The Quantitative Linear-Time-Branching-Time Spectrum

Uli Fahrenberg Axel Legay Claus Thrane
IRISA/INRIA Rennes, France / Aalborg University, Denmark

CEA April 2012

Quantitative Analysis

Quantitative Models

Quantitative Quantitative Analysis

Quantitative Models

Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\diamond \text { error })
$$

Quantitative Quantitative Quantitative Analysis

Quantitative Models

Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\searrow \text { error })
$$

Quantitative Verification

$$
\begin{gathered}
\llbracket \varphi \rrbracket(s)=3.14 \\
d(s, t)=42
\end{gathered}
$$

Quantitative Quantitative Quantitative Analysis

Quantitative Models

Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\diamond \text { error })
$$

Quantitative Verification

$$
\begin{gathered}
\llbracket \varphi \rrbracket(s)=3.14 \\
d(s, t)=42
\end{gathered}
$$

"Quantification"

Linear distances d_{L} Branching distances d_{B} $d_{L}(s, t) \leq d_{B}(s, t)$ $\llbracket \varphi \rrbracket(s)$ is a quantity $d_{B}(s, t)=\sup _{\varphi} d(\llbracket \varphi \rrbracket(s), \llbracket \varphi \rrbracket(t))$

Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to measure distance

- point-wise

$$
\begin{array}{r}
d_{T}(\sigma, \tau)=\sup _{i}\left|\sigma_{i}-\tau_{i}\right| \\
d_{T}(\sigma, \tau)=\sum_{i}\left|\sigma_{i}-\tau_{i}\right|
\end{array}
$$

- accumulating
- limit-average
- discounting

$$
d_{T}(\sigma, \tau)=\sum_{i} \lambda^{i}\left|\sigma_{i}-\tau_{i}\right|
$$

- maximum-lead

$$
d_{T}(\sigma, \tau)=\sup _{N}\left|\sum_{i=0}^{N} \sigma_{i}-\sum_{i=0}^{N} \tau_{i}\right|
$$

- Cantor

$$
d_{T}(\sigma, \tau)=\lim \sup _{N} \frac{1}{N} \sum_{i=0}^{N}\left|\sigma_{i}-\tau_{i}\right|
$$

$$
d_{T}(\sigma, \tau)=1 /\left(1+\inf \left\{j \mid \sigma_{j} \neq \tau_{j}\right\}\right)
$$

- etc

Upshot

Two ideas:

- For an application, it is easiest to define distance between system traces (executions)
- Use games to convert this linear distance to branching distances

Or:

- If you give us a distance between strings, we give you back a bunch of distances between systems.
(1) Background: Quantitative analysis
(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games

4 Further Results
(5) Conclusion

 From Trace Distances to Branching Distances via Games}Further ResultsConclusion

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):
bisimulation eq.

nested simulation eq.
ready simulation eq.

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

bisimulation eq.

nested simulation eq. \qquad nested simulation pr.

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

bisimulation eq.

nested simulation eq. \qquad nested simulation pr.

The Simulation Game

The Simulation Game

Duplicator

The Simulation Game

The Simulation Game

1. Player 1 ("Spoiler") chooses edge from s (leading to s^{\prime})
2. Player 2 ("Duplicator") chooses matching edge from t (leading to t^{\prime})
3. Game continues from configuration s^{\prime}, t^{\prime}
ω. If Player 2 can always answer: YES, t simulates s. Otherwise: NO

The Linear-Time-Branching-Time Spectrum, Reordered

bisimulation eq.

3-nested simulation pr.

The Linear-Time-Branching-Time Spectrum, Reordered

bisimulation eq.

3 -nested simulation pr. 3 -nested trace inc.

2-nested simulation pr. $\searrow \perp$ 2-nested trace inc.
\rightarrow readiness eq.
simulation eq.
ready simulation eq.

ready simulation pr.
 readiness pr. simulation pr. \qquad

Background: Quantitative analysis
(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games

4 Further ResultsConclusion

The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s^{\prime})
2. Player 2 chooses matching edge from t (leading to t^{\prime})
3. Game continues from configuration s^{\prime}, t^{\prime}
ω. If Player 2 can always answer: YES, t simulates s. Otherwise: NO

Or, as an Ehrenfeucht-Fraïssé game:

1. Player 1 chooses edge from s (leading to s^{\prime})
2. Player 2 chooses edge from t (leading to t^{\prime})
3. Game continues from new configuration s^{\prime}, t^{\prime}
ω. At the end (maybe after infinitely many rounds!), compare the chosen traces:
If the trace chosen by t matches the one chosen by s : YES Otherwise: NO

Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:

- Assume we have a way, possibly application-determined, to measure distances of (finite or infinite) traces
- Hence a (hemi)metric $d_{T}:(\sigma, \tau) \mapsto d_{T}(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$

The quantitative Ehrenfeucht-Fraïssé game:

1. Player 1 chooses edge from s (leading to s^{\prime})
2. Player 2 chooses edge from t (leading to t^{\prime})
3. Game continues from new configuration s^{\prime}, t^{\prime}
ω. At the end, compare the chosen traces σ, τ :
The simulation distance from s to t is defined to be $d_{T}(\sigma, \tau)$

This can be done for all the games in the LTBT spectrum.

Quantitative EF Games: The Gory Details - 1

- Configuration of the game: $(\pi, \rho): \pi$ the Player-1 choices up to now; ρ the Player-2 choices
- Strategy: mapping from configurations to next moves
- Θ_{i} : set of Player-i strategies
- Simulation strategy: Player-1 moves allowed from end of π
- Bisimulation strategy: Player-1 moves allowed from end of π or end of ρ
- (hence π and ρ are generally not paths - "mingled paths")
- Pair of strategies \Longrightarrow (possibly infinite) sequence of configurations
- Take the limit; unmingle \Longrightarrow pair of (possibly infinite) traces (σ, τ)
- Bisimulation distance: sup inf $d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \Theta_{1} \theta_{2} \in \Theta_{2}
$$

- Simulation distance: sup inf $d_{T}(\sigma, \tau)$ (restricting Player 1's

$$
\theta_{1} \in \Theta_{1}^{0} \theta_{2} \in \Theta_{2}
$$

Quantitative EF Games: The Gory Details - 2

- Blind Player-1 strategies: depend only on the end of ρ
- ("cannot see Player-2 moves")
- $\tilde{\Theta}_{1}$: set of blind Player-1 strategies
- Trace inclusion distance: sup inf $d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \tilde{\Theta}_{1}^{0} \theta_{2} \in \Theta_{2}
$$

- For nesting: count the number of times Player 1 choses edge from end of ρ
- Θ_{1}^{k} : k choices from end of ρ allowed
- Nested simulation distance: sup inf $d_{T}(\sigma, \tau)$ $\theta_{1} \in \Theta_{1}^{1} \theta_{2} \in \Theta_{2}$
- Nested trace inclusion distance: sup inf $d_{T}(\sigma, \tau)$ $\theta_{1} \in \tilde{\Theta}_{1}^{1} \theta_{2} \in \Theta_{2}$
- For ready: allow extra "I'll see you" Player-1 transition from end of ρ

The Quantitative Linear-Time-Branching-Time Spectrum

For any trace distance $d:(\sigma, \tau) \mapsto d(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$: bisimulation eq.

3-nested simulation pr. \longrightarrow 3-nested trace inc.

Background: Quantitative analysis

(2) The Linear-Time-Branching-Time Spectrum via Games

From Trace Distances to Branching Distances via Games5 Conclusion

Transfer Principle

- Given two equivalences or preorders in the qualitative setting for which there is a counter-example which separates them, then the two corresponding distances are topologically inequivalent
- (under certain mild conditions for the trace distance)
- (And the proof uses precisely the same counter-example!)

Recursive Characterization

- If the trace distance $d:(\sigma, \tau) \mapsto d(\sigma, \tau)$ has a decomposition $d=g \circ f: \operatorname{Tr} \times \operatorname{Tr} \rightarrow L \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ through a complete lattice L,
- and f has a recursive formula
- i.e. such that $f(\sigma, \tau)=F\left(\sigma_{0}, \tau_{0}, f\left(\sigma^{1}, \tau^{1}\right)\right)$ for some $F: \Sigma \times \Sigma \times L \rightarrow L$ (which is monotone in the third coordinate)
- (where $\sigma=\sigma_{0} \cdot \sigma^{1}$ is a split of σ into first element and tail)
- then all distances in the QLTBT are given as least fixed points of some functionals using F

All trace distances we know can be expressed recursively like this.

Recursive Characterization: Theorem

The endofunction I on $\left(\mathbb{N}_{+} \cup\{\infty\}\right) \times\{1,2\} \rightarrow L^{S \times S}$ defined by
has a least fixed point $h^{*}:\left(\mathbb{N}_{+} \cup\{\infty\}\right) \times\{1,2\} \rightarrow L^{S \times S}$, and if the LTS (S, T) is finitely branching, then $d^{k-\text { sim }}=g \circ h_{k, 1}^{*}$ for all $k \in \mathbb{N}_{+} \cup\{\infty\}$.

Conclusion \& Further Work

- We show how to convert any (typically application-given) distance on system traces to (almost) any type of branching distance in the LTBT spectrum
- "Adding an extra dimension to the LTBT spectrum"
- Application to different scenarios (How does it work in concrete cases? Do we get sensible algorithms? Approximations?)
- Application to real-time and hybrid systems
- Replace "finitely branching" by "compactly branching"?
- Quantitative LTBT with silent moves?
- What about probabilistic systems?

