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Quantitative analysis
Quantitative Quantitative Quantitative Analysis

Quantitative Models Quantitative Logics Quantitative Verification

Pr<.1(Oerror) [[51];51) :3:24
Boolean world “Quantification”
Trace equivalence = Linear distance d;
Bisimilarity ~ Branching distance dg
s~ timpliess=t di(s,t) < dg(s,t)
sEporstop [¢](s) is a quantity
s~ tiff Vo sk et | dp(s,t) = sup, d([](s), [¢](t))
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Quantitative analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Models Quantitative Logics Quantitative Verification

[e)(s) = 3.14

Pr<.1(Oerror) d(s. t) = 42

o Thrane, Fahrenberg, Larsen: Quantitative analysis of
weighted transition systems. JLAP 2010.

o Fahrenberg, Larsen, Thrane: A quantitative
characterization of weighted Kripke structures in
temporal logic. CAl 2010.

o Larsen, Fahrenberg, Thrane: Metrics for weighted

transition systems: Axiomatization and complexity.
TCS 2011.
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Quantitative analysis

The Framework

@ Qualitative and quantitative information should be orthogonal

@ and both are inputs to the verification problem

V.
Here:

o Qualitative information: labeled transition system

o Quantitative information: distance on traces

o KK: set of labels

o K¥: set of infinite traces in K
@ a labeled transition system: states S, transitions T C S x K x §
o

a trace distance: (extended) hemimetric d7 : K“ x K“ — [0, o0]
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Quantitative analysis

Examples of Trace Distances

o Cantor distance: dr(o,7) =1/ (length of longest common prefix)
o Hamming distance: dt(o,7) =) d(0j, 7))
o Levenshtein distance

Given a hemimetric d : K x K — [0, o¢]:
e point-wise distance: dr (o, ) = sup d(oj, 7j)
o accumulating distance: dr(o,7) =) d(0j,7})
Given hemimetric d : K x K — [0, 00] and addition + : K x K — K:
o max-lead distance: dr(o,7) =supd(}.(0j,> 7))
Useful for infinite traces:
o discounting: for 0 < A < 1, e.g. dr(o,7) = > Nd(0j, 7))
o limit-average: e.g. dr(o,7) = liminf 2 Y0 d(0;, 7))
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Linear vs. branching distance

Linear Distance

Let
o (5§, T CSxKxS)be a labeled transition system,
o dr : K¥ x K¥ — [0, 00] be a trace distance.

Definition: Linear distance from s to t

di(s,t)= sup inf dy(o,7)
o€Tr(s) T€Tr(t)

o Tr(s): set of infinite traces from s

@ This is the Hausdorff construction

If (S, T) is finitely branching, then
d(s,t) <e<=Voe€Tr(s)I7T € Tr(t) : dr(o,7) <e.
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Linear vs. branching distance

Example

Left: coffee machine

S t
o Right: coffee&tea o0 _te,
.A Labels are actions, numbers are .A \.
9|  energy use. 9

; g Discount factor A = .9 : = '_:

Q . . o o)

Q ®  Pointwise: o b Q
° ';' dp(t,s) = o0, d}(s,t) =1.8 ° ‘: °

< % Accumulated: < % o~

2 ! df(t,s) = oo, d/ (s, t) = 2.52 2 | E
.4) Max-lead (no discounting): 4 %

dLi(t, s) = o0, df[(s, t)=2 °
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Linear vs. branching distance

Linear vs. Branching Distance

Recall: Linear distance

di(s,t)= sup inf dy(o,7)
o€Tr(s) TETr(t)

This is a game!
Player 1 chooses the worst trace o € Tr(s).
Player 2 matches it with the best trace 7 € Tr(t).

di (s, t) = value of the “1-blind weighted simulation game”: Player 2
has perfect information, Player 1 is blind.

Definition: Branching distance

ds(s, t) = value of the same game, but with perfect information

@ Hence "dg(s,t) = sup inf sup inf --- dr(o,7)".
5&51 tT—0>t1 s1 U—l>52 f1T_1>t2
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Linear vs. branching distance

Linear vs. Branching Distance

Precise definition of how this works:
o Imagine a game of two players taking turns to build two paths:
A strategy from s, t: 6 :fPa(s) x fPa(t) = T
o for Player 1: start(0(m1, 7)) = end(7m1)
o for Player 2: start(f(m1,m2)) = end(m2)
A round of the game under strategies 61, 05:
Round(g, g,)(m1, m2) = (1 - 1(m1, m2), w2 - Oa (1 - 01(71, 72), 72))
The limit of the game under strategies 61, 65:
limit = limj_00 RoundelﬁZ)(so, to) (a pair of infinite paths)

(+]

(4]

(]

(]

The utility of the strategies 61, 62: u(f1,62) = dr (tr(limit))

o The value of the game: v(s,t) = supinf u(f1,6>)
61 6
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Linear vs. branching distance

Perfect vs. Imperfect Information

*]

©1, Oy: sets of all strategies fPa(s) x fPa(t) — T

Games with imperfect information: Restrict available strategies to
proper subsets of ©1 or ©»

(4]

(]

Special case: blind Player-1 strategies ©; = Ta(s)

©

Do not depend on Player-2 choices: Player 1 cannot “see” what
Player 2 is doing

o Branching distance:  dg(s,t) = sup inf wu(61,62)
916@1 926@2
o Linear distance: di(s,t) = sup inf w(6b1,02)

0:€61 6,€0,
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Linear vs. branching distance

Properties

Proposition
@ d; is a hemimetric

o if the game is determined, then dg is a hemimetric

For all s,t € S, di(s,t) < dg(s, t).

Proof:
For dg, Player 1 (the sup player) has more strategies to choose from!

There exists a weighted automaton on which d; and dg are topologically
inequivalent.

@ Unless for all traces o, 7 : 09 = 19 implies dr(o,7) =0
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Linear vs. branching distance

Let 0,7 € K¥ such that o9 = 79, d1(0,7) > 0, and d7(7,0) > 0.

S
g0=T0

- - - -

We have Tr(s) = Tr(t), hence d;(s,t) = 0. On the other hand,
dg(s,t) = min (dr(0,7),dr(r,0)) > 0. That's it.
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Fixed-point characterization

Fixed-Point Characterization

Theorem

If dr(o,7) = F(00, 70, dr(c*, 7)) for some “iterator” function
F: K x K x [0,00] — [0, 0] which is monotone in the third coordinate
and all 0,7 € IK“, then dg is the least fixed point to the set of equations

h(s,t) = sup inf F(x,y,h(s',t))
s5sl X5t/

@ So if trace distance has a simple recursive characterization, then so
does branching distance

o Applies to d¥ and d;f, but not to d%

@ Have extension to “recursive characterization with memory” which
applies to all examples given previously
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Conclusion

Given:

@ an arbitrary labeled transition system
@ an arbitrary trace distance
we construct
@ a linear system distance
@ a branching system distance

o (corresponding to trace inclusion and simulation)

This generalizes a number of previous approaches.

Next paper: a host of other system distances

o Coming to a conf near you real soon.
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Mathematical Wish List

o Relate equivalence of trace distances to equivalence of linear
distances. Like this:

If trace distances d% and d% are Lipschitz equivalent, then the
corresponding linear distances d& and df are topologically equivalent.

o Relate equivalence of trace distances to equivalence of branching
distances

o Classify trace distances (up to equivalence)
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