Refinement and Difference for Probabilistic Automata

Benoît Delahaye Uli Fahrenberg Kim Larsen Axel Legay

IRISA/INRIA Rennes, France

Aalborg University, Denmark

QEST 2013

Refinement

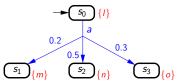
Difference

Distances

Probabilistic Automata

$P = (S, A, L, AP, V, s_0)$

- states *S*, *s*₀ initial state,
- L: S × A × Dist(S) → {⊥, ⊤} is a two-valued transition function,
- A is a set of actions,
- AP is a set of atomic propositions, $V: S \rightarrow 2^{AP}$,



Abstract Probabilistic Automata

$$N = (S, A, L, AP, V, S_0)$$

- states S, $S_0 \subseteq S$ initial states,
- $L: S \times A \times C(S) \rightarrow \{\bot, ?, \top\}$ is a three-valued transition function,
- A is a set of actions,
- AP is a set of atomic propositions, $V: S
 ightarrow \mathbf{2}^{\mathbf{2}^{\mathsf{AP}}}$,

$$\begin{array}{c} \bullet & \\ \bullet &$$

Refinement

Difference

Satisfaction / Refinement

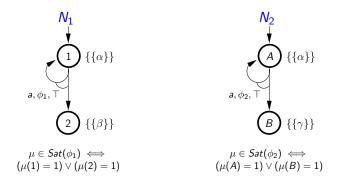
Let $N_1 = (S_1, A, L_1, AP, V_1, S_0^1)$ and $N_2 = (S_2, A, L_2, AP, V_2, S_0^2)$ be APA. A relation $R \subseteq S_1 \times S_2$ is a refinement relation if and only if, for all $(s_1, s_2) \in R$, we have $V_1(s_1) \subseteq V_2(s_2)$ and • $\forall a \in A, \forall \phi_2 \in C(S_2)$, if $L_2(s_2, a, \phi_2) = \top$, then $\exists \phi_1 \in C(S_1) : L_1(s_1, a, \phi_1) = \top$ and $\forall \mu_1 \in Sat(\phi_1), \exists \mu_2 \in Sat(\phi_2) \text{ such that } \mu_1 \leq_R \mu_2,$ • $\forall a \in A, \forall \phi_1 \in C(S_1)$, if $L_1(s_1, a, \phi_1) \neq \bot$, then $\exists \phi_2 \in C(S_2)$ such that $L_2(s_2, a, \phi_2) \neq \bot$ and $\forall \mu_1 \in Sat(\phi_1)$, $\exists \mu_2 \in Sat(\phi_2)$ such that $\mu_1 \leq_R \mu_2$. We say that N_1 refines N_2 , denoted $N_1 \prec N_2$, if there exists a

We say that N_1 refines N_2 , denoted $N_1 \leq N_2$, if there exists a refinement relation R such that $\forall s_0^1 \in S_0^1, \exists s_0^2 \in S_0^2 : (s_0^1, s_0^2) \in R$. Since any PA P is also an APA, we say that P satisfies N (or equivalently P implements N), denoted $P \models N$, iff $P \leq N$.

Difference

- For APA N, [[N]] = set of all PA implementations of N
- Goal: given APA N_1 , N_2 , find specification N so that $\llbracket N \rrbracket = \llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket$

Problem: Exact Difference Does Not Exist



 $\llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket =$ all PAs that can loop on valuation α with probability 1 and finish with β

 \Rightarrow Not Regular

Assumptions:

- Deterministic APA in single valuation normal form
- APA N_1 and N_2 such that $N_1 \not\preceq N_2$

Algorithm:

- Compute maximal refinement relation R
- **2** Use *R* to build the difference

Definition

$$N_1 \setminus N_2 = (S, A, L, AP, V, S_0) \text{ with}$$

• $S = S_1 \times (S_2 \cup \{\bot\}) \times (A \cup \{\epsilon\})$

•
$$V(s_1, s_2, a) = V(s_1)$$
 for all s_2 and a
• $S_0 = \{(s_0^1, s_0^2, f) : f \in B(s_0^1, s_0^2)\}$

Definition

$$N_1 \setminus N_2 = (S, A, L, AP, V, S_0) \text{ with}$$

• $S = S_1 \times (S_2 \cup \{\bot\}) \times (A \cup \{\epsilon\})$

•
$$V(s_1, s_2, a) = V(s_1)$$
 for all s_2 and a
• $S_0 = \{(s_0^1, s_0^2, f) : f \in B(s_0^1, s_0^2)\}$

Definition

$$\mathit{N}_1 \setminus^* \mathit{N}_2 = (\mathit{S}, \mathit{A}, \mathit{L}, \mathit{AP}, \mathit{V}, \mathit{S}_0)$$
 with

•
$$S = S_1 \times (S_2 \cup \{\bot\}) \times (A \cup \{\epsilon\})$$

• \perp : Satisfaction to N_2 already broken previously

•
$$V(s_1, s_2, a) = V(s_1)$$
 for all s_2 and a

•
$$S_0 = \{(s_0^1, s_0^2, f) : f \in B(s_0^1, s_0^2)\}$$

Definition

$$\textit{N}_1 \setminus N_2 = (\textit{S},\textit{A},\textit{L},\textit{AP},\textit{V},\textit{S}_0)$$
 with

- $S = S_1 \times (S_2 \cup \{\bot\}) \times (A \cup \{\epsilon\})$
 - \perp : Satisfaction to N_2 already broken previously
 - ϵ : Satisfaction to N_2 broken in this step

•
$$V(s_1, s_2, a) = V(s_1)$$
 for all s_2 and a

•
$$S_0 = \{(s_0^1, s_0^2, f) : f \in B(s_0^1, s_0^2)\}$$

Underapproximation

- for any $K \in \mathbb{N}$, define $N_1 \setminus^K N_2$, basically like $N_1 \setminus^* N_2$ but with loops K-fold unfolded
- gives underapproximation: always [[N₁]] \ [[N₂]] ⊇ [[N₁ \^K N₂]], but not always equality

How Good Are the Approximations?

- have approximations $\llbracket N_1 \setminus^K N_2 \rrbracket \subseteq \llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket \subseteq \llbracket N_1 \setminus^* N_2 \rrbracket$ for all $K \in \mathbb{N}$
- (for deterministic APA N_1 , N_2 in single valuation normal form)
- but how good are these approximations?
- Use distances to answer this question

Distances

$$d(s_{1}, s_{2}) = \min_{\substack{\{a,\phi_{1}: L_{1}(s_{1}, a,\phi_{1}) \neq \bot\}\{\phi_{2}: L_{2}(s_{2}, a,\phi_{2}) \neq \bot\} \\ \max_{\substack{\{a,\phi_{2}: L_{2}(s_{2}, a,\phi_{2}) = \top\}\{\phi_{1}: L_{1}(s_{1}, a,\phi_{1}) = \top\}}} \lambda D_{N_{1}, N_{2}}(\phi_{1}, \phi_{2}, d)$$

• discounted, accumulating distance

Properties

- for all $K \in \mathbb{N}$, $\llbracket N_1 \setminus^K N_2 \rrbracket \subseteq \llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket \subseteq \llbracket N_1 \setminus^* N_2 \rrbracket$
- for all $K \in \mathbb{N}$, $N_1 \setminus^K N_2 \preceq N_1 \setminus^{K+1} N_2$
- for all $P \in \llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket$ there is $K \in \mathbb{N}$ for which $P \models N_1 \setminus^K N_2$
- the sequence $(\llbracket N_1 \setminus^K N_2 \rrbracket)_{K \in \mathbb{N}}$ converges in the distance d, and $\lim_{K \to \infty} d(\llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket, \llbracket N_1 \setminus^K N_2 \rrbracket) = 0.$
- $d(\llbracket N_1 \setminus N_2 \rrbracket, \llbracket N_1 \rrbracket \setminus \llbracket N_2 \rrbracket) = 0$