Configurable Formal Methods for Extreme

Modeling

Uli Fahrenberg Axel Legay
IRISA/Inria Rennes

XM 2014

Problem

@ Extreme modeling needs model transformations

@ When applied uncritically, model transformations can lead to
errors

@ Need model transformations which are correct by design
e or checkable by design

@ But correct in relation to what semantics 77

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

Toy Example, Merge

merge Completed order‘
’ Completed order‘
Syntactic result Expected result

(nvoice
N\

’ Completed order H Shipping ‘ ’ Completed order H Shipping ‘

How to know which associations to move up?

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

Toy Example, Slicing

’ Employee }—{ Address ‘

’ Manager }—{ Address ‘

How to know which associations to “pull down” along
generalizations?

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

How Not to Do

Problem: Model transformations have no semantic understanding

First solution:
@ Give complete formal semantics to models

@ Define automatic and semantically correct model operators
© PROFIT!

Yes, but:
@ Complete semantics usually do not exist
@ or are too complicated to be useful
@ “Software engineers don’t like formal methods”
e BUMMER

Proposal: bottom-up instead of top-down!

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

Research Proposal: My Approach

Improve existing tools for model transformations by making them
partially semantics aware

@ introduce only partial semantics, no more than necessary,
parametrized by high-level user choices

@ iterative, bottom-up approach; immediate, gradual results

o fits well with practice in industry

Application of formal methods in model-driven engineering

@ but in a gentle, bottom-up way, on a need-to-know basis

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

Technical Example: First Steps

From our FASE 2014 paper:

@ Def.: A class diagram is a tuple
C = (cla, asc, gen, disj, ccard, aends, acards) ...

@ Def.: C; refines Ca (C1 < Cp) if
e cla; D claj, ascy D ascy,
o gen; 2 gen,, disj; 2 disjy,
o ccardi(c) C ccardy(c) for all ¢ € clay,
o aends;(a) = aendsy(a) for all a € ascp, and
o acards;(a)(e) C acardsy(a)(e) for all a € ascp and all

e € dom(acardsp(a)).

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

Technical Example: First Steps, contd.

(SLE 2013, contd.)

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

With <, semilattice structure on class diagrams
Greatest lower bound: merge, “®"

Partial inverse to merge: diff, “\"

(Merge and diff have concrete syntactic definitions)

Algebra similar to Girard quantale

Using one choice of a globally fixed semantics,
M ‘: Cy1 and C; < Cp imply M ‘: Co. (1)

Together with the algebraic properties above, (1) directly
implies good semantic properties of merge and diff.

Easy path to parametrization: What semantic properties are
needed to prove (1)?

Variability in Semantics

How to introduce parametrized semantics:
@ question of variability!

@ Rumpe's idea: use feature diagram:

Semantically Configurable Consistency Analysis for CDs and ODs 159

oD
completeness

empty OM object typing

empty OM ‘ empty OM)))))
valid instance invalid objects links attributes types strict non-strict

all objects allow objects all links allow links all attributes allow attributes all types allow types
shown omitted shown omitted shown omitted shown omitted

Fig. 4. The OD semantics feature diagram

Uli Fahrenberg, Configurable Formal Methods for Extreme Modeling

