Kleene Algebras and Semimodules for Energy Problems

Zoltán Ésik Uli Fahrenberg Axel Legay Karin Quaas

Univ. Szeged, Hungary / IRISA/Inria Rennes, France / Univ. Leipzig, Germany

ATVA 2013

Lower bound problems for energy automata, examples:

- Given finite automaton with integer weights on transitions: does there exist an infinite run in which the accumulated weight never drops below 0?
 - decidable in P
 - Bouyer-F.-Larsen-Markey-Srba: FORMATS'08
- Given timed automaton with integer weights on edges and integer rates in locations: decide the same problem
 - decidable for 1 clock; high complexity
 - by reduction to finite automata with special weight update functions on transitions
 - Bouyer-F.-Larsen-Markey: HSCC'10
- Proof principle: if there's an infinite run, then there's a "lasso"
- Goal: Generalize. What's the natural setting?

What is the minimum amount of battery required for the satellite to always be able to send and receive messages?

Energy Automata

Energy function:

- right-continuous autofunction f on $\{\bot\} \cup \mathbb{R}_{\geq 0} \cup \{\infty\}$
- \perp means "undefined"

•
$$f(\perp) = \perp$$
, $f(\infty) = \infty$

• total order: $\bot < x < \infty$

• for
$$x_1 \le x_2$$
: $f(x_2) - f(x_1) \ge x_2 - x_1$
• "derivative $f' \ge 1$ "

 so f(x) = ⊥ implies f(x') = ⊥ for all x' ≤ x: f is defined on a left-closed interval

Energy automaton:

- finite automaton with transitions labeled with energy functions
- transitions "transform energy" input \mapsto output
- f(x) = ⊥ for an f-labeled transition: transition is not enabled for input x

Energy Automata, Examples

a simple energy function

a simple energy automaton

Interest: reachability and Büchi acceptance

 Given a set F of accept states and x₀ ∈ ℝ_{≥0}: does there exist a run with initial energy x₀ which reaches F? does there exist one which visits F infinitely often?

Operations on energy functions: max and \circ

becomes $\max(g_1 \circ f_1, g_2 \circ f_2)$

The set \mathcal{E} of energy functions with operations max and \circ is a semiring, with $\mathbf{0} = \lambda x \perp$, $\mathbf{1} = \lambda x \cdot x$

- without " $f' \ge 1$ " condition, only "near-semiring"
- idempotent, positively ordered, complete

Star:
$$f^* = \sup_{n \ge 0} f^n$$

• for loops which can be taken an arbitrary number of times

•
$$f^*(x) = \begin{cases} x & \text{if } f(x) \le x \\ \infty & \text{if } f(x) > x \end{cases}$$

Theorem: Always, $gf^*h = \sup_{n \ge 0} gf^nh$

• i.e. \mathcal{E} is a star-continuous Kleene algebra

Corollary: Let M be the (transposed) transition matrix of an energy automaton

• i.e. M_{ji} is the transition label from state s_i to state s_j . Compute $M^* = \sup_{n \ge 0} M^n$ Then s_j is reachable from s_i with initial energy x_0 iff $M_{ji}^*(x_0) \neq \bot$.

Loops for Infinite Runs

Omega: "
$$f^{\omega} = \lim_{n \to \infty} f^n$$
"

• for loops which are taken infinitely often

•
$$f^{\omega}(x) = \begin{cases} \bot & \text{if } f(x) < x & \text{or } x = \bot \\ \top & \text{if } f(x) \ge x & \text{and } x \neq \bot \end{cases}$$

• important: two-valued; \mathcal{V} : energy functions into $\{\bot, \top\}$

Theorem: $(\mathcal{E}, \mathcal{V})$ is a Conway semiring-semimodule pair

Corollary: Let M be the (transposed) transition matrix of an energy automaton

• i.e. M_{ji} is the transition label from state s_i to state s_j . Compute " $M^{\omega} = \lim_{n \to \infty} M^n$ " Then there is an infinite run from s_i with initial energy x_0 iff $M_i^{\omega}(x_0) \neq \bot$.

Some Technical Details for Reachability

(Applying work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in \mathcal{E}^{k \times k}$ and $d \in \mathcal{E}^{m \times m}$ (and $k + m = n$), let
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix} \in \mathcal{E}^{n \times n}$$

Lemma: M^* does not depend on k and m, and always $NM^*P = \sup_n NMP$.

 can also use (generalized) Floyd-Warshall algorithm to compute M^{*}; generally faster

Theorem: For any \mathcal{E} -automaton (S, M) with $S = \{1, \ldots, n\}$, $F = \{1, \ldots, k\}$, $k \le n$, $s_0 \le n$, and $x_0 \in \mathbb{R}_{\ge 0}$, Reach $(s_0, x_0, F) =$ tt iff ${}_tF^{\le k}M^*I^{s_0}(x_0) \ne \bot$.

(Extending work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in \mathcal{E}^{k \times k}$ and $d \in \mathcal{E}^{m \times m}$ (and $k + m = n$), let

$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor d^{\omega}c(a \lor bd^*c)^* \\ (d \lor ca^*b)^{\omega} \lor a^{\omega}b(d \lor ca^*b)^* \end{bmatrix} \in \mathcal{E}^{1 \times n}$$
$$M^{\omega_k} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \\ (a \lor bd^*c)^{\omega}bd^* \end{bmatrix} \in \mathcal{E}^{1 \times n}$$

Theorem: For any \mathcal{E} -automaton (S, M) with $S = \{1, \ldots, n\}$, $F = \{1, \ldots, k\}$, $k \le n$, $s_0 \le n$, and $x_0 \in \mathbb{R}_{\ge 0}$, Büchi $(s_0, x_0, F) =$ **tt** iff $M^{\omega_k} I^{s_0}(x_0) \ne \bot$.

Conclusion

- Energy problems can be solved using the theory of semiring-weighted automata and semiring-semimodule pairs
 for reachability, use star; for Büchi, use omega
- Extensions to multi-dimension or games: semiring techniques do not seem to apply
 - but techniques from well-structured transition systems do
 - for multi-dimensional games, undecidability is quickly reached
- Extension to energy automata with discrete inputs?
 - modeling discrete control problems

What is the minimum amount of battery required, and which control actions do I need to apply, for the satellite to always be able to send and receive messages?