Playing Games with Metrics

Uli Fahrenberg Claus Thrane Kim G. Larsen

CS @ Aalborg

Maths @ Aalborg seminar Nov. 2010

Fahrenberg, Thrane, Larsen Playing Games with Metrics

Linear vs. branching distance

Quantitative Analysis

Linear vs. branching distance

Quantitative Quantitative Analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distance d_L
Bisimilarity \sim	Branching distance d_B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$

Weighted Automata and Traces

Definition

A weighted automaton: states *S*, transitions $T \subseteq S \times \mathbb{K} \times S$

- \mathbb{K} : Set of weights.
- Standard example: $\mathbb{K} = L \times \mathbb{R}$. Discrete labels L, real weights \mathbb{R} .

Definition

A trace is an infinite sequence of weights; an element of \mathbb{K}^{ω} .

• Notation: For $s \in S$ in a weighted automaton (S, T), Tr(s) is the set of traces from s.

Framework for Quantitative Analysis

Trace distance

Assume given a hemimetric
$$d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$$
.

That's it. We only assume some way to measure distance between traces.

- Think of the trace distance as application defined
- ${\scriptstyle \bullet}\,$ May or may not come from some metric on ${\mathbb K}\,$

(Hemimetric: not necessarily symmetric pseudometric:

- $d_T(x,x) = 0$ (indiscernibility of identicals)
- $d_T(x,y) + d_T(y,z) \ge d_T(x,z)$ (triangle inequality))

Examples of Trace Distances

• Let $\mathbb{K} = L \times \mathbb{R}$. Notation: Trace $\sigma = ((\sigma_0^{\ell}, \sigma_0^{w}), (\sigma_1^{\ell}, \sigma_1^{w}), \dots)$.

Point-wise trace distance

$$d^{ullet}_{T}(\sigma, au) = egin{cases} \sup_{i} & |\sigma^w_i - au^w_i| & ext{if } \sigma^\ell_i = au^\ell_i ext{ for all } i \ \infty & ext{otherwise} \end{cases}$$

Accumulating trace distance

$$d_T^+(\sigma,\tau) = \begin{cases} \sum_i & |\sigma_i^w - \tau_i^w| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{ otherwise} \end{cases}$$

Maximum-lead trace distance

$$d_{T}^{\pm}(\sigma,\tau) = \begin{cases} \sup_{i} \left| \sum_{j=0}^{i} \sigma_{j}^{w} - \sum_{j=0}^{i} \tau_{j}^{w} \right| & \text{if } \sigma_{i}^{\ell} = \tau_{i}^{\ell} \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Examples of Trace Distances

• Let $\mathbb{K} = L \times \mathbb{R}$. Notation: Trace $\sigma = ((\sigma_0^{\ell}, \sigma_0^w), (\sigma_1^{\ell}, \sigma_1^w), \dots)$.

Point-wise trace distance

$$d^{\bullet}_{T}(\sigma,\tau) = \begin{cases} \sup_{i} \lambda^{i} |\sigma^{w}_{i} - \tau^{w}_{i}| & \text{if } \sigma^{\ell}_{i} = \tau^{\ell}_{i} \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Accumulating trace distance

$$d_T^+(\sigma,\tau) = \begin{cases} \sum_i \lambda^i |\sigma_i^w - \tau_i^w| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Maximum-lead trace distance

$$d_T^{\pm}(\sigma,\tau) = \begin{cases} \sup_i \left| \sum_{j=0}^i \sigma_j^w - \sum_{j=0}^i \tau_j^w \right| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Linear Distance

- (Recall: We assume given a hemimetric $d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$ on traces.)
- Let $(S, T \subseteq S \times \mathbb{K} \times S)$ be a weighted automaton.
- Linear distance between states $s, t \in S$: use Hausdorff construction:

Definition: Linear distance

 $d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_{\tau}(\sigma,\tau)$

Linear vs. Branching Distance

Definition: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_T(\sigma,\tau)$$

- This is a game!
- Player 1 chooses the worst trace $\sigma \in Tr(s)$.
- Player 2 matches it with the best trace $au \in \mathsf{Tr}(t)$.
- d_L(s, t) = value of the "1-blind weighted simulation game": Player 2 has perfect information, Player 1 is blind.

Definition: Branching distance

 $d_B(s, t) =$ value of the same game, but with perfect information

• Hence "
$$d_B(s,t) = \sup_{s \xrightarrow{\sigma_0} s_1} \inf_{t \xrightarrow{\tau_0} t_1} \sup_{s_1 \xrightarrow{\sigma_1} s_2} \inf_{t_1 \xrightarrow{\tau_1} t_2} \cdots d_T(\sigma,\tau)$$
".

Simulation Games

Precise definition of how this works:

- Given: Weighted automaton ($S, T \subseteq S imes \mathbb{K} imes S$), states $s, t \in S$
- (Imagine a game of two players taking turns to build two paths:)
- A strategy from s, t: heta : fPa(s) imes fPa(t) o T
 - for Player 1: start $(\theta(\pi_1, \pi_2)) = end(\pi_1)$
 - for Player 2: start $(\theta(\pi_1, \pi_2)) = end(\pi_2)$
- A round of the game under strategies θ_1 , θ_2 : Round_{(θ_1, θ_2)} $(\pi_1, \pi_2) = (\pi_1 \cdot \theta_1(\pi_1, \pi_2), \pi_2 \cdot \theta_2(\pi_1 \cdot \theta_1(\pi_1, \pi_2), \pi_2))$
- The limit of the game under strategies θ_1 , θ_2 : $\lim_{j\to\infty} \operatorname{Round}_{(\theta_1,\theta_2)}^j(s_0, t_0)$ (a pair of infinite paths)
- The utility of the strategies θ_1 , θ_2 : $u(\theta_1, \theta_2) = d_T(tr(\lim_{j \to \infty} \text{Round}^j_{(\theta_1, \theta_2)}(s_0, t_0)))$
- The value of the game: $v(s,t) = \sup_{\substack{\theta_1 \\ \theta_2}} \inf_{\theta_2} u(\theta_1,\theta_2)$

Perfect vs. Imperfect Information

- $\Theta_1(s, t)$, $\Theta_2(s, t)$: sets of all Player-1 resp. Player-2 strategies fPa(s) × fPa(t) → T
- Games with imperfect information: Restrict available strategies to proper subsets of Θ₁ or Θ₂
- Special case: blind Player-1 strategies $\tilde{\Theta}_1 = \mathcal{T}^{fPa(s)}$
- Do not depend on Player-2 choices: Player 1 cannot "see" what Player 2 is doing
- Branching distance: $d_B(s, t) = \sup_{\theta_1 \in \Theta_1(s,t)} \inf_{\theta_2 \in \Theta_2(s,t)} u(\theta_1, \theta_2)$
- Linear distance: $d_L(s,t) = \sup_{\theta_1 \in \tilde{\Theta}_1(s,t)} \inf_{\theta_2 \in \Theta_2(s,t)} u(\theta_1,\theta_2)$

Properties

Proposition

- *d_L* is a hemimetric.
- If the simulation game is *determined*, d_B is a hemimetric.
- Need determinacy to show triangle inequality
- (But have no counterexample)

Theorem

For all $s, t \in S$, $d_L(s, t) \leq d_B(s, t)$.

Proof:

For d_B , Player 1 (the sup player) has more strategies to choose from!

Properties

Theorem

There exists a weighted automaton on which d_L and d_B are topologically inequivalent.

- Unless for all traces σ , τ : $\sigma_0 = \tau_0$ implies $d_T(\sigma, \tau) = 0$.
- (*i.e.* d_T measures only on *first* trace element; not very useful!)

Proof

Let $\sigma, \tau \in \mathbb{K}^{\omega}$ such that $\sigma_0 = \tau_0$, $d_T(\sigma, \tau) > 0$, and $d_T(\tau, \sigma) > 0$.

We have $\operatorname{Tr}(s) = \operatorname{Tr}(t)$, hence $d_L(s, t) = 0$. On the other hand, $d_B(s, t) = \min (d_T(\sigma, \tau), d_T(\tau, \sigma)) > 0$. That's it.

Wish List

• Relate equivalence of trace distances to equivalence of linear distances. Like this:

Theorem

If trace distances d_T^1 and d_T^2 are Lipschitz equivalent, then the corresponding linear distances d_L^1 and d_L^2 are topologically equivalent.

- Relate equivalence of trace distances to equivalence of branching distances.
- Classify trace distances (up to equivalence).