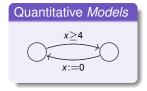
The Quantitative Linear-Time–Branching-Time Spectrum

Uli Fahrenberg Axel Legay Claus Thrane

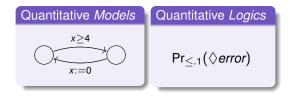
IRISA/INRIA Rennes, France / Aalborg University, Denmark

LaBRI March 2012

Quantitative Analysis



Quantitative Quantitative Analysis



Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}_{x:=0}$	$Pr_{\leq.1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Quantitative Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$\xrightarrow{x \ge 4}$	$Pr_{\leq.1}(\Diamond \mathit{error})$	$\llbracket arphi rbracket (s) = 3.14$ d(s,t) = 42

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distances d_L
Bisimilarity \sim	Branching distances d _B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
$\pmb{s} \models arphi$ or $\pmb{s} eq arphi$	$\llbracket arphi rbracket (s)$ is a quantity
$\boldsymbol{s} \sim t \text{ iff } \forall \varphi : \boldsymbol{s} \models \varphi \Leftrightarrow t \models \varphi$	$d_{\!B}(s,t) = \sup_{arphi} dig(\llbracket arphi rbracket(s), \llbracket arphi rbracket(t)ig)$

Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to measure distance

1

- o point-wise
- accumulating
- limit-average
- discounting
- maximum-lead
- Cantor
- etc

$$d_{T}(\sigma,\tau) = \sup_{i} |\sigma_{i} - \tau_{i}|$$

$$d_{T}(\sigma,\tau) = \sum_{i} |\sigma_{i} - \tau_{i}|$$

$$d_{T}(\sigma,\tau) = \limsup_{N} \frac{1}{N} \sum_{i=0}^{N} |\sigma_{i} - \tau_{i}|$$

$$d_{T}(\sigma,\tau) = \sum_{i} \lambda^{i} |\sigma_{i} - \tau_{i}|$$

$$d_{T}(\sigma,\tau) = \sup_{N} |\sum_{i=0}^{N} \sigma_{i} - \sum_{i=0}^{N} \tau_{i}|$$

$$d_{T}(\sigma,\tau) = 1/(1 + \inf\{j \mid \sigma_{j} \neq \tau_{j}\})$$

Upshot

Two ideas:

- For an application, it is easiest to define distance between system traces (executions)
- Use games to convert this linear distance to branching distances

Or:

 If you give us a distance between strings, we give you back a bunch of distances between systems.

- The Linear-Time–Branching-Time Spectrum via Games
- From Trace Distances to Branching Distances via Games
- 4 Further Results

Background: Quantitative analysis

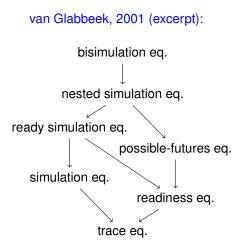
2 The Linear-Time–Branching-Time Spectrum via Games

8 From Trace Distances to Branching Distances via Games

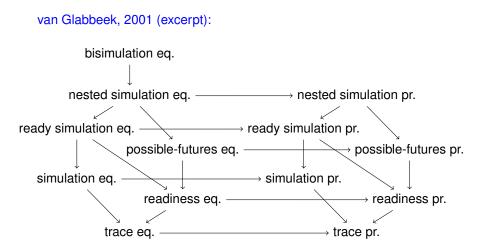
4 Further Results

5 Conclusion

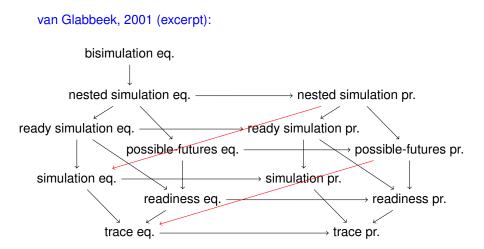
The Linear-Time–Branching-Time Spectrum

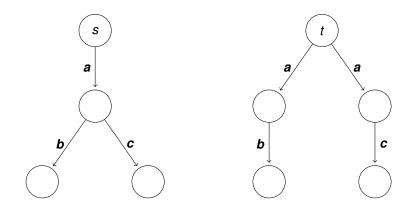


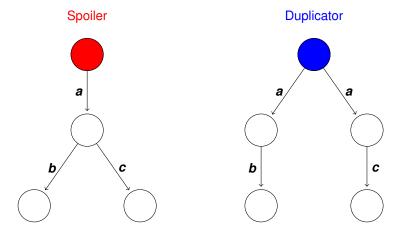
The Linear-Time–Branching-Time Spectrum

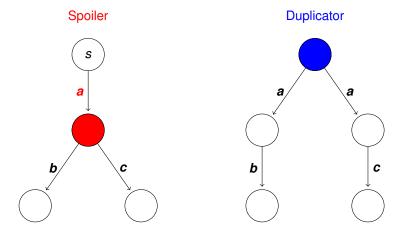


The Linear-Time–Branching-Time Spectrum

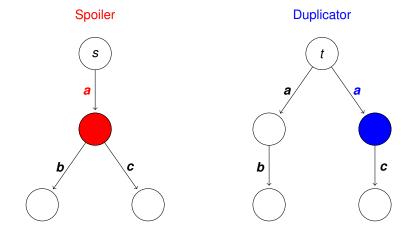




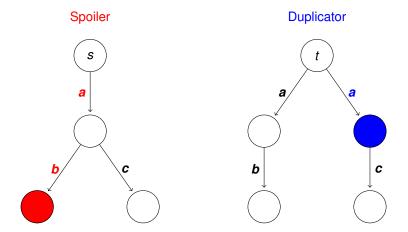


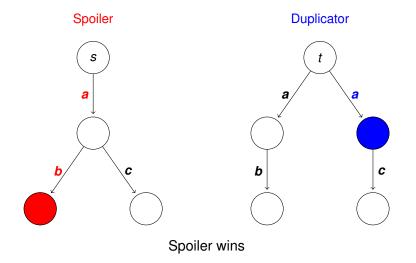


TBT



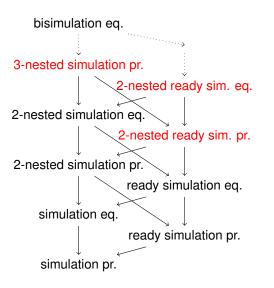
TBT



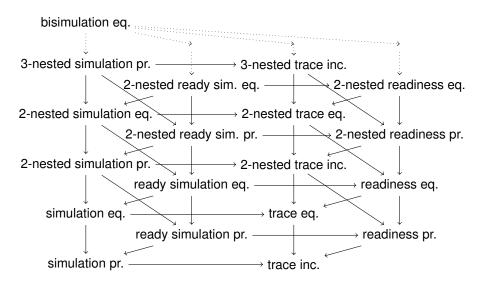


- 1. Player 1 ("Spoiler") chooses edge from s (leading to s')
- 2. Player 2 ("Duplicator") chooses matching edge from t (leading to t')
- 3. Game continues from configuration s', t'
- ω. If Player 2 can always answer: YES, *t* simulates *s*.
 Otherwise: NO

The Linear-Time–Branching-Time Spectrum, Reordered



The Linear-Time–Branching-Time Spectrum, Reordered



2 The Linear-Time–Branching-Time Spectrum via Games

From Trace Distances to Branching Distances via Games

4 Further Results

5 Conclusion

The Simulation Game, Revisited

- 1. Player 1 chooses edge from s (leading to s')
- 2. Player 2 chooses matching edge from t (leading to t')
- 3. Game continues from configuration s', t'
- ω. If Player 2 can always answer: YES, *t* simulates *s*.
 Otherwise: NO
- Or, as an Ehrenfeucht-Fraïssé game:
 - 1. Player 1 chooses edge from s (leading to s')
 - 2. Player 2 chooses edge from t (leading to t')
 - 3. Game continues from new configuration s', t'
 - ω . At the end (maybe after infinitely many rounds!), compare the chosen traces:

If the trace chosen by *t* matches the one chosen by *s*: YES Otherwise: NO

Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:

- Assume we have a way, possibly application-determined, to measure distances of (finite or infinite) traces
- Hence a (hemi)metric $d_T : (\sigma, \tau) \mapsto d_T(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$

The quantitative Ehrenfeucht-Fraïssé game:

- 1. Player 1 chooses edge from s (leading to s')
- 2. Player 2 chooses edge from t (leading to t')
- 3. Game continues from new configuration s', t'
- ω. At the end, compare the chosen traces σ, τ: The simulation distance from *s* to *t* is defined to be $d_T(σ, τ)$

This can be done for all the games in the LTBT spectrum.

Quantitative EF Games: The Gory Details - 1

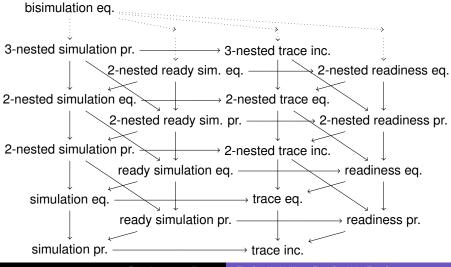
- Configuration of the game: (π, ρ): π the Player-1 choices up to now; ρ the Player-2 choices
- Strategy: mapping from configurations to next moves
 - Θ_i : set of Player-*i* strategies
- Simulation strategy: Player-1 moves allowed from end of π
- Bisimulation strategy: Player-1 moves allowed from end of π or end of ρ
 - (hence π and ρ are generally not paths "mingled paths")
- Pair of strategies => (possibly infinite) sequence of configurations
- Take the limit; unmingle \Longrightarrow pair of (possibly infinite) traces (σ, au)
- Bisimulation distance: $\sup_{\theta_1 \in \Theta_1} \inf_{\theta_2 \in \Theta_2} d_T(\sigma, \tau)$
- Simulation distance: sup inf $d_T(\sigma, \tau)$ (restricting Player 1's $\theta_1 \in \Theta_1^0 \theta_2 \in \Theta_2$ capabilities)

Quantitative EF Games: The Gory Details – 2

- $\bullet\,$ Blind Player-1 strategies: depend only on the end of ρ
 - ("cannot see Player-2 moves")
 - Ö₁: set of blind Player-1 strategies
- Trace inclusion distance: sup inf $d_T(\sigma, \tau)$ $\theta_1 \in \tilde{\Theta}_1^0 \theta_2 \in \Theta_2$
- For nesting: count the number of times Player 1 choses edge from end of ρ
 - Θ_1^k : k choices from end of ρ allowed
- Nested simulation distance: sup inf $d_T(\sigma, \tau)$ $\theta_1 \in \Theta_1^1, \theta_2 \in \Theta_2$
- Nested trace inclusion distance: $\sup_{\theta_1 \in \tilde{\Theta}_1^1 | \theta_2 \in \Theta_2} \inf d_T(\sigma, \tau)$
- For ready: allow extra "I'll see you" Player-1 transition from end of ρ

The Quantitative Linear-Time-Branching-Time Spectrum

For any trace distance $d : (\sigma, \tau) \mapsto d(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$:



Fahrenberg, Legay, Thrane The Quantitative Linear-Time–Branching-Time Spectrum

Background: Quantitative analysis

2 The Linear-Time-Branching-Time Spectrum via Games

From Trace Distances to Branching Distances via Games

4 Further Results

6 Conclusion

Transfer Principle

- Given two equivalences or preorders in the *qualitative* setting for which there is a *counter-example* which separates them, then the two corresponding distances are topologically inequivalent
- (under certain mild conditions for the trace distance)
- (And the proof uses precisely the same counter-example!)

Recursive Characterization

- If the trace distance $d : (\sigma, \tau) \mapsto d(\sigma, \tau)$ has a decomposition $d = g \circ f : \text{Tr} \times \text{Tr} \to L \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ through a complete lattice *L*,
- and f has a recursive formula
- *i.e.* such that $f(\sigma, \tau) = F(\sigma_0, \tau_0, f(\sigma^1, \tau^1))$ for some $F : \Sigma \times \Sigma \times L \to L$ (which is *monotone* in the third coordinate)
- (where $\sigma = \sigma_0 \cdot \sigma^1$ is a split of σ into first element and tail)
- then all distances in the QLTBT are given as least fixed points of some functionals using F

All trace distances we know can be expressed recursively like this.

Recursive Characterization: Theorem

The endofunction / on $(\mathbb{N}_+ \cup \{\infty\}) imes \{1,2\} o L^{\mathcal{S} imes \mathcal{S}}$ defined by

$$I(h_{m,p})(s,t) = \begin{cases} \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} F(x, y, h_{m,1}(s', t')) & \text{if } m \ge 2, p = 1 \\ \sup_{t \xrightarrow{y} t' s \xrightarrow{x} s'} F(x, y, h_{m-1,2}(s', t')) & \text{if } m = 1, p = 1 \\ \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} F(x, y, h_{m,1}(s', t')) & \text{if } m = 1, p = 1 \\ \max \begin{cases} \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} F(x, y, h_{m,2}(s', t')) & \text{if } m \ge 2, p = 2 \\ \sup_{s \xrightarrow{x} s'} \inf_{t \xrightarrow{y} t'} F(x, y, h_{m-1,1}(s', t')) & \text{if } m = 1, p = 2 \\ \sup_{t \xrightarrow{y} t'} \inf_{s \xrightarrow{x} s'} F(x, y, h_{m,2}(s', t')) & \text{if } m = 1, p = 2 \end{cases}$$

has a least fixed point $h^* : (\mathbb{N}_+ \cup \{\infty\}) \times \{1, 2\} \to L^{S \times S}$, and if the LTS (S, T) is finitely branching, then $d^{k-\text{sim}} = g \circ h_{k,1}^*$ for all $k \in \mathbb{N}_+ \cup \{\infty\}$.

Conclusion & Further Work

- We show how to convert any (typically application-given) distance on system traces to (almost) any type of branching distance in the LTBT spectrum
- "Adding an extra dimension to the LTBT spectrum"
- Application to different scenarios (How does it work in concrete cases? Do we get sensible algorithms? Approximations?)
- Application to real-time and hybrid systems
 - Replace "finitely branching" by "compactly branching"?
- Quantitative LTBT with silent moves?
- What about probabilistic systems?