Kleene Algebras and Semimodules for Energy Problems

Zoltán Ésik Uli Fahrenberg Axel Legay Karin Quaas

Univ. Szeged, Hungary / IRISA/Inria Rennes, France / Univ. Leipzig, Germany

Dagstuhl 2014

What is the minimum amount of battery required for the satellite to always be able to send and receive messages?

2007

Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems

Infinite Runs in Weighted Timed Automata with Energy Constraints

Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, Jiří Srba

Dept. of Computer Science, Aalborg University, Denmark Lab. Spécification et Vérification, Ecole Normale Supérieure Cachan, France

MT-LAB Meeting, September 2009

(With slides by Nicolas Markey)

One-slide summary

Goal:

Find infinite schedules in priced timed automata which satisfy constraints on total cost

- When should I plan to re-charge my laptop battery if I want to be sure to be able to watch YouTube videos during all my travel?
- How should I re-fill my oil tank so that it never runs out of oil and never runs over?

Results: mixed...

For some problems schedules computable in P, for some uncomputable.

Slogan:

Hybridization of timed automata

Contents

Introduction

Problems

Results, untimed case

Results, 1-clock case

Conclusion and Further Work

Contents

Introduction

Problems

Results, untimed case

Results, 1-clock case

Conclusion and Further Work

Energy is not only consumed, but can be regained.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

Example

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

Energy is not only consumed, but can be regained.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints

 \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \rightsquigarrow "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

2009

Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems

after (w_n, ω_n) .

EXAMPLE 1. We consider the following example, which is already in normal form. The corresponding function f_{π} then looks as depicted on Figure 5:

Figure 5: Function f_{π} for example with linear observer

Currently we positive and we expect ou For the see

$$\pi: \ell_0 - \frac{4}{4}$$

satisfying th As in the prea path (but to to maximum

A path as nential obser one of the fo

- m = 1 (tri
- all rates ar for every 2

(positive n The last concounterpart, $b_{i-1} + p_{i-1}$ " Such a nor

PROPOSIT: tive edge wer Then we can form for exp

2011

Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems

Energy Automata, Examples

a simple energy function

a simple energy automaton

Interest: reachability and Büchi acceptance

 Given a set F of accept states and x₀ ∈ ℝ_{≥0}: does there exist a run with initial energy x₀ which reaches F? does there exist one which visits F infinitely often?

Operations on energy functions: max and \circ

becomes $\max(g_1 \circ f_1, g_2 \circ f_2)$

The set \mathcal{E} of energy functions with operations max and \circ is a semiring, with $\mathbf{0} = \lambda x \perp$, $\mathbf{1} = \lambda x \cdot x$

- without " $f' \ge 1$ " condition, only "near-semiring"
- idempotent, positively ordered, complete

Star:
$$f^* = \sup_{n \ge 0} f^n$$

• for loops which can be taken an arbitrary number of times

•
$$f^*(x) = \begin{cases} x & \text{if } f(x) \le x \\ \infty & \text{if } f(x) > x \end{cases}$$

Theorem: Always, $gf^*h = \sup_{n \ge 0} gf^nh$

• i.e. \mathcal{E} is a star-continuous Kleene algebra

Corollary: Let M be the (transposed) transition matrix of an energy automaton

• i.e. M_{ji} is the transition label from state s_i to state s_j . Compute $M^* = \sup_{n \ge 0} M^n$ Then s_j is reachable from s_i with initial energy x_0 iff $M_{ji}^*(x_0) \neq \bot$.

Loops for Infinite Runs

Omega: "
$$f^{\omega} = \lim_{n \to \infty} f^n$$
"

• for loops which are taken infinitely often

•
$$f^{\omega}(x) = \begin{cases} \bot & \text{if } f(x) < x & \text{or } x = \bot \\ \top & \text{if } f(x) \ge x & \text{and } x \neq \bot \end{cases}$$

• important: two-valued; \mathcal{V} : energy functions into $\{\bot, \top\}$

Theorem: $(\mathcal{E}, \mathcal{V})$ is a Conway semiring-semimodule pair

Corollary: Let M be the (transposed) transition matrix of an energy automaton

• i.e. M_{ji} is the transition label from state s_i to state s_j . Compute " $M^{\omega} = \lim_{n \to \infty} M^n$ " Then there is an infinite run from s_i with initial energy x_0 iff $M_i^{\omega}(x_0) \neq \bot$.

Some Technical Details for Reachability

(Applying work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in \mathcal{E}^{k \times k}$ and $d \in \mathcal{E}^{m \times m}$ (and $k + m = n$), let
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix} \in \mathcal{E}^{n \times n}$$

Lemma: M^* does not depend on k and m, and always $NM^*P = \sup_n NMP$.

 can also use (generalized) Floyd-Warshall algorithm to compute M^{*}; generally faster

Theorem: For any \mathcal{E} -automaton (S, M) with $S = \{1, \ldots, n\}$, $F = \{1, \ldots, k\}$, $k \le n$, $s_0 \le n$, and $x_0 \in \mathbb{R}_{\ge 0}$, Reach $(s_0, x_0, F) =$ tt iff ${}_tF^{\le k}M^*I^{s_0}(x_0) \ne \bot$.

(Extending work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in \mathcal{E}^{k \times k}$ and $d \in \mathcal{E}^{m \times m}$ (and $k + m = n$), let

$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor d^{\omega}c(a \lor bd^*c)^* \\ (d \lor ca^*b)^{\omega} \lor a^{\omega}b(d \lor ca^*b)^* \end{bmatrix} \in \mathcal{E}^{1 \times n}$$
$$M^{\omega_k} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \\ (a \lor bd^*c)^{\omega}bd^* \end{bmatrix} \in \mathcal{E}^{1 \times n}$$

Theorem: For any \mathcal{E} -automaton (S, M) with $S = \{1, \ldots, n\}$, $F = \{1, \ldots, k\}$, $k \le n$, $s_0 \le n$, and $x_0 \in \mathbb{R}_{\ge 0}$, Büchi $(s_0, x_0, F) =$ **tt** iff $M^{\omega_k} I^{s_0}(x_0) \ne \bot$.

Conclusion

- Energy problems can be solved using the theory of semiring-weighted automata and semiring-semimodule pairs
 for reachability, use star; for Büchi, use omega
- Extensions to multi-dimension or games: semiring techniques do not seem to apply
 - but techniques from well-structured transition systems do
 - for multi-dimensional games, undecidability is quickly reached
- Extension to energy automata with discrete inputs?
 - modeling discrete control problems