
Configurable Formal Methods for Extreme
Modeling

Uli Fahrenberg Axel Legay

IRISA/Inria Rennes

XM 2014

Problem

Extreme modeling needs model transformations

When applied uncritically, model transformations can lead to
errors

Need model transformations which are correct by design

or checkable by design

But correct in relation to what semantics ??

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Toy Example, Merge

Order

Completed order

merge Completed order

Shipping

Invoice

Syntactic result

Order

Completed order

Invoice

Shipping

Expected result

Order

Completed order

Invoice

Shipping

How to know which associations to move up?

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Toy Example, Slicing

Employee

Manager

Address

slice

Manager Address

How to know which associations to “pull down” along
generalizations?

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

How Not to Do

Problem: Model transformations have no semantic understanding

First solution:

1 Give complete formal semantics to models

2 Define automatic and semantically correct model operators

3 PROFIT!

Yes, but:

Complete semantics usually do not exist

or are too complicated to be useful

“Software engineers don’t like formal methods”

BUMMER

Proposal: bottom-up instead of top-down!

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Research Proposal: My Approach

Improve existing tools for model transformations by making them
partially semantics aware

introduce only partial semantics, no more than necessary,
parametrized by high-level user choices

iterative, bottom-up approach; immediate, gradual results

fits well with practice in industry

Application of formal methods in model-driven engineering

but in a gentle, bottom-up way, on a need-to-know basis

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Technical Example: First Steps

From our FASE 2014 paper:

Def.: A class diagram is a tuple
C = (cla, asc, gen, disj, ccard, aends, acards) . . .

Def.: C1 refines C2 (C1 ≤ C2) if

cla1 ⊇ cla2, asc1 ⊇ asc2,
gen1 ⊇ gen2, disj1 ⊇ disj2,
ccard1(c) ⊆ ccard2(c) for all c ∈ cla2,
aends1(a) = aends2(a) for all a ∈ asc2, and
acards1(a)(e) ⊆ acards2(a)(e) for all a ∈ asc2 and all
e ∈ dom(acards2(a)).

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Technical Example: First Steps, contd.

(SLE 2013, contd.)

With ≤, semilattice structure on class diagrams

Greatest lower bound: merge, “�”

Partial inverse to merge: diff, “r”

(Merge and diff have concrete syntactic definitions)

Algebra similar to Girard quantale

Using one choice of a globally fixed semantics,
M |= C1 and C1 ≤ C2 imply M |= C2. (1)

Together with the algebraic properties above, (1) directly
implies good semantic properties of merge and diff.

Easy path to parametrization: What semantic properties are
needed to prove (1)?

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

Variability in Semantics

How to introduce parametrized semantics:

question of variability!

Rumpe’s idea: use feature diagram:

Semantically Configurable Consistency Analysis for CDs and ODs 159

Fig. 4. The OD semantics feature diagram

4.3 The Semantic Variability Feature Models

A feature model describes a structured set of features and their logical depen-
dencies [3,9]. Feature models are commonly used in the area of software product
lines. They may be visually represented using feature diagrams, which are basi-
cally and-or trees, extended with textual cross-tree logical constraints. Here we
use a feature model to formalize variability in the semantics of CDs and ODs.
The model is composed of two sub-models, for CD semantics and for OD se-
mantics, and of several cross-tree logical constraints. In the diagrams we use the
standard notation: for mandatory features, a line ending with a filled circle; for
alternative features of which exactly one must be selected (xor), an empty slice
covering the lines leading to the different alternatives.

Our feature model for OD semantics consists of 19 features, as shown in the
feature diagram in Fig. 4. Roughly, a valid feature configuration of this model
specifies whether the empty object model may be considered a valid OM, whether
the objects shown, links shown, attributes shown, and types shown are complete
or not, and whether all objects shown in the diagram must be typed with their
most specific type, or can use one of their super types.

Our feature model for CD semantics for CD/OD consistency contains 11 fea-
tures, as shown in the feature diagram in Fig. 5. A valid feature configuration of
this model specifies whether the empty object model may be considered a valid
instance of a CD, whether the lists of attributes shown are considered complete
or not, and whether the set of classes shown is considered complete or not.

The complete feature diagram for CD/OD consistency feature model is built
from a CD/OD consistency feature at the root, using the two feature diagrams
described above to represent required features, as its sub trees, as shown in
Fig. 6. To this composed diagram we add cross-tree logical constraints that de-
fine dependencies between the different features, for us, the semantic choices, e.g.,
mutual exclusion, implication etc. This is indeed necessary, because, as we have
found also during evaluation (see Sect. 6), not all theoretically possible combi-
nations (feature configurations) induce sound and useful semantics. Specifically,
we add the following 3 constraints:

not (cd.allowClassesOmitted and od.allowTypesOmitted) (1)

Uli Fahrenberg, Axel Legay Configurable Formal Methods for Extreme Modeling

