Playing Games with Metrics Distances for Weighted Transition Systems

Uli Fahrenberg Claus Thrane Kim G. Larsen

IRISA Rennes, France / Aalborg University, Denmark

QAPL 2011

Quantitative Analysis

Fixed-point characterization

Quantitative Quantitative Analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq .1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distance d_L
Bisimilarity \sim	Branching distance d_B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
$s\models arphi$ or $s ot\models arphi$	$\llbracket arphi rbracket (s)$ is a quantity
$s \sim t \text{ iff } \forall \varphi : s \models \varphi \Leftrightarrow t \models \varphi$	$d_B(s,t) = \sup_arphi dig(\llbracket arphi rbracket (s), \llbracket arphi rbracket (t)ig)$

Quantitative Quantitative Quantitative Analysis

- Thrane, Fahrenberg, Larsen: *Quantitative analysis of weighted transition systems*. JLAP 2010.
- Fahrenberg, Larsen, Thrane: A quantitative characterization of weighted Kripke structures in temporal logic. CAI 2010.
- Larsen, Fahrenberg, Thrane: *Metrics for weighted transition systems: Axiomatization and complexity.* TCS 2011.

The Framework

Idea:

- Qualitative and quantitative information should be orthogonal
- and both are inputs to the verification problem

Here:

- Qualitative information: labeled transition system
- Quantitative information: distance on traces

Definitions

- \mathbb{K} : set of labels
- \mathbb{K}^{ω} : set of infinite traces in \mathbb{K}
- a labeled transition system: states S, transitions $T \subseteq S \times \mathbb{K} \times S$
- a trace distance: (extended) hemimetric $d_{\mathcal{T}}:\mathbb{K}^\omega imes\mathbb{K}^\omega o [0,\infty]$

Examples of Trace Distances

- Cantor distance: $d_T(\sigma, \tau) = 1 / (\text{length of longest common prefix})$
- Hamming distance: $d_T(\sigma, \tau) = \sum \delta(\sigma_j, \tau_j)$
- Levenshtein distance

Given a hemimetric $d : \mathbb{K} \times \mathbb{K} \to [0, \infty]$:

- point-wise distance: $d_T(\sigma, \tau) = \sup d(\sigma_j, \tau_j)$
- accumulating distance: $d_T(\sigma, \tau) = \sum d(\sigma_j, \tau_j)$

Given hemimetric $d : \mathbb{K} \times \mathbb{K} \to [0, \infty]$ and addition $+ : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$:

• max-lead distance: $d_T(\sigma, \tau) = \sup d\left(\sum_{j=0}^n \sigma_j, \sum_{j=0}^n \tau_j\right)$

Useful for infinite traces:

- discounting: for $0 < \lambda < 1$, e.g. $d_T(\sigma, \tau) = \sum \lambda^j d(\sigma_j, \tau_j)$
- limit-average: e.g. $d_T(\sigma, \tau) = \liminf \frac{1}{n} \sum_{j=1}^{n} d(\sigma_j, \tau_j)$

Linear Distance

Let

- ($S, T \subseteq S imes \mathbb{K} imes S$) be a labeled transition system,
- $d_T: \mathbb{K}^\omega imes \mathbb{K}^\omega o [0,\infty]$ be a trace distance.

Definition: Linear distance from s to t $d_L(s, t) = \sup \inf d_T(\sigma, \tau)$

 $\sigma \in \operatorname{Tr}(s) \ \tau \in \operatorname{Tr}(t)$

- Tr(s): set of infinite traces from s
- This is the Hausdorff construction

Lemma

If (S, T) is finitely branching, then $d(s, t) \leq \varepsilon \iff \forall \sigma \in Tr(s) \exists \tau \in Tr(t) : d_T(\sigma, \tau) \leq \varepsilon.$

Example

Left: coffee machine Right: coffee&tea Labels are actions, numbers are energy use. Discount factor $\lambda = .9$ Pointwise: $d_{I}^{\bullet}(t,s) = \infty, \ d_{I}^{\bullet}(s,t) = 1.8$ Accumulated: $d_{I}^{+}(t,s) = \infty, \ d_{I}^{+}(s,t) \approx 2.52$ Max-lead (no discounting): $d_{L}^{\pm}(t,s) = \infty, \ d_{L}^{\pm}(s,t) = 2$

Linear vs. Branching Distance

Recall: Linear distance

$$d_L(s,t) = \sup_{\sigma \in \mathsf{Tr}(s)} \inf_{\tau \in \mathsf{Tr}(t)} d_T(\sigma,\tau)$$

- This is a game!
- Player 1 chooses the worst trace $\sigma \in Tr(s)$.
- Player 2 matches it with the best trace $au \in Tr(t)$.
- d_L(s, t) = value of the "1-blind weighted simulation game": Player 2 has perfect information, Player 1 is blind.

Definition: Branching distance

 $d_B(s, t) =$ value of the same game, but with perfect information

• Hence "
$$d_B(s,t) = \sup_{s \xrightarrow{\sigma_0} s_1} \inf_{t \xrightarrow{\tau_0} t_1} \sup_{s_1 \xrightarrow{\sigma_1} s_2} \inf_{t_1 \xrightarrow{\tau_1} t_2} \cdots d_T(\sigma,\tau)$$
".

Linear vs. Branching Distance

Precise definition of how this works:

- Imagine a game of two players taking turns to build two paths:
- A strategy from s, t: θ : fPa(s) \times fPa(t) \rightarrow T
 - for Player 1: start($\theta(\pi_1, \pi_2)$) = end(π_1)
 - for Player 2: start $(\theta(\pi_1, \pi_2)) = end(\pi_2)$
- A round of the game under strategies θ_1 , θ_2 : Round_{(θ_1,θ_2)} $(\pi_1,\pi_2) = (\pi_1 \cdot \theta_1(\pi_1,\pi_2), \pi_2 \cdot \theta_2(\pi_1 \cdot \theta_1(\pi_1,\pi_2), \pi_2))$
- The limit of the game under strategies θ_1 , θ_2 : limit = $\lim_{j\to\infty} \text{Round}_{(\theta_1,\theta_2)}^j(s_0, t_0)$ (a pair of infinite paths)
- The utility of the strategies θ_1 , θ_2 : $u(\theta_1, \theta_2) = d_T(tr(limit))$
- The value of the game: $v(s,t) = \sup_{\theta_1, \theta_2} \inf_{\theta_2} u(\theta_1, \theta_2)$

Perfect vs. Imperfect Information

- Θ_1 , Θ_2 : sets of all strategies fPa(s) imes fPa(t) o T
- Games with imperfect information: Restrict available strategies to proper subsets of Θ₁ or Θ₂
- Special case: blind Player-1 strategies $\tilde{\Theta}_1 = T^{fPa(s)}$
- Do not depend on Player-2 choices: Player 1 cannot "see" what Player 2 is doing
- Branching distance: $d_B(s,t) = \sup_{\substack{\theta_1 \in \Theta_1 \\ \theta_2 \in \Theta_2}} \inf_{\substack{\theta_2 \in \Theta_2 \\ \theta_1 \in \tilde{\Theta}_1 \\ \theta_2 \in \Theta_2}} u(\theta_1, \theta_2)$

Properties

Proposition

- *d_L* is a hemimetric
- if the game is determined, then d_B is a hemimetric

Theorem

For all $s, t \in S$, $d_L(s, t) \leq d_B(s, t)$.

Proof:

For d_B , Player 1 (the sup player) has more strategies to choose from!

Theorem

There exists a weighted automaton on which d_L and d_B are topologically inequivalent.

• Unless for all traces σ , τ : $\sigma_0 = \tau_0$ implies $d_T(\sigma, \tau) = 0$

Proof

Let $\sigma, \tau \in \mathbb{K}^{\omega}$ such that $\sigma_0 = \tau_0$, $d_T(\sigma, \tau) > 0$, and $d_T(\tau, \sigma) > 0$.

We have $\operatorname{Tr}(s) = \operatorname{Tr}(t)$, hence $d_L(s, t) = 0$. On the other hand, $d_B(s, t) = \min (d_T(\sigma, \tau), d_T(\tau, \sigma)) > 0$. That's it.

Fixed-Point Characterization

Theorem

If $d_T(\sigma, \tau) = F(\sigma_0, \tau_0, d_T(\sigma^1, \tau^1))$ for some "iterator" function $F : \mathbb{K} \times \mathbb{K} \times [0, \infty] \to [0, \infty]$ which is monotone in the third coordinate and all $\sigma, \tau \in \mathbb{K}^{\omega}$, then d_B is the least fixed point to the set of equations

$$h(s,t) = \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} F(x, y, h(s', t'))$$

- So if trace distance has a simple recursive characterization, then so does branching distance
- Applies to d_T^{\bullet} and d_T^+ , but not to d_T^{\pm}
- Have extension to "recursive characterization with memory" which applies to all examples given previously

Conclusion

Given:

- an arbitrary labeled transition system
- an arbitrary trace distance

we construct

- a linear system distance
- a branching system distance
- (corresponding to trace inclusion and simulation)

This generalizes a number of previous approaches.

Next paper: a host of other system distances

• Coming to a conf near you real soon.

Commercial Break

FORMATS 2011

9th International Conference on Formal Modeling and Analysis of Timed Systems

Cassiopeia

Aalborg University, Denmark 21 to 23 September 2011

Mathematical Wish List

• Relate equivalence of trace distances to equivalence of linear distances. Like this:

Theorem

If trace distances d_T^1 and d_T^2 are Lipschitz equivalent, then the corresponding linear distances d_L^1 and d_L^2 are topologically equivalent.

- Relate equivalence of trace distances to equivalence of branching distances
- Classify trace distances (up to equivalence)