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Boolean world “Quantification”

Trace equivalence ≡ Linear distance dL

Bisimilarity ∼ Branching distance dB

s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
s |= ϕ or s 6|= ϕ JϕK(s) is a quantity
s ∼ t iff ∀ϕ : s |= ϕ⇔ t |= ϕ dB(s, t) = supϕ d

(
JϕK(s), JϕK(t)

)
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The Framework

Idea:

Qualitative and quantitative information should be orthogonal

and both are inputs to the verification problem

Here:

Qualitative information: labeled transition system

Quantitative information: distance on traces

Definitions

K: set of labels

K
ω: set of infinite traces in K

a labeled transition system: states S , transitions T ⊆ S ×K× S

a trace distance: (extended) hemimetric dT : Kω ×Kω → [0,∞]
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Examples of Trace Distances

Cantor distance: dT (σ, τ) = 1 / (length of longest common prefix)

Hamming distance: dT (σ, τ) =
∑
δ(σj , τj)

Levenshtein distance

Given a hemimetric d : K×K→ [0,∞]:

point-wise distance: dT (σ, τ) = sup d(σj , τj)

accumulating distance: dT (σ, τ) =
∑

d(σj , τj)

Given hemimetric d : K×K→ [0,∞] and addition + : K×K→ K:

max-lead distance: dT (σ, τ) = sup d
(∑n

0 σj ,
∑n

0 τj
)

Useful for infinite traces:

discounting: for 0 < λ < 1, e.g. dT (σ, τ) =
∑
λjd(σj , τj)

limit-average: e.g. dT (σ, τ) = lim inf 1
n

∑n
0 d(σj , τj)
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Linear Distance

Let

(S ,T ⊆ S ×K× S) be a labeled transition system,

dT : Kω ×Kω → [0,∞] be a trace distance.

Definition: Linear distance from s to t

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT (σ, τ)

Tr(s): set of infinite traces from s

This is the Hausdorff construction

Lemma

If (S ,T ) is finitely branching, then
d(s, t) ≤ ε⇐⇒ ∀σ ∈ Tr(s) ∃ τ ∈ Tr(t) : dT (σ, τ) ≤ ε.
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Example
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Left: coffee machine
Right: coffee&tea

Labels are actions, numbers are
energy use.
Discount factor λ = .9

Pointwise:
d•L(t, s) =∞, d•L(s, t) = 1.8

Accumulated:
d+
L (t, s) =∞, d+

L (s, t) ≈ 2.52

Max-lead (no discounting):
d±L (t, s) =∞, d±L (s, t) = 2
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Linear vs. Branching Distance

Recall: Linear distance

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT (σ, τ)

This is a game!

Player 1 chooses the worst trace σ ∈ Tr(s).

Player 2 matches it with the best trace τ ∈ Tr(t).

dL(s, t) = value of the “1-blind weighted simulation game”: Player 2
has perfect information, Player 1 is blind.

Definition: Branching distance

dB(s, t) = value of the same game, but with perfect information

Hence “dB(s, t) = sup

s
σ0−→s1

inf

t
τ0−→t1

sup

s1

σ1−→s2

inf

t1

τ1−→t2

· · · dT (σ, τ)”.
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Linear vs. Branching Distance

Precise definition of how this works:

Imagine a game of two players taking turns to build two paths:

A strategy from s, t: θ : fPa(s)× fPa(t)→ T

for Player 1: start(θ(π1, π2)) = end(π1)
for Player 2: start(θ(π1, π2)) = end(π2)

A round of the game under strategies θ1, θ2:
Round(θ1,θ2)(π1, π2) =

(
π1 · θ1(π1, π2), π2 · θ2(π1 · θ1(π1, π2), π2)

)
The limit of the game under strategies θ1, θ2:
limit = limj→∞ Roundj

(θ1,θ2)(s0, t0) (a pair of infinite paths)

The utility of the strategies θ1, θ2: u(θ1, θ2) = dT

(
tr(limit)

)
The value of the game: v(s, t) = sup

θ1

inf
θ2

u(θ1, θ2)
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Perfect vs. Imperfect Information

Θ1, Θ2: sets of all strategies fPa(s)× fPa(t)→ T

Games with imperfect information: Restrict available strategies to
proper subsets of Θ1 or Θ2

Special case: blind Player-1 strategies Θ̃1 = T fPa(s)

Do not depend on Player-2 choices: Player 1 cannot “see” what
Player 2 is doing

Branching distance: dB(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

u(θ1, θ2)

Linear distance: dL(s, t) = sup
θ1∈Θ̃1

inf
θ2∈Θ2

u(θ1, θ2)
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Properties

Proposition

dL is a hemimetric

if the game is determined, then dB is a hemimetric

Theorem

For all s, t ∈ S, dL(s, t) ≤ dB(s, t).

Proof:
For dB , Player 1 (the sup player) has more strategies to choose from!

Theorem

There exists a weighted automaton on which dL and dB are topologically
inequivalent.

Unless for all traces σ, τ : σ0 = τ0 implies dT (σ, τ) = 0
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Proof

Let σ, τ ∈ Kω such that σ0 = τ0, dT (σ, τ) > 0, and dT (τ, σ) > 0.

s
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t
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τ1

��
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��
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We have Tr(s) = Tr(t), hence dL(s, t) = 0. On the other hand,
dB(s, t) = min

(
dT (σ, τ), dT (τ, σ)

)
> 0. That’s it.
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Fixed-Point Characterization

Theorem

If dT (σ, τ) = F
(
σ0, τ0, dT (σ1, τ1)

)
for some “iterator” function

F : K×K× [0,∞] → [0,∞] which is monotone in the third coordinate
and all σ, τ ∈ Kω, then dB is the least fixed point to the set of equations

h(s, t) = sup
s

x−→s′

inf
t

y−→t′

F
(
x , y , h(s ′, t ′)

)

So if trace distance has a simple recursive characterization, then so
does branching distance

Applies to d•T and d+
T , but not to d±T

Have extension to “recursive characterization with memory” which
applies to all examples given previously
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Conclusion

Given:

an arbitrary labeled transition system

an arbitrary trace distance

we construct

a linear system distance

a branching system distance

(corresponding to trace inclusion and simulation)

This generalizes a number of previous approaches.

Next paper: a host of other system distances

Coming to a conf near you real soon.

Fahrenberg, Thrane, Larsen Playing Games with Metrics



Commercial Break

FORMATS 2011
9th International Conference on

Formal Modeling and Analysis of Timed Systems

Aalborg University, Denmark
21 to 23 September 2011



Quantitative analysis Linear vs. branching distance Fixed-point characterization

Mathematical Wish List

Relate equivalence of trace distances to equivalence of linear
distances. Like this:

Theorem

If trace distances d1
T and d2

T are Lipschitz equivalent, then the
corresponding linear distances d1

L and d2
L are topologically equivalent.

Relate equivalence of trace distances to equivalence of branching
distances

Classify trace distances (up to equivalence)
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