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Higher-Dimensional Automata History-Preserving Bisimilarity Conclusion and Discussion

Executive Summary

History-preserving bisimilarity is, “morally”, a relation on
paths

But we can show that for higher-dimensional automata, it is
equivalent to a relation on states and (higher-dimensional)
transitions

Easy consequence: decidability of HPB for finite HDA
(generalizing a result for safe Petri nets)

This adds weight to the claim that HDA are a natural and
useful (and beautiful!) formalism for concurrency
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Higher-dimensional automata

A precubical set:

a graded set X = {Xn}n∈N
in each dimension n, 2n face maps δ0k , δ

1
k : Xn → Xn−1

(k = 1, . . . , n)
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A higher-dimensional automaton: a pointed precubical set
(i.e. precubical set with initial state)
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Higher-dimensional automata

HDA as a model for concurrency:

points x ∈ X0: states

edges a ∈ X1: transitions

n-squares α ∈ Xn (n ≥ 2): independency relations

van Glabbeek (2006): Up to history-preserving bisimilarity,
HDA generalize “the main models of concurrency proposed in
the literature”
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Morphisms and labels

HDA: pointed precubical set

morphism of HDA: pointed precubical morphisms
(i.e. respects face maps)

labeled HDA: HDA X plus labeling λ : X1 → Σ
s.t. λδ01x = λδ11x and λδ02x = λδ12x for all x ∈ X2 (opposite
edges have same label)

morphism of labeled HDA: HDA morphism plus label
morphism plus commutativity

trick (Goubault 2002): use higher-dimensional tori for labeling.
Then all involved functions become precubical morphisms

⇒ labeled HDA = pointed arrow category

⇒ results for unlabeled HDA generalize easily to labeled HDA
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Higher-dimensional paths

a computation in a HDA: a cube path: sequence x1, . . . , xn of
cubes connected by face maps, i.e. s.t. xi = δ0kxi+1 or
xi+1 = δ1kxi

xi = δ0kxi+1: start of a new concurrent event

xi+1 = δ1kxi : end of a concurrent event

HDP ↪→ HDA: subcategory of cube path objects and path
extensions (not full!)
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Open-maps bisimulation

HDA morphism f : X → Y open if right-lifting w.r.t. HDP

HDA X , Y om-bisimilar if span X ← Z → Y of open maps

Theorem: HDA X , Y om-bisimilar iff exists pointed precubical
subset R ⊆ X × Y s.t. for all reachable x ∈ X , y ∈ Y with
(x , y) ∈ R:

for all x = δ0kx ′, there is y = δ0ky ′ with (x ′, y ′) ∈ R
for all y = δ0ky ′, there is x = δ0kx ′ with (x ′, y ′) ∈ R

This is beautiful ! But is it useful ?
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Homotopy

hp-bisimilarity is a relation on computations which respects
(Mazurkiewicz) trace equivalence

for HDA: homotopy

cube paths x1, . . . , xn, y1, . . . , yn adjacent if xi = yi for all but
one i , and

xi and yi are distinct lower faces of xi+1, or
xi and yi are distinct upper faces of xi−1, or
xi−1, xi+1 are lower and upper faces of xi , and yi is an
upper face of xi−1 and a lower face of xi+1, or
vice versa

homotopy ∼: reflexive, transitive closure of adjacency
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Example
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History-preserving bisimilarity

HDA X , Y hp-bisimilar if exists relation R between cube paths in
X and cube paths in Y s.t.

the empty paths are related,

for all (ρ, σ) ∈ R:

for all ρ ρ′, there is σ  σ′ with (ρ′, σ′) ∈ R,
for all σ  σ′, there is ρ ρ′ with (ρ′, σ′) ∈ R,
for all ρ ∼ ρ′, there is σ ∼ σ′ with (ρ′, σ′) ∈ R,
for all σ ∼ σ′, there is ρ ∼ ρ′ with (ρ′, σ′) ∈ R,

Main result: HDA are hp-bisimilar iff they are om-bisimilar.
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Unfoldings

Goal: categorical setting for hp-bisimilarity

Tool: unfoldings of HDA

unfolding up to homotopy, AKA universal covering

unfolding of HDA X is X̃ , set of homotopy classes of cube
paths in X

with suitable face maps (lower faces not trivial to define!)

and a projection πX : X̃ → X

unfoldings are higher-dimensional trees
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HP-morphisms

A hp-morphism f : X y Y is a morphism of unfoldings

X
πX←−− X̃

f−→ Ỹ
πY−−→ Y

HDAh: category of HDA and hp-morphisms

embedding HDP ≈ HDPh ↪→ HDAh

hp-morphism f : X y Y hp-open if right-lifting w.r.t. HDP

Theorem: HDA X , Y hp-bisimilar iff span X x Z y Y of
hp-open maps
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Connecting the dots

Theorem: HDA X , Y om-bisimilar iff hp-bisimilar

Proof:
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Conclusion and Discussion

“Morally”, the good morphisms for HDA are hp-morphisms of
unfoldings

But hp-bisimilarity has a simple precubical characterization

This fits well in the “geometric” work on HDA

Coalgebraic characterization?

Relation to Staton-Winskel’s (LICS 2010) unfolding of HDA
into presheaves over event structures?

Hereditary hp-bisimilarity?
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