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Quantitative Quantitative Quantitative Analysis

Quantitative Models Quantitative Logics Quantitative Verification

Pr<.1(Oerror) [[51];51) :3:24
Boolean world “Quantification”
Trace equivalence = Linear distance d;
Bisimilarity ~ Branching distance dg
s~ timpliess=t di(s,t) < dg(s,t)
sEporstop [¢](s) is a quantity
s~ tiff Vo sk et | dp(s,t) = sup, d([](s), [¢](t))
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o Thrane, Fahrenberg, Larsen: Quantitative analysis of
weighted transition systems. JLAP 79(7):689-703,
2010.

o Fahrenberg, Larsen, Thrane: A quantitative
characterization of weighted Kripke structures in
temporal logic. CAl 29, 2010.

o Fahrenberg, Thrane, Larsen: Distances for weighted
transition systems: Games and properties. Submitted.
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Weighted automata and traces

Weighted Automata and Traces

Definition
A weighted automaton: states S, transitions T C S x K x S

o KK: Set of weights.
@ Standard example: K = L x R. Discrete labels L, real weights R.

Definition
A trace is an infinite sequence of weights; an element of K“.

o Notation: For s € S in a weighted automaton (S, T),
Tr(s) is the set of traces from s.
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Weighted automata and traces

Framework for Quantitative Analysis

Trace distance

Assume given a hemimetric d1 : K¥ x K¥ — [0, oc].

That's it. We only assume some way to measure distance between traces.
@ Think of the trace distance as application defined

@ May or may not come from some metric on K

o (This is very common e.g. in applications in real-time or hybrid
systems)

(Hemimetric: not necessarily symmetric pseudometric:
o d7(x,x) =0 (indiscernibility of identicals)
o dr(x,y)+dr(y,z) > dr(x, z) (triangle inequality) )
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Weighted automata and traces

Examples of Trace Distances

o Let K= L xR. Notation: Trace o = ((0§,0§), (c},01),...).

Point-wise trace distance

sup; oW — 71| ifof =1 foralli

d¥(o,7) =
7(o:7) 00 otherwise

Accumulating trace distance

lo% — 1| if of = 1! forall i

df(o,7) = i

00 otherwise
w
Maximum-lead trace distance
i wo_ i w R A ) g
di(o ) = sup,-‘Zj:O o ZJ-ZOTJ- | if o7 =77 for all i
T ) .
00 otherwise
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Weighted automata and traces

Examples of Trace Distances

o Let K= L xR. Notation: Trace o = ((0§,0§), (c},01),...).

Point-wise trace distance

sup; N|o® — 7| if of = 7 for all i

d¥(o,7) =
7(o:7) 00 otherwise

)
S N|o¥ — 1| if of =7f forall i
o0

otherwise

d}'-'(a, T) =

w
Maximum-lead trace distance
i w_ M w
T ) .
00 otherwise

| if of :T,-z for all i
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Linear vs. branching distance

Linear Distance

o (Recall: We assume given a hemimetric dr : K“ x K“ — [0, c0] on
traces.)

o Let (S, T C S xK x S) be a weighted automaton.
o Linear distance between states s,t € S: use Hausdorff construction:

Definition: Linear distance

di(s,t)= sup inf d7(o,7)
o€Tr(s) T€Tr(t)
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Linear vs. branching distance

Example

Left: coffee machine

S t
o Right: coffee&tea o0 _te,
.A Labels are actions, numbers are .A \.
9|  energy use. 9

; g Discount factor A = .9 : = '_:

Q . . o o)

Q ®  Pointwise: o b Q
° ';' dp(t,s) = o0, d}(s,t) =1.8 ° ‘: °

< % Accumulated: < % o~

2 ! df(t,s) = oo, d/ (s, t) = 2.52 2 | E
.4) Max-lead (no discounting): 4 %

dLi(t, s) = o0, df[(s, t)=2 °
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Linear vs. branching distance

Linear vs. Branching Distance: the Upshot

Recall: Linear distance

di(s,t)= sup inf dy(o,7)
o€Tr(s) T€Tr(t)

o This is inspired by trace inclusion
@ and looks like it will be difficult to compute.

o (Indeed, for timed automata e.g., d; is uncomputable.)
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Linear vs. branching distance

Linear vs. Branching Distance: the Upshot

Recall: Linear distance

di(s,t)= sup inf dy(o,7)
o€Tr(s) T€Tr(t)

o This is inspired by trace inclusion

@ and looks like it will be difficult to compute.

(7]

(Indeed, for timed automata e.g., d; is uncomputable.)

Goal: Find a corresponding branching distance dg
inspired by simulation
which has d; < dg

and may be easier to compute.

e 6 o o
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Linear vs. branching distance

Linear vs. Branching Distance: the ldea

Recall: Linear distance

di(s,t)= sup inf dy(o,7)
o€Tr(s) TETr(t)

This is a game!
Player 1 chooses the worst trace o € Tr(s).
Player 2 matches it with the best trace 7 € Tr(t).

di (s, t) = value of the “1-blind weighted simulation game”: Player 2
has perfect information, Player 1 is blind.

Definition: Branching distance

ds(s, t) = value of the same game, but with perfect information

@ Hence "dg(s,t) = sup inf sup inf --- dr(o,7)".
5&51 tT—0>t1 s1 U—l>52 f1T_1>t2
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Linear vs. branching distance

Linear vs. Branching Distance: the Dirty Details

Precise definition of how this works:
o Given: Weighted automaton (S, 7T C S x K x S), states s,t € S
o (Imagine a game of two players taking turns to build two paths:)
o A strategy from s, t: 6 :fPa(s) x fPa(t) = T

o for Player 1: start(0(m1,m2)) = end(m1)
o for Player 2: start(6(m1, 7)) = end(m2)

(4]

A round of the game under strategies 61, 05:

Round(91792)(7r1,7r2) = (7T1 . 91(7T1,7T2),7T2 . 92(7T1 . 91(7T1,71’2),7T2))
The limit of the game under strategies 61, 05:

limit = limj_, 00 Roundj(elﬁz)(so, to) (a pair of infinite paths)

(7]

(4]

The utility of the strategies 61, 62: u(61,62) = dr (tr(limit))

The value of the game: v(s, t) = supinf u(6y,62)
1 6
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Linear vs. branching distance

Perfect vs. Imperfect Information

0 O1(s, t), ©a(s, t): sets of all Player-1 resp. Player-2 strategies
fPa(s) x fPa(t) = T

o Games with imperfect information: Restrict available strategies to
proper subsets of @1 or O,

o Special case: blind Player-1 strategies ©; = Ta(s)

@ Do not depend on Player-2 choices: Player 1 cannot “see” what
Player 2 is doing

e Branching distance: dg(s,t) = sup inf  wu(61,602)
916@1(5,1‘) 926@2(5,1‘)
o Linear distance: d/(s,t) = sup inf  u(61,02)

01€01(s,t) 62€05(s,t)
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Linear vs. branching distance

Properties

Proposition
@ d; is a hemimetric.

o If the simulation game is determined, dg is a hemimetric.

o Need determinacy to show triangle inequality

o (But have no counterexample)

For all s,t € S, di(s,t) < dg(s,t).

Proof:
For dg, Player 1 (the sup player) has more strategies to choose from!
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Linear vs. branching distance

Properties

There exists a weighted automaton on which d; and dg are topologically
inequivalent.

@ Unless for all traces o, 7 : 09 = 79 implies dr(o,7) = 0.

o (i.e. dT measures only on first trace element; not very useful!)
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Linear vs. branching distance

Let 0,7 € K¥ such that o9 = 79, d1(0,7) > 0, and d7(7,0) > 0.

S
g0=T0

- - - -

We have Tr(s) = Tr(t), hence d;(s,t) = 0. On the other hand,
dg(s,t) = min (dr(0,7),dr(r,0)) > 0. That's it.
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Fixed-point characterization

Fixed-Point Characterization

o Back to trace distance examples:
d3(o,7) = suplo} — 7| = max (log’ — 7’|, d¥(o", 7))
i

Similarly:
di(o,7) = lo¢ — 7’| + dF (o, ")

Theorem

If dr(o,7) = f (00,70, d7 (0, 1)) for some function f : K x K x [0, o]
— [0, oo] which is monotone in the third coordinate and all o, 7 € K%,
then dg is the least fixed point to the set of equations

h(s,t) = sup inf f(x,y,h(s',t'))
s—ssl tLot/

4
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Fixed-point characterization

Fixed-Point Characterization

Theorem (again)

If dr(o,7) = f (00,70, d7 (0, 1)) for some function f : K x K x [0, o]
— [0, 00] which is monotone in the third coordinate and all o, 7 € K¥,
then dg is the least fixed point to the set of equations

h(s,t) = sup inf f(x,y,h(s',t'))
sl t5ot

@ So if trace distance has a simple recursive characterization, then so
does branching distance.

o Applies to d% and df, but not to di.

o Have extension to “recursive characterization with memory” which
applies to d% (and other interesting distances, e.g. lim-avg).
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Conclusion

o For most applications, trace distances are easy to think of

o We show how to go from any trace distance to a linear (easy) and
branching (difficult) distance

(Using games with quantitative objectives)

(7]

@ Our definition of linear and branching distance may not be very
operational

(]

(E.g., linear distance is uncomputable for some models, and so may
branching distance)

(+]

But we claim that our definition is (or should be) the canonical one

(4]

(And we show that for a number of interesting examples, we

o get an operational definition (using fixed points)
o and recover previously considered distances)

Uli Fahrenberg Playing Games with Metrics



Mathematical Wish List

o Relate equivalence of trace distances to equivalence of linear
distances. Like this:

If trace distances d% and d% are Lipschitz equivalent, then the
corresponding linear distances d& and df are topologically equivalent.

o Relate equivalence of trace distances to equivalence of branching
distances.

o Classify trace distances (up to equivalence).
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Other games

(*]

Recall: dg(s, t) — value of weighted simulation game

di(s,t)= sup inf dr(o,7) — value of 1-blind game
o€Tr(s) TETr(t)

The 2-blind game: inf  sup d7(o,7)
TETr(t) c€Tr(s)

(Oh: what about minimax theorems here?)

The weighted bisimulation game: At each turn, give Player 1 the
choice whether to prolong the path from s or from t
— bisimulation distance!

The weighted similarity game: Player 1 gets to choose which path to
build before first turn only == similarity distance

Player 1 gets to choose before first turn and is blinded
— language equivalence distance

etc.
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