History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps

Uli Fahrenberg Axel Legay

IRISA/INRIA Rennes, France

MFPS 2013

Executive Summary

- History-preserving bisimilarity is, "morally", a relation on *paths*
- But we can show that for higher-dimensional automata, it is equivalent to a relation on *states* and (higher-dimensional) *transitions*
 - Easy consequence: decidability of HPB for *finite* HDA (generalizing a result for safe Petri nets)
- This adds weight to the claim that HDA are a natural and useful (and beautiful!) formalism for concurrency

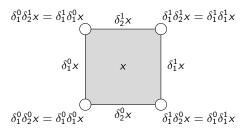
Higher-Dimensional Automata

- Definition
- Labels (and why we can ignore them)
- Higher-dimensional paths
- Open-maps bisimulation
- 2 History-Preserving Bisimilarity
 - Homotopy
 - History-preserving bisimilarity & main result
 - Unfoldings

Higher-dimensional automata

A precubical set:

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension *n*, 2*n* face maps $\delta_k^0, \delta_k^1 : X_n \to X_{n-1}$ (*k* = 1,..., *n*)
- the precubical identity: $\delta_k^\nu \delta_\ell^\mu = \delta_{\ell-1}^\mu \delta_k^\nu$ for all $k < \ell$



A higher-dimensional automaton: a pointed precubical set (i.e. precubical set with initial state)

Higher-dimensional automata

HDA as a model for concurrency:

- points $x \in X_0$: states
- edges $a \in X_1$: transitions
- *n*-squares $\alpha \in X_n$ ($n \ge 2$): independency relations
- van Glabbeek (2006): Up to history-preserving bisimilarity, HDA generalize "the main models of concurrency proposed in the literature"

Morphisms and labels

- HDA: pointed precubical set
- morphism of HDA: pointed precubical morphisms (i.e. respects face maps)
- labeled HDA: HDA X plus labeling $\lambda : X_1 \to \Sigma$ s.t. $\lambda \delta_1^0 x = \lambda \delta_1^1 x$ and $\lambda \delta_2^0 x = \lambda \delta_2^1 x$ for all $x \in X_2$ (opposite edges have same label)
- morphism of labeled HDA: HDA morphism plus label morphism plus commutativity
- trick (Goubault 2002): use *higher-dimensional tori* for labeling. Then all involved functions become precubical morphisms
- \Rightarrow labeled HDA = pointed arrow category
- \Rightarrow results for unlabeled HDA generalize easily to labeled HDA

Higher-dimensional paths

- a computation in a HDA: a cube path: sequence x₁,..., x_n of cubes connected by face maps, i.e. s.t. x_i = δ⁰_kx_{i+1} or x_{i+1} = δ¹_kx_i
- $x_i = \delta_k^0 x_{i+1}$: start of a new concurrent event
- $x_{i+1} = \delta_k^1 x_i$: end of a concurrent event
- HDP \hookrightarrow HDA: subcategory of cube path objects and path extensions (not full!)

Open-maps bisimulation

- HDA morphism $f : X \to Y$ open if right-lifting w.r.t. HDP
- HDA X, Y om-bisimilar if span $X \leftarrow Z \rightarrow Y$ of open maps
- Theorem: HDA X, Y om-bisimilar iff exists pointed precubical subset R ⊆ X × Y s.t. for all reachable x ∈ X, y ∈ Y with (x, y) ∈ R:

• for all
$$x = \delta_k^0 x'$$
, there is $y = \delta_k^0 y'$ with $(x', y') \in R$
• for all $y = \delta_k^0 y'$, there is $x = \delta_k^0 x'$ with $(x', y') \in R$

• This is *beautiful*! But is it *useful*?

Homotopy

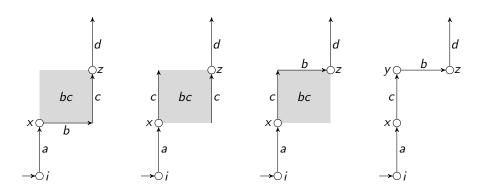
- hp-bisimilarity is a relation on computations which respects (Mazurkiewicz) trace equivalence
- for HDA: homotopy
- cube paths x₁,..., x_n, y₁,..., y_n adjacent if x_i = y_i for all but one i, and
 - x_i and y_i are distinct lower faces of x_{i+1} , or
 - x_i and y_i are distinct upper faces of x_{i-1} , or
 - x_{i-1}, x_{i+1} are lower and upper faces of x_i, and y_i is an upper face of x_{i-1} and a lower face of x_{i+1}, or
 - vice versa
- homotopy \sim : reflexive, transitive closure of adjacency

Higher-Dimensional Automata 00000

History-Preserving Bisimilarity

Conclusion and Discussion

Example



History-preserving bisimilarity

HDA X, Y hp-bisimilar if exists relation R between cube paths in X and cube paths in Y s.t.

- the empty paths are related,
- for all (ρ, σ) ∈ R:
 for all ρ → ρ', there is σ → σ' with (ρ', σ') ∈ R,
 for all σ → σ', there is ρ → ρ' with (ρ', σ') ∈ R,
 for all ρ ~ ρ', there is σ ~ σ' with (ρ', σ') ∈ R,
 for all σ ~ σ', there is ρ ~ ρ' with (ρ', σ') ∈ R,

Main result: HDA are hp-bisimilar iff they are om-bisimilar.

Goal: categorical setting for hp-bisimilarity

- Tool: unfoldings of HDA
 - unfolding up to homotopy, AKA universal covering

 - with suitable face maps (lower faces not trivial to define!)
 - and a projection $\pi_X: \tilde{X} \to X$
 - unfoldings are higher-dimensional trees

HP-morphisms

• A hp-morphism $f : X \curvearrowright Y$ is a morphism of unfoldings

$$X \xleftarrow{\pi_X} \tilde{X} \xrightarrow{f} \tilde{Y} \xrightarrow{\pi_Y} Y$$

- HDA_h: category of HDA and hp-morphisms
- embedding HDP \approx HDP_h \hookrightarrow HDA_h
- hp-morphism $f: X \curvearrowright Y$ hp-open if right-lifting w.r.t. HDP
- Theorem: HDA X, Y hp-bisimilar iff span X ∽ Z ∩ Y of hp-open maps

History-Preserving Bisimilarity $\circ \circ \circ \circ \circ \bullet$

Conclusion and Discussion

Connecting the dots

Theorem: HDA X, Y om-bisimilar iff hp-bisimilar

Proof:



Conclusion and Discussion

- "Morally", the good morphisms for HDA are hp-morphisms of unfoldings
- But *hp-bisimilarity* has a simple precubical characterization
- This fits well in the "geometric" work on HDA
- Coalgebraic characterization?
- Relation to Staton-Winskel's (LICS 2010) unfolding of HDA into presheaves over event structures?
- Hereditary hp-bisimilarity?