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What is the minimum amount of battery required for the satellite
to always be able to send and receive messages?
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One-slide summary
Goal:

Find infinite schedules
in priced timed automata
which satisfy constraints on total cost

» When should | plan to re-charge my laptop battery if | want
to be sure to be able to watch YouTube videos during all my
travel?

» How should I re-fill my oil tank so that it never runs out of oil
and never runs over?

Results: mixed. . .
For some problems schedules computable in P, for some
uncomputable.

Slogan:
Hybridization of timed automata
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Energy Constraints

Energy is not only consumed, but can be regained.

~» “prices” can be negative;
~> the aim is to continuously satisfy cost constraints

~> in this paper, we focus on infinite runs.

Example
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Energy Constraints

Energy is not only consumed, but can be regained.

~» “prices” can be negative;
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~> in this paper, we focus on infinite runs.
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ExaAMPLE 1. We consider the following example, which is
already in normal form. The corresponding function fr then
looks as depicted on Figure 5:
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Figure 5: Function f. for example with linear observer
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Energy Automata, Examples

’ /
4
X—=Hx+3hx>1| | x—=>x+2;x>2
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a simple energy function a simple energy automaton
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Energy Function Semiring

Interest: reachability and Biichi acceptance

o Given a set F of accept states and xg € R>g: does there exist
a run with initial energy xg which reaches F? does there exist
one which visits F infinitely often?

Operations on energy functions: max and o

A&
.0@ becomes max(gy o f1, 82 0 f)
f O &

The set £ of energy functions with operations max and o is a
semiring, with 0 = Ax.L, 1 = Ax.x

e without “f’ > 1" condition, only “near-semiring”

o idempotent, positively ordered, complete
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Loops for Reachability

Star: f* =sup,>q f"
o for loops which can be taken an arbitrary number of times

o F*(x) {x if f(x) <x

oo if f(x) > x

Theorem: Always, gf*h = sup,~ogf"h

o i.e. £ is a star-continuous Kleene algebra

Corollary: Let M be the (transposed) transition matrix of an
energy automaton

o i.e. M is the transition label from state s; to state s;.
Compute M* = sup,,~q M"
Then s; is reachable from s; with initial energy xo iff M3 (xo) # L.
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Loops for Infinite Runs

fO=Ilimp oo f7"

Omega:
o for loops which are taken infinitely often

o F9(x) = 1 ?ff(x)<x orx=1
T iff(x)>x and x# L

o important: two-valued; V: energy functions into {_L, T}

Theorem: (£,V) is a Conway semiring-semimodule pair

Corollary: Let M be the (transposed) transition matrix of an
energy automaton
@ i.e. Mj; is the transition label from state s; to state s;.

n "

Compute " M“ = lim,_oo M
Then there is an infinite run from s; with initial energy xg iff
My (x0) # L.
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Some Technical Details for Reachability

(Applying work by S. Bloom, Z. Esik, W. Kuich and others)

For a matrix M = [a 3], with a € £k and d € E™*™ (and
k+ m=n), let

(aV bd*c)* (aV bd*c)*bd*

M= [(d V ca*b)*ca* (d V ca*b)*

:| c (c/‘an

Lemma: M* does not depend on k and m, and
always NM*P = sup,, NMP.

@ can also use (generalized) Floyd-Warshall algorithm to
compute M*; generally faster

Theorem: For any £-automaton (S, M) with S = {1,...,n},
F:{l,...,k}, k <n, so < n, and X0 E]Rzo,
Reach(sp, xg, F) = tt iff (FSAM*1%(x0) # L.



Some Technical Details for Biichi Acceptance

(Extending work by S. Bloom, Z. Esik, W. Kuich and others)

For a matrix M = [a Z] with a € 5%k and d € £™*™ (and
k+m=n), let

M =

t

[(a V bd*c)¥ VvV d“c(aV bd*c)*

1xn
(d Vca*b)¥ Vv a“b(d Vv ca*b)*} €&

(aV bd*c)¥

Wk 1xn
M _t[(avbd*c)wbd*] €¢

Theorem: For any £-automaton (S, M) with S = {1,...,n},
F=A{1,...,k}, k<n, sp <n, and xg € R>o,
Biichi(sp, x0, F) = tt iff M“k[%(xg) # L.

, Fahrenberg, s Kleene Algebras and Semimodules for Energy Problems



Conclusion

o Energy problems can be solved using the theory of
semiring-weighted automata and semiring-semimodule pairs

o for reachability, use star; for Biichi, use omega

o Extensions to multi-dimension or games: semiring techniques
do not seem to apply

o but techniques from well-structured transition systems do
o for multi-dimensional games, undecidability is quickly
reached

o Extension to energy automata with discrete inputs?
o modeling discrete control problems
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