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Quantitative Quantitative

Quantitative Analysis

Quantitative Models
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Quantitative Logics

Pr≤.1(♦error)

Quantitative Verification

JϕK(s) = 3.14

d(s, t) = 42

Boolean world “Quantification”

Trace equivalence ≡ Linear distance dL

Bisimilarity ∼ Branching distance dB

s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
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Weighted Automata and Traces

Definition

A weighted automaton: states S , transitions T ⊆ S ×K× S

K: Set of weights. Maybe some extra structure. (Lattice? Semiring?)

Standard example: K = L×R. Discrete labels L, real weights R.

Definition

A trace is an infinite sequence of weights; an element of Kω.

Notation: For s ∈ S in a weighted automaton (S ,T ),
Tr(s) is the set of traces from s.

Trace distance

Assume given a hemimetric dT : Kω ×Kω → [0,∞].
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Examples of Trace Distances

Let K = L×R and λ ∈ [0, 1] some discounting factor.
Notation: Trace σ =

(
(σ`0, σ

w
0 ), (σ`1, σ

w
1 ), . . .

)
.

Definition: Point-wise trace distance

d•T (σ, τ) =

{
supi λ

i |σw
i − τw

i | if σ`i = τ `i for all i

∞ otherwise

Definition: Accumulating trace distance

d+
T (σ, τ) =

{∑
i λ

i |σw
i − τw

i | if σ`i = τ `i for all i

∞ otherwise

Definition: Maximum-lead trace distance

d±T (σ, τ) =

{
supi

∣∣∑i
j=0 λ

jσw
j −

∑i
j=0 λ

jτw
j

∣∣ if σ`i = τ `i for all i

∞ otherwise
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Linear Distance

(Recall: We assume given a hemimetric dT : Kω ×Kω → [0,∞] on
traces.)

Let (S ,T ⊆ S ×K× S) be a weighted automaton.

Linear distance between states s, t ∈ S : use Hausdorff construction:

Definition: Linear distance

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT (σ, τ)
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Linear vs. Branching Distance

Definition: Linear distance

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT (σ, τ)

This is a game!

Player 1 chooses the worst trace σ ∈ Tr(s).

Player 2 matches it with the best trace τ ∈ Tr(t).

dL(s, t) = value of the “half-blind weighted bisimulation game”:
Player 2 has perfect information, Player 1 is blind.

Definition: Branching distance

dB(s, t) = value of the same game, but with perfect information

Hence “dB(s, t) = sup

s
σ0−→s1

inf

t
τ0−→t1

sup

s1
σ1−→s2

inf

t1
τ1−→t2

· · · dT (σ, τ)”.
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Properties

Theorem

For all s, t ∈ S, dL(s, t) ≤ dB(s, t).

Theorem

There exists a weighted automaton on which dL and dB are topologically
inequivalent.

Unless σ0 = τ0 implies dT (σ, τ) = 0 for all traces σ, τ .

Uli Fahrenberg From Linear to Branching Distances and Back



Quantitative analysis Weighted automata and traces Linear vs. branching distance Special cases

Proof

Let σ, τ ∈ Kω such that σ0 = τ0, dT (σ, τ) > 0, and dT (τ, σ) > 0.

s

σ0=τ0

��

t
σ0

���������
τ0

��
>>>>>>>

σ1

���������
τ1

��
???????

σ1

��

τ1

��

σ2

��

τ2

��

We have Tr(s) = Tr(t), hence dL(s, t) = 0. On the other hand,
dB(s, t) = min

(
dT (σ, τ), dT (τ, σ)

)
> 0. That’s it.
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Special Cases

Back to trace distance examples:

d•T (σ, τ) = sup
i
λi |σw

i − τw
i | = max

(
|σw

0 − τw
0 |, λd•T (σ1, τ1)

)
Similarly:

d+
T (σ, τ) = |σw

0 − τw
0 |+ λd+

T (σ1, τ1)

Proposition

If dT (σ, τ) = f
(
σ0, τ0, dT (σ1, τ1)

)
for some function

f : K×K× [0,∞]→ [0,∞] and all σ, τ ∈ K∞, then
dB(s, t) = sup

s
x−→s′

inf
t

y−→t′

f
(
x , y , dB(s ′, t ′)

)
for all s, t ∈ S .

(Needs f to be increasing in the third coordinate.)

Applies to d•T and d+
T , but not to d±T .

Works also with ≤ instead of =.
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