Playing Games with Metrics Distances for Weighted Transition Systems

Uli Fahrenberg

IRISA Rennes

68n<mark>q</mark>rt Jan. 2011

- 2 Weighted automata and traces
- Iinear vs. branching distance
 - Fixed-point characterization

Quantitative Analysis

Quantitative Quantitative Analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distance d_L
Bisimilarity \sim	Branching distance d_B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
$s\models arphi$ or $s ot\models arphi$	$\llbracket arphi rbracket (s)$ is a quantity
$s \sim t \text{ iff } \forall \varphi : s \models \varphi \Leftrightarrow t \models \varphi$	$d_B(s,t) = \sup_arphi dig(\llbracket arphi rbracket (s), \llbracket arphi rbracket (t)ig)$

Quantitative Quantitative Quantitative Analysis

- Thrane, Fahrenberg, Larsen: Quantitative analysis of weighted transition systems. JLAP 79(7):689–703, 2010.
- Fahrenberg, Larsen, Thrane: A quantitative characterization of weighted Kripke structures in temporal logic. CAI 29, 2010.
- Fahrenberg, Thrane, Larsen: Distances for weighted transition systems: Games and properties. Submitted.

Weighted Automata and Traces

Definition

A weighted automaton: states *S*, transitions $T \subseteq S \times \mathbb{K} \times S$

- \mathbb{K} : Set of weights.
- Standard example: $\mathbb{K} = L \times \mathbb{R}$. Discrete labels L, real weights \mathbb{R} .

Definition

A trace is an infinite sequence of weights; an element of \mathbb{K}^{ω} .

• Notation: For $s \in S$ in a weighted automaton (S, T), Tr(s) is the set of traces from s.

Framework for Quantitative Analysis

Trace distance

Assume given a hemimetric $d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$.

That's it. We only assume some way to measure distance between traces.

- Think of the trace distance as application defined
- ${\scriptstyle \bullet}\,$ May or may not come from some metric on ${\rm K}\,$
- (This is very common *e.g.* in applications in real-time or hybrid systems)

(Hemimetric: not necessarily symmetric pseudometric:

•
$$d_T(x,x) = 0$$
 (indiscernibility of identicals)

• $d_T(x,y) + d_T(y,z) \ge d_T(x,z)$ (triangle inequality))

Examples of Trace Distances

• Let $\mathbb{K} = L \times \mathbb{R}$. Notation: Trace $\sigma = ((\sigma_0^{\ell}, \sigma_0^{w}), (\sigma_1^{\ell}, \sigma_1^{w}), \dots)$.

Point-wise trace distance

$$d^{\bullet}_{T}(\sigma,\tau) = \begin{cases} \sup_{i} & |\sigma^{w}_{i} - \tau^{w}_{i}| & \text{if } \sigma^{\ell}_{i} = \tau^{\ell}_{i} \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Accumulating trace distance

$$d_T^+(\sigma,\tau) = \begin{cases} \sum_i & |\sigma_i^w - \tau_i^w| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{ otherwise} \end{cases}$$

Maximum-lead trace distance

$$d_T^{\pm}(\sigma,\tau) = \begin{cases} \sup_i \left| \sum_{j=0}^i \sigma_j^w - \sum_{j=0}^i \tau_j^w \right| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Examples of Trace Distances

• Let $\mathbb{K} = L \times \mathbb{R}$. Notation: Trace $\sigma = ((\sigma_0^{\ell}, \sigma_0^{w}), (\sigma_1^{\ell}, \sigma_1^{w}), \dots)$.

Point-wise trace distance

$$d^{\bullet}_{T}(\sigma,\tau) = \begin{cases} \sup_{i} \lambda^{i} |\sigma^{w}_{i} - \tau^{w}_{i}| & \text{if } \sigma^{\ell}_{i} = \tau^{\ell}_{i} \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Accumulating trace distance

$$d_T^+(\sigma,\tau) = \begin{cases} \sum_i \lambda^i |\sigma_i^w - \tau_i^w| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Maximum-lead trace distance

$$d_T^{\pm}(\sigma,\tau) = \begin{cases} \sup_i \left| \sum_{j=0}^i \sigma_j^w - \sum_{j=0}^i \tau_j^w \right| & \text{if } \sigma_i^\ell = \tau_i^\ell \text{ for all } i \\ \infty & \text{otherwise} \end{cases}$$

Linear Distance

- (Recall: We assume given a hemimetric $d_T : \mathbb{K}^{\omega} \times \mathbb{K}^{\omega} \to [0, \infty]$ on traces.)
- Let $(S, T \subseteq S \times \mathbb{K} \times S)$ be a weighted automaton.
- Linear distance between states $s, t \in S$: use Hausdorff construction:

Definition: Linear distance

 $d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_{\tau}(\sigma,\tau)$

Example

Left: coffee machine Right: coffee&tea Labels are actions, numbers are energy use. Discount factor $\lambda = .9$ Pointwise: $d_{I}^{\bullet}(t,s) = \infty, \ d_{I}^{\bullet}(s,t) = 1.8$ Accumulated: $d_{I}^{+}(t,s) = \infty, \ d_{I}^{+}(s,t) \approx 2.52$ Max-lead (no discounting): $d_{L}^{\pm}(t,s) = \infty, \ d_{L}^{\pm}(s,t) = 2$

Linear vs. Branching Distance: the Upshot

Recall: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_T(\sigma,\tau)$$

- This is inspired by trace inclusion
- and looks like it will be difficult to compute.
- (Indeed, for timed automata *e.g.*, d_L is uncomputable.)

Linear vs. Branching Distance: the Upshot

Recall: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_T(\sigma,\tau)$$

- This is inspired by trace inclusion
- and looks like it will be difficult to compute.
- (Indeed, for timed automata *e.g.*, d_L is uncomputable.)
- Goal: Find a corresponding branching distance *d*_B
- inspired by simulation
- which has $d_L \leq d_B$
- and may be easier to compute.

Linear vs. Branching Distance: the Idea

Recall: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \operatorname{Tr}(s)} \inf_{\tau \in \operatorname{Tr}(t)} d_T(\sigma,\tau)$$

- This is a game!
- Player 1 chooses the worst trace $\sigma \in \mathsf{Tr}(s)$.
- Player 2 matches it with the best trace $au \in \mathsf{Tr}(t)$.
- d_L(s, t) = value of the "1-blind weighted simulation game": Player 2 has perfect information, Player 1 is blind.

Definition: Branching distance

 $d_B(s, t) =$ value of the same game, but with perfect information

• Hence "
$$d_B(s,t) = \sup_{s \xrightarrow{\sigma_0} s_1} \inf_{t \xrightarrow{\tau_0} t_1} \sup_{s_1 \xrightarrow{\sigma_1} s_2} \inf_{t_1 \xrightarrow{\tau_1} t_2} \cdots d_T(\sigma,\tau)$$
".

Linear vs. Branching Distance: the Dirty Details

Precise definition of how this works:

- Given: Weighted automaton ($S, T \subseteq S imes \mathbb{K} imes S$), states $s, t \in S$
- (Imagine a game of two players taking turns to build two paths:)
- A strategy from s, t: θ : fPa(s) \times fPa(t) \rightarrow T
 - for Player 1: start $(\theta(\pi_1,\pi_2)) = \operatorname{end}(\pi_1)$
 - for Player 2: start $(\theta(\pi_1, \pi_2)) = end(\pi_2)$
- A round of the game under strategies θ_1 , θ_2 : Round_{(θ_1,θ_2)} $(\pi_1,\pi_2) = (\pi_1 \cdot \theta_1(\pi_1,\pi_2), \pi_2 \cdot \theta_2(\pi_1 \cdot \theta_1(\pi_1,\pi_2), \pi_2))$
- The limit of the game under strategies θ_1 , θ_2 : limit = $\lim_{j\to\infty} \text{Round}_{(\theta_1,\theta_2)}^j(s_0, t_0)$ (a pair of infinite paths)
- The utility of the strategies θ_1 , θ_2 : $u(\theta_1, \theta_2) = d_T(tr(limit))$
- The value of the game: $v(s, t) = \sup_{\theta_1, \theta_2} \inf_{\theta_2} u(\theta_1, \theta_2)$

Perfect vs. Imperfect Information

- $\Theta_1(s, t)$, $\Theta_2(s, t)$: sets of all Player-1 resp. Player-2 strategies fPa(s) × fPa(t) → T
- Games with imperfect information: Restrict available strategies to proper subsets of Θ₁ or Θ₂
- Special case: blind Player-1 strategies $\tilde{\Theta}_1 = T^{fPa(s)}$
- Do not depend on Player-2 choices: Player 1 cannot "see" what Player 2 is doing

• Branching distance:
$$d_B(s, t) = \sup_{\theta_1 \in \Theta_1(s, t)} \inf_{\theta_2 \in \Theta_2(s, t)} u(\theta_1, \theta_2)$$

• Linear distance: $d_L(s,t) = \sup_{\theta_1 \in \tilde{\Theta}_1(s,t)} \inf_{\theta_2 \in \Theta_2(s,t)} u(\theta_1,\theta_2)$

Properties

Proposition

- *d_L* is a hemimetric.
- If the simulation game is *determined*, d_B is a hemimetric.
- Need determinacy to show triangle inequality
- (But have no counterexample)

Theorem

For all $s, t \in S$, $d_L(s, t) \leq d_B(s, t)$.

Proof:

For d_B , Player 1 (the sup player) has more strategies to choose from!

Properties

Theorem

There exists a weighted automaton on which d_L and d_B are topologically inequivalent.

- Unless for all traces σ , τ : $\sigma_0 = \tau_0$ implies $d_T(\sigma, \tau) = 0$.
- (*i.e.* d_T measures only on *first* trace element; not very useful!)

Proof

Let $\sigma, \tau \in \mathbb{K}^{\omega}$ such that $\sigma_0 = \tau_0$, $d_T(\sigma, \tau) > 0$, and $d_T(\tau, \sigma) > 0$.

We have $\operatorname{Tr}(s) = \operatorname{Tr}(t)$, hence $d_L(s, t) = 0$. On the other hand, $d_B(s, t) = \min (d_T(\sigma, \tau), d_T(\tau, \sigma)) > 0$. That's it.

Fixed-Point Characterization

• Back to trace distance examples:

$$d_{\mathcal{T}}^{\bullet}(\sigma,\tau) = \sup_{i} |\sigma_{i}^{w} - \tau_{i}^{w}| = \max\left(|\sigma_{0}^{w} - \tau_{0}^{w}|, d_{\mathcal{T}}^{\bullet}(\sigma^{1},\tau^{1})\right)$$

Similarly:

$$d_T^+(\sigma, \tau) = |\sigma_0^w - \tau_0^w| + d_T^+(\sigma^1, \tau^1)$$

Theorem

If $d_T(\sigma, \tau) = f(\sigma_0, \tau_0, d_T(\sigma^1, \tau^1))$ for some function $f : \mathbb{K} \times \mathbb{K} \times [0, \infty]$ $\rightarrow [0, \infty]$ which is monotone in the third coordinate and all $\sigma, \tau \in \mathbb{K}^{\omega}$, then d_B is the least fixed point to the set of equations

$$h(s,t) = \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} f(x, y, h(s', t'))$$

Fixed-Point Characterization

Theorem (again)

If $d_T(\sigma, \tau) = f(\sigma_0, \tau_0, d_T(\sigma^1, \tau^1))$ for some function $f : \mathbb{K} \times \mathbb{K} \times [0, \infty]$ $\rightarrow [0, \infty]$ which is monotone in the third coordinate and all $\sigma, \tau \in \mathbb{K}^{\omega}$, then d_B is the least fixed point to the set of equations

$$h(s,t) = \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} f(x, y, h(s', t'))$$

- So if trace distance has a simple recursive characterization, then so does branching distance.
- Applies to d_T^{\bullet} and d_T^+ , but not to d_T^{\pm} .
- Have extension to "recursive characterization with memory" which applies to d_T^{\pm} (and other interesting distances, *e.g.* lim-avg).

Conclusion

- For most applications, trace distances are easy to think of
- We show how to go from any trace distance to a linear (easy) and branching (difficult) distance
- (Using games with quantitative objectives)
- Our definition of linear and branching distance may not be very operational
- (*E.g.*, linear distance is *uncomputable* for some models, and so may branching distance)
- But we claim that our definition is (or should be) the canonical one
- (And we show that for a number of interesting examples, we
 - get an operational definition (using fixed points)
 - and recover previously considered distances)

Mathematical Wish List

• Relate equivalence of trace distances to equivalence of linear distances. Like this:

Theorem

If trace distances d_T^1 and d_T^2 are Lipschitz equivalent, then the corresponding linear distances d_L^1 and d_L^2 are topologically equivalent.

- Relate equivalence of trace distances to equivalence of branching distances.
- Classify trace distances (up to equivalence).

Other games

- Recall: $d_B(s, t)$ value of weighted simulation game
- $d_L(s,t) = \sup_{\sigma \in \operatorname{Tr}(s)} \inf_{\tau \in \operatorname{Tr}(t)} d_T(\sigma,\tau)$ value of 1-blind game
- The 2-blind game: $\inf_{\tau \in \mathsf{Tr}(t)} \sup_{\sigma \in \mathsf{Tr}(s)} d_{\mathcal{T}}(\sigma, \tau)$
- (Oh: what about minimax theorems here?)
- The weighted bisimulation game: At each turn, give Player 1 the choice whether to prolong the path from s or from t ⇒ bisimulation distance!
- The weighted similarity game: Player 1 gets to choose which path to build before first turn only ⇒ similarity distance
- Player 1 gets to choose before first turn and is blinded
 language equivalence distance
- *etc*.