value of the "half-blind weighted bisimulation game": Player 2 has perfect information, Player 1 is blind.

### Definition: Branching distance

 $d_B(s, t) =$  value of the same game, but with perfect information

• Hence "
$$d_B(s,t) = \sup_{s \xrightarrow{\sigma_0} s_1} \inf_{t \xrightarrow{\tau_0} t_1} \sup_{s_1 \xrightarrow{\sigma_1} s_2} \inf_{t_1 \xrightarrow{\tau_1} t_2} \cdots d_T(\sigma,\tau)$$
".

### Properties

#### Theorem

For all  $s, t \in S$ ,  $d_L(s, t) \leq d_B(s, t)$ .

#### Theorem

There exists a weighted automaton on which  $d_L$  and  $d_B$  are topologically inequivalent.

• Unless  $\sigma_0 = \tau_0$  implies  $d_T(\sigma, \tau) = 0$  for all traces  $\sigma$ ,  $\tau$ .

### Proof

Let  $\sigma, \tau \in \mathbb{K}^{\omega}$  such that  $\sigma_0 = \tau_0$ ,  $d_T(\sigma, \tau) > 0$ , and  $d_T(\tau, \sigma) > 0$ .



We have  $\operatorname{Tr}(s) = \operatorname{Tr}(t)$ , hence  $d_L(s, t) = 0$ . On the other hand,  $d_B(s, t) = \min (d_T(\sigma, \tau), d_T(\tau, \sigma)) > 0$ . That's it.

### Special Cases

Back to trace distance examples:

$$d_T^{\bullet}(\sigma,\tau) = \sup_i \lambda^i |\sigma_i^w - \tau_i^w| = \max\left(|\sigma_0^w - \tau_0^w|, \lambda d_T^{\bullet}(\sigma^1,\tau^1)\right)$$

Similarly:

$$d_T^+(\sigma,\tau) = |\sigma_0^w - \tau_0^w| + \lambda d_T^+(\sigma^1,\tau^1)$$

### Proposition

If 
$$d_T(\sigma, \tau) = f(\sigma_0, \tau_0, d_T(\sigma^1, \tau^1))$$
 for some function  
 $f : \mathbb{K} \times \mathbb{K} \times [0, \infty] \to [0, \infty]$  and all  $\sigma, \tau \in \mathbb{K}^\infty$ , then  
 $d_B(s, t) = \sup_{s \xrightarrow{\times} s'} \inf_{t \xrightarrow{y} t'} f(x, y, d_B(s', t'))$  for all  $s, t \in S$ .

- (Needs f to be increasing in the third coordinate.)
- Applies to  $d_T^{\bullet}$  and  $d_T^+$ , but not to  $d_T^{\pm}$ .
- Works also with  $\leq$  instead of =.

## Acknowledgment

- Kim G. Larsen
- Claus Thrane
- Tom Henzinger
- Pavol Černý
- Arjun Radhakrishna