A Compositional Algebra of Specifications

Uli Fahrenberg

IRISA/Inria Rennes

Joint work with N. Beneš, B. Delahaye, J. Křetinský, A. Legay, L.-M. Traonouez

QuantLA 2014

1 Introduction: Compositionality for specifications

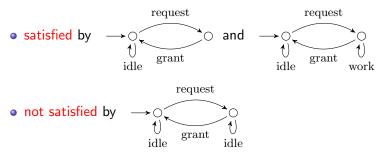
- 2 Specification formalism: DMTS
- 3 Specification theory
- 4 Algebraic properties

Specifications

- Specification = property (of a formal model of a system)
- Example:

$$\mathsf{AG}\big(\mathrm{request} \Rightarrow \mathsf{AX}(\mathrm{work}\ \mathsf{AW}\ \mathrm{grant})\big)$$

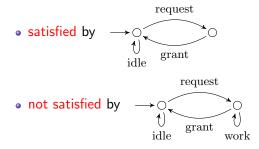
"after a $\operatorname{request}$, only work is allowed, until grant is executed"



Operations on specifications

- logical operations: conjunction, disjunction, negation
- implication / refinement / strengthening

$$\mathsf{AG}\big(\mathrm{request} \Rightarrow \mathrm{grant}\big) \leq \mathsf{AG}\big(\mathrm{request} \Rightarrow \mathsf{AX}(\mathrm{work}\ \mathsf{AW}\ \mathrm{grant})\big)$$



Model checking

- Algorithm for deciding whether or not a model satisfies a specification
- Popular specification formalisms: CTL, LTL, CTL*, μ -calculus
- Successful tools: Cadence SMV, Java Pathfinder, NuSMV, Spin, ...
- But: state space explosion

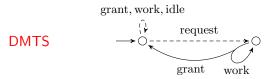
- No chance to model-check industrial-size systems!
- Different approach needed
- For example: compositionality

Compositionality

- Idea: Model check large systems by checking one component at a time
 - if $C_1 \models S_1$ and $C_2 \models S_2$ and ...
 - then $C_1 \| C_2 \| \dots \models S_1 \| S_2 \| \dots$
- Needs operation of structural composition || on models and specifications
- Also useful: decomposition
 - if $C_1 \models S_1$ and $C_1 \parallel C_2 \models S$
 - synthesize property S_2 so that $C_2 \models S_2$

Disjunctive modal transition systems

 $\mathsf{CTL} \qquad \mathsf{AG}\big(\mathrm{request} \Rightarrow \mathsf{AX}(\mathrm{work}\ \mathsf{AW}\ \mathrm{grant})\big)$



• DMTS:
$$\mathcal{D} = (S, S^0 \subseteq S, \dashrightarrow \subseteq S \times \Sigma \times S, \longrightarrow \subseteq S \times 2^{\Sigma \times S})$$

multiple initial states

● --+: may-transitions: behavior which is allowed

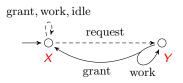
• \longrightarrow : disjunctive must-transitions: behavior which is required

- $s \longrightarrow N = \{(a_1, t_1), \dots, (a_n, t_n)\}$ means: you must implement one of the behaviors $(a_1, t_1), \dots, (a_n, t_n)$
- required \implies allowed: $\forall s \longrightarrow N : \forall (a, t) \in N : s \xrightarrow{a} t$
- a behavioral specification formalism

DMTS vs. ν -calculus

Direct translation between DMTS and the modal ν -calculus

• (or Hennessy-Milner logic with maximal fixed points)



$$\begin{split} & X = [\text{grant}, \text{idle}, \text{work}] X \wedge [\text{request}] Y \\ & Y = (\langle \text{work} \rangle Y \lor \langle \text{grant} \rangle X) \land [\text{idle}, \text{request}] \text{ff} \end{split}$$

Refinement

A modal refinement " \leq " between DMTS $(S_1, S_1^0, -\rightarrow_1, \rightarrow_1)$ and $(S_2, S_2^0, -\rightarrow_2, \rightarrow_2)$: • a relation $R \subseteq S_1 \times S_2$ such that for all $(s_1, s_2) \in R$: • $\forall s_1 \xrightarrow{a} t_1 : \exists s_2 \xrightarrow{a} t_2 : (t_1, t_2) \in R$ and • $\forall s_2 \longrightarrow N_2 : \exists s_1 \longrightarrow N_1 : \forall (a, t_1) \in N_1 : \exists (a, t_2) \in N_2 : (t_1, t_2) \in R$ • and $\forall s_1^0 \in S_1^0 : \exists s_2^0 \in S_2^0 : (s_1^0, s_2^0) \in R$

 $AG(request \Rightarrow grant) \le AG(request \Rightarrow AX(work AW grant))$

Implementations

- implementations: standard labeled transition systems $S, s^0 \in S, \longrightarrow \subseteq S \times \Sigma \times S$
 - single initial state
- LTS \subseteq DMTS !
- Theorem: refinement is satisfaction: $\mathcal{I} \leq \mathcal{D}$ iff $\mathcal{I} \models dmts2nu(\mathcal{D})$
- implementation semantics: $\llbracket \mathcal{D} \rrbracket = \{ \mathcal{I} \leq \mathcal{D} \mid \mathcal{I} \text{ implementation} \}$
- Theorem: $\mathcal{D}_1 \leq \mathcal{D}_2$ implies $\llbracket \mathcal{D}_1 \rrbracket \subseteq \llbracket \mathcal{D}_2 \rrbracket$ sound but not complete

Logical operations

• Disjunction: disjoint union

$$\mathcal{D}_1 \vee \mathcal{D}_2 = (S_1 \cup S_2, S_1^0 \cup S_2^0, \dashrightarrow_1 \cup \dashrightarrow_2, \longrightarrow_1 \cup \longrightarrow_2)$$

- Conjunction: (kind of) synchronized product
 - $\mathcal{D}_1 \wedge \mathcal{D}_2 = (S_1 \times S_2, S_1^0 \times S_2^0, \dots)$ with
 - $(s_1, s_2) \xrightarrow{a} (t_1, t_2)$ iff $s_1 \xrightarrow{a} t_1$ and $s_2 \xrightarrow{a} t_2$,

• for all
$$s_1 \longrightarrow N_1$$
,

 $(s_1, s_2) \longrightarrow \{(a, (t_1, t_2)) \mid (a, t_1) \in N_1, (s_1, s_2) \xrightarrow{a} (t_1, t_2)\},$ • for all $s_2 \longrightarrow N_2$.

$$(s_1,s_2) \xrightarrow{a} \{(a,(t_1,t_2)) \mid (a,t_2) \in N_2, (s_1,s_2) \xrightarrow{a} (t_1,t_2)\}.$$

- Theorem: disjunction is least upper bound; conjunction is greatest lower bound
- Theorem: up to modal equivalence "≡", we have a bounded distributive lattice

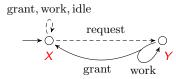
•
$$\mathcal{D}_1\equiv\mathcal{D}_2$$
 iff $\mathcal{D}_1\leq\mathcal{D}_2$ and $\mathcal{D}_2\leq\mathcal{D}_1$

• (≤ is not a partial order!)

Structural composition

- Idea: enumerate all transition possibilities
- For a DMTS $\mathcal{D} = (S, S^0, \dashrightarrow, \longrightarrow)$ and $s \in S$, let

$$\begin{aligned} \mathrm{Tran}(s) &= \{ M \subseteq \Sigma \times S \mid \forall (a,t) \in M : s \xrightarrow{a} t, \\ \forall s \longrightarrow N : N \cap M \neq \emptyset \} \subseteq 2^{\Sigma \times S} \end{aligned}$$



 $Tran(X) = \{\emptyset, \{(grant, X)\}, \{(work, X)\}, \{(idle, X)\}, \{(request, Y)\}, \\ \{(grant, X), (work, X)\}, \{(grant, X), (idle, X)\}, \dots \} \\ Tran(Y) = \{\{(grant, X)\}, \{(work, Y)\}, \{(grant, X), (work, Y)\}\} \\ \bullet "Acceptance automata"; special case of Walukiewicz' <math>\mu$ -automata

Structural composition, contd.

- $\mathcal{D}_1 \| \mathcal{D}_2 = (\mathcal{S}_1 imes \mathcal{S}_2, \mathcal{S}_1^0 imes \mathcal{S}_2^0, \mathrm{Tran})$ with
- $\operatorname{Tran}((s_1, s_2)) = \{M_1 || M_2 | M_1 \in \operatorname{Tran}_1(s_1), M_2 \in \operatorname{Tran}_2(s_2)\},$ where
- $M_1 || M_2 = \{ (a, (t_1, t_2)) | (a, t_1) \in M_1, (a, t_2) \in M_2 \}$
- $\bullet\,$ Back-translation from ${\rm Tran}$ (acceptance automaton) to DMTS may give exponential blow-up
- Theorem (independent implementability): $D_1 \leq D_3$ and $D_2 \leq D_4$ imply $D_1 || D_2 \leq D_3 || D_4$
- Hence $[\![\mathcal{D}_1]\!]\|[\![\mathcal{D}_2]\!]\subseteq [\![\mathcal{D}_1]\!||\mathcal{D}_2]\!]$ sound but not complete

Quotient

- $\mathcal{D}_1/\mathcal{D}_2 = \left(2^{S_1 \times S_2}, \left\{\{(s_1^0, s_2^0) \mid s_1^0 \in S_1^0, s_2^0 \in S_2^0\}\right\}, \operatorname{Tran}\right)$,
- $\bullet\,$ with ${\rm Tran}$ too complicated to explain here. . .
- o double exponential blow-up!
- Theorem: $\mathcal{D}_1 \| \mathcal{D}_2 \leq \mathcal{D}$ iff $\mathcal{D}_2 \leq \mathcal{D} / \mathcal{D}_1$
- Hence $\mathcal{I}_1 \in \llbracket \mathcal{D}_1 \rrbracket$ and $\mathcal{I}_2 \in \llbracket \mathcal{D}/\mathcal{D}_1 \rrbracket$ imply $\mathcal{I}_1 \| \mathcal{I}_2 \in \llbracket \mathcal{D} \rrbracket$

Residuated lattice of specifications

- Have seen already: With \wedge and $\lor,$ DMTS form a bounded distributive lattice up to \equiv
- With ∧, ∨, || and /, DMTS form a bounded commutative residuated lattice up to ≡:
 - (DMTS, $\|, U$) is a commutative monoid (up to \equiv)
 - with unit $U = (\{u\}, \{u\}, \{u \xrightarrow{a} u \mid a \in \Sigma\})$ (up to \equiv),
 - (DMTS, $\wedge, \vee)$ is a bounded lattice (up to \equiv), and
 - / is the residual to $\|:\,\mathcal{D}_1\|\mathcal{D}_2\leq \mathcal{D} \text{ iff }\mathcal{D}_2\leq \mathcal{D}/\mathcal{D}_1$
- Relation to linear logic, Girard quantales

Algebraic consequences

$$\begin{aligned} \mathcal{D}_1 \| (\mathcal{D}_2 \lor \mathcal{D}_3) &\equiv \mathcal{D}_1 \| \mathcal{D}_2 \lor \mathcal{D}_1 \| \mathcal{D}_3 \\ (\mathcal{D}_1 \land \mathcal{D}_2) / \mathcal{D}_3 &\equiv \mathcal{D}_1 / \mathcal{D}_3 \land \mathcal{D}_2 / \mathcal{D}_3 \\ \mathcal{D}_1 \| (\mathcal{D}_2 / \mathcal{D}_1) &\leq \mathcal{D}_2 \\ (\mathcal{D}_1 \| \mathcal{D}_2) / \mathcal{D}_1 &\leq \mathcal{D}_2 \\ \mathcal{D} / \mathbf{U} &\equiv \mathcal{D} \\ \mathbf{U} &\leq \mathcal{D} / \mathcal{D} \\ (\mathcal{D}_1 / \mathcal{D}_2) / \mathcal{D}_3 &\equiv \mathcal{D}_1 / (\mathcal{D}_2 \| \mathcal{D}_3) \\ \mathbf{U} / \mathcal{D}_1) \| (\mathbf{U} / \mathcal{D}_2) &\leq \mathbf{U} / (\mathcal{D}_1 \| \mathcal{D}_2) \end{aligned}$$