Büchi Conditions for Generalized Energy Automata

Uli Fahrenberg Axel Legay Karin Quaas

IRISA/INRIA Rennes, France / Universität Leipzig, Germany

WATA 2012

Lower bound problems for energy automata, examples:

- Given finite automaton with integer weights on transitions: does there exist an infinite run in which the accumulated weight never drops below 0?
 - decidable in P
 - Bouyer-F.-Larsen-Markey-Srba:FORMATS'08
- Given timed automaton with integer weights on edges and integer rates in locations: decide the same problem
 - decidable for 1 clock; high complexity
 - by reduction to finite automata with special weight update functions on transitions
 - Bouyer-F.-Larsen-Matkey:HSCC'10
- Proof principle: if there's an infinite run, then there's a "lasso"
- Goal: Generalize. What's the natural setting?

Energy Automata

Energy function:

- right-continuous autofunction f on $\{\bot\} \cup \mathbb{R}_{\geq 0} \cup \{\infty\}$
- \perp means "undefined"

•
$$f(\perp) = \perp$$
, $f(\infty) = \infty$

• total order: $\bot < x < \infty$

• for
$$x_1 \le x_2$$
: $f(x_2) - f(x_1) \ge x_2 - x_1$
• "derivative $f' \ge 1$ "

 so f(x) = ⊥ implies f(x') = ⊥ for all x' ≤ x: f is defined on a left-closed interval

Energy automaton:

- finite automaton with transitions labeled with energy functions
- transitions "transform energy" input \mapsto output
- f(x) = ⊥ for an f-labeled transition: transition is not enabled for input x

Interest: Büchi acceptance

 Given a set F of accept states and x₀ ∈ ℝ_{≥0}: does there exist a run with initial energy x₀ which visits F infinitely often?

Operations on energy functions: max and \circ

The set \mathcal{E} of energy functions with operations max and \circ is a semiring, with $\mathbb{O} = \lambda x . \bot$, $\mathbb{1} = \lambda x . x$

- without " $f' \ge 1$ " condition, only "near-semiring"
- idempotent, positively ordered, complete

* and ω

$$\frac{\mathsf{Star:}}{\mathsf{f}^*} = \sup_{i \ge 0} f^i$$

• for loops which can be taken an arbitrary number of times

•
$$f^*(x) = \begin{cases} x & \text{if } f(x) \le x \\ \infty & \text{if } f(x) > x \end{cases}$$

Omega: " $f^{\omega} = \lim_{i \to \infty} f^i$ "

• for loops which are taken infinitely often

•
$$f^{\omega}(x) = \begin{cases} \bot & \text{if } f(x) < x \\ x & \text{if } f(x) = x \\ \infty & \text{if } f(x) > x \end{cases}$$

Special case of Büchi acceptance: reachability

- Given automaton (S, M) (M : S × S → E is the transition matrix) and s₀, s_f ∈ S: is s_f reachable from s₀ with initial energy x₀?
- Theorem: Let $M^*: S \times S \to \mathcal{E}$ be the closure of M. Then s_f is reachable from s_0 with initial energy x_0 iff $M^*(s_0, s_f)(x_0) \neq \bot$.
- So (not surprisingly) M* captures precisely reachability, in a nice static way: compute M* once, and solve all reachability problems.

Theorem: Let $(S, M : S \times S \rightarrow \mathcal{E})$, $F \subseteq S$, $s_0 \in S$, $x_0 \in \mathbb{R}_{\geq 0}$. There is a run from (s_0, x_0) which visits F infinitely often iff

- there is a run from (s_0, x_0) to some (s, x) with $s \in F$,
- and a loop from (s, x) to (s, x') with $x' \ge x$

Question: Is there also a nice static way to express this property?

(And relaxing any of the conditions on energy functions quickly leads to undecidability.)