Linear and Branching Distances for Weighted Automata

Uli Fahrenberg Claus Thrane Kim G. Larsen

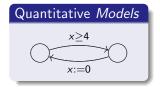
Department of Computer Science Aalborg University Denmark

WATA 2010

Motivation

Properties

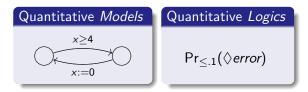
Quantitative Analysis



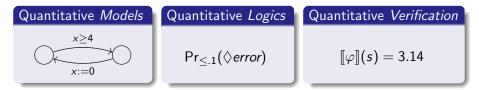
Properties

Further work

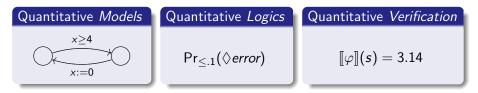
Quantitative Quantitative Analysis



Quantitative Quantitative Analysis



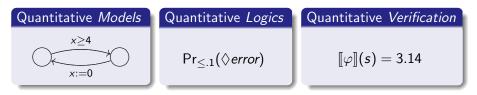
Quantitative Quantitative Quantitative Analysis



Boolean world	"Quantification"		
Trace equivalence \equiv	Linear distance d_L		
Bisimilarity \sim	Branching distance d_B		
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$		
$\pmb{s} \models arphi$ or $\pmb{s} eq arphi$	$\llbracket arphi rbracket (s)$ is a quantity		
$s \sim t \text{ iff } \forall \varphi : s \models \varphi \Leftrightarrow t \models \varphi$	$d_B(s,t) = \sup_{arphi} dig(\llbracket arphi rbracket(s), \llbracket arphi rbracket(t)ig)$		

Logics

Quantitative Quantitative Quantitative Analysis



- CT, UF, KGL: Quantitative analysis of weighted transition systems. JLAP, to appear.
- UF, KGL, CT: A quantitative characterization of weighted Kripke structures in temporal logic. CAI, to appear.
- UF, CT, KGL: Linear and branching distances for weighted automata. To be written.

Motivation	Linear distances	Branching distances	Properties	Logics	Further work

- 3 Branching distances
- 4 Metric properties
- 5 Logical characterization

6 Further work

Properties

Logics Fu

Further work

Weighted automata and traces

Definition

A weighted automaton: states *S*, transitions $T \subseteq S \times \mathbb{R} \times S$

(Yes, we can deal with more general weights than ${\mathbb R}.$ Also: labels.)

Definition
A trace is an infinite sequence of weights.

Defi	nition: Trace distances	(values in $\mathbb{R}\cup\{\infty\}$)
	point-wise	accumulating
	$d^{\bullet}_{L}(\sigma,\tau) = \sup_{i} \lambda^{i} \sigma_{i} - \tau_{i} $	$d_L^+(\sigma,\tau) = \sum_i \lambda^i \sigma_i - \tau_i $

 $\lambda \in [0, 1]$ is a fixed discounting factor. (Yes, there are other interesting trace distances.)

Uli Fahrenberg Claus Thrane Kim G. Larsen Linear and Branching Distances for Weighted Automata

Linear distance between states: use Hausdorff distance:

Definition

$$d_{L}^{\cdot}(s,t) = \sup \begin{cases} \sup_{\sigma \in \operatorname{Tr}(s)} \inf_{\tau \in \operatorname{Tr}(t)} d_{L}^{\cdot}(\sigma,\tau) \\ \sup_{\tau \in \operatorname{Tr}(t)} \inf_{\sigma \in \operatorname{Tr}(s)} d_{L}^{\cdot}(\sigma,\tau) \\ \tau \in \operatorname{Tr}(t) \sigma \in \operatorname{Tr}(s) \end{cases}$$

Lemma

$$d_{L}^{\bullet}(s,t) \leq \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} \max\left(|x-y|, \lambda d_{L}^{\bullet}(s',t')\right) \\ \sup_{t \to t'} \inf_{s \to s'} \max\left(|x-y|, \lambda d_{L}^{\bullet}(s',t')\right) \end{cases}$$

and similarly for d_L^+

Properties

Further work

Branching distances

Definition: Branching distances are minimal fixed points

$$d_{B}^{\bullet}(s,t) = \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} \max\left(|x-y|, \lambda d_{B}^{\bullet}(s',t')\right) \\ \sup_{t \to t'} \inf_{s \to s'} \max\left(|x-y|, \lambda d_{B}^{\bullet}(s',t')\right) \end{cases}$$
$$d_{B}^{+}(s,t) = \sup \begin{cases} \sup_{s \to s'} \inf_{t \to t'} |x-y| + \lambda d_{B}^{+}(s',t') \\ \sup_{t \to t'} \inf_{s \to s'} |x-y| + \lambda d_{B}^{+}(s',t') \end{cases}$$

Theorem

 $d_L^{\cdot}(s,t) \leq d_B^{\cdot}(s,t)$

Motivation	Linear distances	Branching distances	Properties	Logics	Further work
Metric	properties				

- d_L^{\bullet} and d_B^{\bullet} are topologically inequivalent
- Likewise, d_L^+ and d_B^+ are topologically inequivalent

• For
$$\lambda = 1$$
,

- d_L^{\bullet} and d_L^+ are topologically inequivalent
- and so are d_B^{\bullet} and d_B^+
- For $\lambda < 1$,
 - d_L^{\bullet} and d_l^+ are Lipschitz equivalent
 - and so are d_B^{\bullet} and d_B^+

Motivation

Properties

Logics Further work

Logical characterization

For both point-wise and accumulating branching distance, there is an adequate logical characterization using weighted CTL (with two different semantics).

Motivation Linear distances Branching distances Properties Logics Further work Where to go from here?

• Other interesting distances: e.g. maximum-lead distance

$$d^{\pm}_L(\sigma, au) = \sup_i \lambda^i \Big| \sum_{j=0}^i \sigma_j - \sum_{j=0}^i au_j \Big|$$

Want corresponding branching distance \checkmark

- General picture: Linear distances are easy to define, branching distances are easy to compute
- Want general framework for linear distances on \mathbb{K} -weighted automata (for a semiring \mathbb{K}) and general recipy for how to go from linear to branching distances.
- (We're almost there.)