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What is the minimum amount of battery required for the satellite
to always be able to send and receive messages?
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One-slide summary
Goal:

Find infinite schedules
in priced timed automata

which satisfy constraints on total cost

I When should I plan to re-charge my laptop battery if I want
to be sure to be able to watch YouTube videos during all my
travel?

I How should I re-fill my oil tank so that it never runs out of oil
and never runs over?

Results: mixed. . .
For some problems schedules computable in P, for some
uncomputable.

Slogan:

Hybridization of timed automata
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Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.
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ιπ + 1 ≤ i ≤ n:

w∗i = bi−1 −
i−2X
k=0

pk

ω∗i = max(bn, bn−1 + pn−1) + pn + ((t?n − topt
n ) +

X
j<i

t?j ) · rn

We claim that w∗i is the minimal initial observer value for
which it is possible to spend no delay in locations `0 to `i−1

along a feasible run, and ω∗i is the corresponding optimal
observer value at the end of the run. This can be expressed
as follows:

Proposition 12. The function fπ is a piecewise affine
function defined on the interval [w∗ιπ ,∞[, visiting points

(w∗i , ω
∗
i ), for all ιπ ≤ i ≤ n, with constant slope ḟπ(x) ≥ 1

between two consecutive such points, and with slope ḟπ(x) = 1
after (w∗n, ω

∗
n).

Example 1. We consider the following example, which is
already in normal form. The corresponding function fπ then
looks as depicted on Figure 5:
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point win wout

α 64/35 0

β 2 27/35

γ 3 18/7

δ 8 9

Figure 5: Function fπ for example with linear observer

For instance, if we enter the path with initial observer
value 2, the optimal policy is to spend no time in the location
with rate 2 (as we can leave it directly), then spend 1/5 time
units in the next location (so that we have value 1 and can
fire the outgoing transition), then spend 5/7 time units with
rate 7, and the remaining 3/35 time units in the location
with rate 9, ending with final observer value 27/35 (point β).

Remark 1. We note that the above considerations easily
can be adapted to paths (without resets) with a general guard
c = k on the last transition (instead of c = 1), hence it
is straight-forward to handle these. Also the restriction to
closed timed automata can be lifted: we showed above how
to handle paths with non-strict guards only, and the general
case is similar. In this case, the energy function fπ gives,
for each input value w, the supremum fπ(w) of the observer
values obtainable as output, an whether or not this value is
actually attained for an input can be decided by looking at
the delays spent in each location.

6. PATHS WITH EXPONENTIAL OBSERVER

Normal form. As for linear observers, we are interested
in computing the energy function along a unit path, by first
transforming it into a normal form and then computing the
energy function for normal-form paths. In this case however,
we have to restrict the kinds of paths we can handle:
• We assume that the edge weights pi are nonpositive, and

that at least one of the rates ri is nonnegative;
• paths are not annotated, i.e. we do not impose “local”

constraints of the form “≥ bi” in this case, and only require
that observer value always be nonnegative along the run.
These restrictions amount to only considering the positive

normal form, without local observer constraints. As in the
previous case, we could handle the case where all rates are
negative in a similar way (with a suitable notion of negative
normal form). The other restrictions are purely technical:
Currently we do not know how to handle paths with mixed
positive and negative updates, or with local constraints, but
we expect our techniques to also extend to these settings.

For the sequel, we again fix a unit path

π : `0
ϕ p0−−−−−−→{c} `1

p1−→ `2 · · ·
pn−1−−−→ `n

c=1 pn−−−−−−→{c} `n+1

satisfying the above constraints, and with r0 = rn+1 = 0.
As in the previous section, our aim is to compute fπ for such
a path (but now with exponential observer), mapping initial
to maximum final observer value.

A path as above is said to be in normal form (for expo-
nential observers) if all locations are non-urgent, m ≥ 1, and
one of the following two conditions holds:
• m = 1 (trivial normal form);
• all rates are positive, and ri < ri+1 for 1 ≤ i ≤ m− 1, and

for every 2 ≤ i ≤ m−1, it holds that
pi−1ri−1ri
ri−1−ri <

piriri+1

ri−ri+1

(positive normal form);
The last condition for being in positive normal form is the
counterpart, for exponential observers, to the condition “bi >
bi−1 + pi−1” which we had in the case of linear observers.

Such a normal form can be computed:

Proposition 13. Assume π is a unit path with nonposi-
tive edge weights and such that max{ri | i = 1, . . . , n} ≥ 0.
Then we can construct in polynomial time a path eπ in normal
form for exponential observers so that fπ = feπ.

The proof relies on arguments similar to the ones we used
for the linear case.

Energy function. Along a path in positive normal form,
we can decide whether a given initial observer value is suffi-
cient to reach the last location:

Proposition 14. Let π be a path in positive normal form
(for exponential observers) and w an initial observer value.
Then we can decide whether there is a feasible run along
π with initial observer value w, and we can compute the
value fπ(w).

Notice that contrary to the linear case, it is not sufficient
to fire a transition as soon as the observer value can afford
paying the nonpositive update: Consider the two-state au-
tomaton of Figure 2. If the initial observer value is 3, it is
allowed to immediately fire the transition to `1, but this
would set the energy level to 0, and the exponential growth
would be annihilated.
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Energy Automata, Examples

1 2 3 4 5

1

2

3

4

5

a simple energy function a simple energy automaton

x 7→ x + 2; x ≥ 2x 7→ x + 3; x > 1

x 7→ 2x − 2; x ≥ 1

x 7→ x − 1; x > 1x 7→ x + 1; x ≥ 0
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Energy Function Semiring

Interest: reachability and Büchi acceptance

Given a set F of accept states and x0 ∈ R≥0: does there exist
a run with initial energy x0 which reaches F? does there exist
one which visits F infinitely often?

Operations on energy functions: max and ◦
f1

f2

g1

g2

becomes max(g1 ◦ f1, g2 ◦ f2)

The set E of energy functions with operations max and ◦ is a
semiring, with 0 = λx .⊥, 1 = λx .x

without “f ′ ≥ 1” condition, only “near-semiring”

idempotent, positively ordered, complete

Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems



Loops for Reachability

Star: f ∗ = supn≥0 f
n

for loops which can be taken an arbitrary number of times

f ∗(x) =

{
x if f (x) ≤ x

∞ if f (x) > x

Theorem: Always, gf ∗h = supn≥0 gf
nh

i.e. E is a star-continuous Kleene algebra

Corollary: Let M be the (transposed) transition matrix of an
energy automaton

i.e. Mji is the transition label from state si to state sj .

Compute M∗ = supn≥0 M
n

Then sj is reachable from si with initial energy x0 iff M∗ji (x0) 6= ⊥.
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Loops for Infinite Runs

Omega: “ f ω = limn→∞ f n ”

for loops which are taken infinitely often

f ω(x) =

{
⊥ if f (x) < x or x = ⊥
> if f (x) ≥ x and x 6= ⊥

important: two-valued; V: energy functions into {⊥,>}

Theorem: (E ,V) is a Conway semiring-semimodule pair

Corollary: Let M be the (transposed) transition matrix of an
energy automaton

i.e. Mji is the transition label from state si to state sj .

Compute “ Mω = limn→∞Mn ”
Then there is an infinite run from si with initial energy x0 iff
Mω

i (x0) 6= ⊥.

Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems



Some Technical Details for Reachability

(Applying work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix M =

[
a b
c d

]
, with a ∈ Ek×k and d ∈ Em×m (and

k + m = n), let

M∗ =

[
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

]
∈ En×n

Lemma: M∗ does not depend on k and m, and
always NM∗P = supn NMP.

can also use (generalized) Floyd-Warshall algorithm to
compute M∗; generally faster

Theorem: For any E-automaton (S ,M) with S = {1, . . . , n},
F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ R≥0,
Reach(s0, x0,F ) = tt iff tF

≤kM∗I s0(x0) 6= ⊥.
Ésik, Fahrenberg, Legay, Quaas Kleene Algebras and Semimodules for Energy Problems



Some Technical Details for Büchi Acceptance

(Extending work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix M =

[
a b
c d

]
, with a ∈ Ek×k and d ∈ Em×m (and

k + m = n), let

Mω =
t

[
(a ∨ bd∗c)ω ∨ dωc(a ∨ bd∗c)∗

(d ∨ ca∗b)ω ∨ aωb(d ∨ ca∗b)∗

]
∈ E1×n

Mωk =
t

[
(a ∨ bd∗c)ω

(a ∨ bd∗c)ωbd∗

]
∈ E1×n

Theorem: For any E-automaton (S ,M) with S = {1, . . . , n},
F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ R≥0,
Büchi(s0, x0,F ) = tt iff Mωk I s0(x0) 6= ⊥.
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Conclusion

Energy problems can be solved using the theory of
semiring-weighted automata and semiring-semimodule pairs

for reachability, use star; for Büchi, use omega

Extensions to multi-dimension or games: semiring techniques
do not seem to apply

but techniques from well-structured transition systems do
for multi-dimensional games, undecidability is quickly
reached

Extension to energy automata with discrete inputs?

modeling discrete control problems
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