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Abstract— The unpredictable social and physical interactions
in crowded environments pose a challenge to the comfort and
safety of those with impaired ability. To address this challenge
we have developed an efficient algorithm that may be embedded
in a portable device to assist such people. The algorithm
anticipates undesirable circumstances in real time by verifying
simulation traces of local crowd dynamics against temporal
logical formulae. The model incorporates the objectives of the
user, pre-existing knowledge of the environment and real time
sensor data. The algorithm is thus able to suggest a course of
action to achieve the user’s changing goals, while minimising

the probability of problems for the user and others in the same
environment.

To demonstrate our algorithm we have implemented it in
an autonomous computing device that we show is able to
negotiate complex virtual environments. The performance of
our implementation demonstrates that our technology can be
successfully applied in a portable device or robot.

I. INTRODUCTION

With unimpaired ability, pedestrians are able to negotiate

their way through crowded areas with few problems. Under

panic conditions [1] or when a pedestrian has reduced ability,

finding a good strategy to proceed can be challenging. As

a result, people afflicted by a decline in their physical and

cognitive abilities (primarily older adults) can be discouraged

from attending crowded public places, with a consequent

negative impact on their physical condition (reduced exer-

cise), on the quality of their nutrition (reduced fresh food)

and on their psychological wellbeing (reduced social con-

tact). Motivated by these considerations, the DALi project [2]

aims to devise an intelligent ‘walker’ (an assistive wheeled

device) that detects the presence of other pedestrians in the

environment, anticipates their intent and plans an appropriate

path that is suggested to the user via a combination of

audio, visual and haptic interfaces. In this work we present

an efficient algorithm that employs advanced modelling and

verification techniques to address the path planning problem

in a crowded and unfamiliar environment.

Succinctly, the problem is one of devising an online

motion planning algorithm for an autonomous agent (the

user) in a dynamic environment. The position of most fixed
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objects (e.g., buildings and rooms) are known a priori, but

the algorithm must account for the possibility of changes,

such as temporary obstructions. The environment contains

moving objects (i.e., other pedestrians), whose positions and

velocities cannot be known before they are encountered. The

overall goal is to allow the user to visit pre-defined locations

in the environment, while avoiding collisions, crowding and

delays. The output of the algorithm is a suggested trajectory,

so the algorithm must be reactive to the potentially unco-

operative response of the user. Practically, the algorithm will

be implemented in a low power embedded computing device

and must be sufficiently efficient to make course corrections

in a time of the order of seconds. This time scale is dictated

by the typical velocities of pedestrians and by the fact that

frequent readings help to reduce the random errors produced

by sensors.

While the behaviour of individual pedestrians may be

arbitrary, people nevertheless tend to respect certain social

rules that can be formalised. Hence, our solution to the

problem outlined above is a two-tiered algorithm comprising

a low level predictive mathematical model of pedestrian

dynamics, managed by a statistical model checking (SMC)

engine that checks temporal logical properties that express

the high level goals and constraints of the user. The algorithm

uses dynamic input from sensors to reconstruct the user’s po-

sition from fixed objects and to account for non-fixed objects,

such as other pedestrians and temporary obstructions.

A. Related work

Our work is related to sampling methods (e.g., [3]–[5])

and to recent methods using temporal logic (.e.g, [6]–[8]).

It is also related to methods that predict behaviour based on

models parametrised with data from sensors (e.g., [9]).

In common with existing sampling methods, our algorithm

uses randomisation to cover an intractably large configura-

tion space. In contrast to many existing uses of sampling,

however, we do not assume a fixed environment. In our

application the environment contains both fixed and dynamic

elements, such that a single optimal global path cannot be

defined a priori. Hence, the problem we solve by sampling

is not one of creating an optimal global plan (this is given),

but one of finding an optimal local plan given a changing

environment.

Temporal logic is a formal way to represent complex prop-

erties of paths and model checking is an automatic process

that verifies whether a system satisfies such properties. If the

notion of an optimal path is given, model checking can be

used to prove that a motion planner will be ‘correct’ [6], [7].
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Fig. 1. Diagrammatic overview of the motion planning framework. The
sensor board detects the current state of objects in the environment. This
state is used by the social force model to generate plausible future paths of
the user and other pedestrians. The distribution of paths is verified against
the global objectives of the user in order to suggest an optimal course.

The use of probabilistic model checking in combination with

the theory of stochastic hybrid automata [10] is particularly

appealing for control and robotic applications where a non-

zero probability of failing the mission can be tolerated,

such as in [11], [12] for air traffic control or in [13],

[14] for industrial robotics. Combining model checking with

sampling, algorithms can be constructed which provably

converge to optimal schedulers [8]. Standard model checking

algorithms are computationally intensive, however, hence

existing applications have used model checking offline. By

using statistical model checking, we are able to perform

online verification. We do not prove correctness, but find

a local plan that maximises the probability of success.

We believe our work is novel in using formal verification

in real time to solve an adaptive motion planning problem

in a dynamic environment. As a starting point we refer the

interested reader to the references already mentioned and to

two recent reviews of sampling methods [15], [16].

Organisation of the paper

The rest of the paper is organised as follows. Section II-A

gives an overview of our approach. Section II-B introduces

our mathematical model in detail and Section II-C introduces

the basic notions of statistical model checking. Section III

gives a detailed description of our algorithm and implement-

ation, while Section V describes the results of a number

of experiments that demonstrate the utility of our approach.

Section VI Discusses our choices and highlights areas of

ongoing development.

II. BACKGROUND MATERIAL AND SOLUTION OVERVIEW

A. Overview of the approach

Fig. 1 gives a high level overview of the algorithm. At each

iterative step the algorithm acquires the state of the system,

comprising the position of static objects and the position and

velocity of the user and of other people in the environment.

Given the current state, the algorithm hypothesises al-

ternative courses of action using the social force model.

Each hypothesised trajectory is formally verified (model-

checked) against properties that express goals and constraints

required for the user’s trajectory (i.e., where the user wants

to go, obeying the appropriate social rules). This leads to

a statistical distribution of potentially successful trajectories.

The algorithm uses this distribution to choose an immediate

action that maximises the probability of achieving the user’s

objectives and minimises the probability of problems. In this

probabilistic context, the measurement noise is considered as

an additional source of stochasticity.

The social force model may be programmed with the

user’s objectives and is an efficient way to describe the con-

tinuous interactions that allow pedestrians to avoid collisions.

The model also includes stochasticity to model the typical

unpredictability of human behaviour. Despite these features,

however, in our application the social force model is not

sufficient on its own to adequately avoid “close encounters”,

nor to account for the overall “mission” of the user. Note that

a single simulation trace that includes realistic stochasticity is

nevertheless just one of infinitely many possible futures and

could be completely incorrect. A trace without stochasticity

could be equally incorrect, because the possibility of random

deviations is not modelled.

Our algorithm overcomes these limitations by verifying

hypothesised stochastic trajectories generated by the social

force model with respect to goals and constraints expressed

in temporal logic. Such trajectories respect the basic social

and physical laws of pedestrian interactions, include the

possibility of unpredicted behaviour, while their distribution

allows the algorithm to choose a course of action that

maximises the probability of success. The field of statistical

model checking (SMC) encapsulates the technologies that

we require to manage our mathematical model in this way,

hence we use an SMC library [17] that provides efficient

algorithms to estimate the probability of the user’s success

with guaranteed confidence.

The key elements of our approach are (i) the social force

model to hypothesise trajectories that respect low level social

and physical “forces”; (ii) temporal logic to express the high

level goals of the user and (iii) a statistical model checker

to verify the traces with respect to the goals.

B. The social force model

As our mathematical model we have chosen the ‘social

force model’ [1], [18]–[20] of pedestrian motion, which

combines real and psychological forces to predict the be-

haviour of crowds in normal and panic situations. The

model recognises that pedestrians are constrained by the

physical laws of motion and also by social ‘laws’ that can

be modelled by external forces. The model considers an

environment comprising fixed objects (walls) and moving

agents (pedestrians) that respond to attractive and repulsive

forces, originated by social and physical interactions.

With minimal practical loss of fidelity [1], [18]–[20],

the model is constructed in two dimensions, with agents

represented as circular discs. In what follows we adopt the

convention of denoting vectors in bold type. Thus, i–th agent



has mass mi centred at position xi ∈ R
2 in the environment,

radius ri and velocity vi ∈ R
2. The liner model for the i-th

agent is given by






ẋi = vi

v̇i =
v
0
i − vi

τi
+

fi + ξi

mi

(1)

v
0
i is the driving (desired) velocity of agent i, represented by

a product of speed amplitude v0i and normalised direction e
0
i ,

which is given by the direction of the line joining the initial

and desired configurations. τi is the time taken to react to

the difference between desired and actual velocity, while ξi
is a noise term that models fluctuations not accounted for

by the deterministic part of the model. As we describe later,

in our application the noise term can also serve to avoid

deadlocks and hypothesise alternative trajectories. fi is the

force acting on the i–th agent resulting from other objects

in the environment and, hence, given by

fi =
∑

j 6=i

[f socij + f
att
ij + f

ph
ij ]+

∑

b

[f socib + f
ph
ib ]+

∑

c

f
att
ic . (2)

The first term on the right-hand side of (2) includes all

the forces on agent i resulting from interactions with other

agents: f socij is the repulsive social force that inhibits agents

getting too close, fattij is the attractive social force that brings

friends together, f
ph
ij is the physical force that exists when

two agents touch. The second summation includes the forces

acting on agent i as a result of the boundaries (walls): f socib is

the social force that inhibits agent i from getting too close to

boundaries, f
ph
ib is the physical force that exists when agent i

touches boundary b. Finally, fattic is the attractive social force

that draws agent i towards fixed objects of incidental interest

(shops, cafés, toilets, etc.).

Each element of (2) is available by knowing: the distance

dij between the centres of mass of agents i and j; the

“touching distance” rij = ri + rj ; the direction of the

repulsive force nij ; the motion tangential direction tij ; the

social force parameters ai and bi; the weighting parameter

λ ∈ [0, 1] of the social forces. More details can be found

in [1].

C. Statistical and probabilistic model checking

Model checking is an automatic technique used to verify

that a system satisfies a property. Typically, the system

comprises discrete states and transitions, while the property

is specified in temporal logics, such as LTL and CTL [21].

Logics are required to be expressive (able to express complex

dynamical phenomena), but also decidable and tractable.

To give a result with certainty, standard model checking

algorithms effectively perform an exhaustive exploration of

the state space of the system. The number of states scales

exponentially with the number of interacting components in

the system, causing an exponential increase of the system

state dimension that can often make the process slow or

completely intractable.

The output of standard model checking is either true or

false, with corresponding examples or counter-examples of

the property. Probabilistic model checking extends the stand-

ard notion to include probabilistic transitions and rewards,

which can express uncertainty and quantitative performance

of system [21]. Exhaustive probabilistic model checking

(commonly called numerical model checking) suffers similar

problems of state dimension explosion problem as standard

model checking.

Statistical model checking (SMC) is a type of probabilistic

model checking that avoids the state explosion problem by

estimating the probability of a property φ from a number of

independent executions (simulations) of the system. Given N
independent simulation traces ωi and a ‘local’ model check-

ing function 1(ωi) ∈ {0, 1} that indicates whether ωi |= φ
(read “ωi satisfies φ”), the probability γ that ω |= φ holds

is estimated using γ̃ = 1/N
∑N

i=1 1(ωi). The confidence

of the estimate can be guaranteed by standard statistical

bounds (such as the Chernoff bound [22]), allowing SMC

to trade certainty for reduced confidence plus tractability. In

comparison to exhaustive model checking techniques, SMC

does not require a finite state space, making it particularly

suitable for the present application that considers continuous

time and space.

Probabilistic Bounded Linear Temporal logic: We use

temporal logic to express and combine abstract properties,

such as “the user will visit all the desired locations in a

specified sequence, within the specified time” and “the user

will never get too close to any other pedestrian”. Our model

checking engine is based on the logic of PLASMA [23]

and, in particular, the PLASMA-lab library [17]. PLASMA-

lab accepts nested linear temporal formulae φ using the

following abstract syntax:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤tφ | G≤tφ | φU≤tφ | Xφ | α

When applied to trace ωi, φ evaluates to logical true or

false, such that 1(ωi |= φ) ∈ {0, 1}. ∨,∧ and ¬ are the

standard logical connectives and α is a Boolean constant or

an atomic proposition constructed from numeric expressions

of constants and state variables. X is the next temporal

operator: Xφ means that φ will be true on the next step. F,

G and U are temporal operators bounded by time t, that is

relative to the temporal constraints of any enclosing formula.

F is the finally or eventually operator: F≤tφ means that φ will

be true at least once in the relative time interval [0, t]. G is

the globally or always operator: G≤tφ means that φ will be

true at all times in the relative interval [0, t]. U is the until

operator: ψU≤tφ means that in the relative interval [0, t],
either φ is initially true or ψ will be true until φ is true.

Combining temporal operators allows the definition of

complex properties with interleaved notions of eventually

(F), always (G) and one thing after another (U). A precise

classification of the expressivity of our logic is beyond the

scope of the present work, however it can likened to a

bounded time PCTL [21]. The semantics is essentially the

same as that of PBLTL in [24].



Algorithm 1 The planning algorithm

1: function FINDLOCALPATH(stateuser , stateped1 , . . . , statepedN ,
Map, GlobalPlan, Formula)

2: Real Pcurr , dcurr , Pbest , dbest;
3: [Pbest, dbest]=[1,∞];
4: for αcurr ∈ {0,±20,±50,±75,±90} do
5: [Pcurr , dcurr] = SMC(stateuser , stateped1 , . . . , statepedN ,

Map, GlobalPlan,Formula);
6: if is better([Pcurr , dcurr], [Pbest, dbest]) then
7: αbest = αcurr;
8: [Pbest , dbest] = [Pcurr , dcurr];
9: end if

10: end for
11: if Pbest == 1 then

12: return STOP;
13: else

14: return αbest;
15: end if

16: end function

III. SMC–BASED MOTION PLANNER

Our algorithm assumes the existence of a pre-computed

long-term trajectory (the global plan) that visits the user’s

objectives in an optimal way, starting from the user’s initial

position. In practice, this trajectory is computed based on the

information about the environment, anomalies (e.g., crowded

areas), static objects and the user’s objectives. A change in

the user’s objectives triggers the recalculation of this global

plan.

The sensor subsystem integrated in the device, periodically

provides the state of the local environment: 1) position and

velocity of the user (localization), 2) position and velocity

of the pedestrian (user sensing), and 3) position of non static

obstacles and anomalies (environment sensing).

The algorithm then uses this knowledge to construct a

system of ordinary differential equations according to (Eq.

1). For every pedestrian we only have information about

position and velocity, we thus decided to use the parameters

of the model given in [1]. A future challenge will be to

estimate these parameters on-line. The noise term ξi is

used to model the natural variance seen in real pedestrian

behavior and to resolve deadlocks (agents unable to pass

each other due to near equal and opposite velocities). In the

current implementation we estimate this variance with two

normal distributions; one for intensity and one for direction.

However, one issue to be addressed is an accurate estimate

of these distributions when pedestrains moving in a mall (or

similar) environment are considered.

In order to compute the local plan, the algorithm estimates

the evolution of the system state (comprising the position of

the user and of other pedestrians) for Thorizon time units in

the future starting from an initial state that is estimated by

the sensing system.

The pseudo-code of the algorithm is reported in

Agorithm 1. The input parameters of the algorithm are

positions and velocity of the user (stateuser) and of the

other pedestrian in the scene (stateped1
, . . . , statepedN

), the

map of the environment annotated with static obstacle

(Map), the global plan (GlobalPlan) and the logic for-

mula expressing the safety constraints we want to im-

pose (Formula). The direction to take is denoted as αbest,

where αbest take value in the finite set of possible dir-

ections ({0,±20,±50,±75,±90}). The algorithm cycles

over all possible directions (for cycle between line 4 and

10 in Agorithm 1). Each possible assignment of direc-

tions is model checked against the logical property (SMC

function call). In the experimental data collection repor-

ted below, we have used the following formula expressed

in temporal logic:
(

G[0,Thorizon]

∧

i6=u ‖xu − xi‖ > 0.5
)

∧
(

F[0,4]‖xu −w‖ < 0.2
)

, where xu denotes the position of

the user, w is the current local waypoint and ‖·‖ denotes the

Euclidean distance. This property can be translated in plain

english as in the next Thorizon time units the user will get no

closer than 0.5 m to any other pedestrian and will eventually

be less than 0.2 m from the global plan. The local waypoint

w is a point on the global plan that serves as attractor for the

user. This point is identified as the point that an “ideal” user,

moving with the reference velocity would reach at the end of

the time horizon if he/she followed exactly the global plan.

To estimate the probability of violation (Pcurr) for a given

decision αcurr, the SMC algorithm generates N independent

simulation runs of the model (where N is a parameter)

from the current time (T0) to the end of the time horizon

(T0+Thorizon). The decision is implemented by rotating the

desired velocity vector of the user v0i of the quantity αcurr.

The system evolves “freely” using the social force model up

to the end of the time horizon. Each simulation produces

a different trajectory due to the influence of the random

parameters. The probability of violation of the property is

estimated by counting the number of executed trajectories

that violate it. In addition to Pcurr the SMC also returns the

expected value of the distance from the global plan achieved

through the set of simulation runs, dcurr.

The decision αcurr that attains the best trade-off between

safety and distance from the plan is noted during the ex-

ecution of the for loop and returned at the end of the

simulation (αbest). This trade-off is coded in a function

named is better, which considers a trajectory only if the

maximum probability of violation Pbest is below a given

threshold. If none of the choices attains this threshold, the

user is required to stop.

After the algorithm is terminated, the decision αbest is

suggested to the user. In this report we have restricted

our focus to “compliant” user: the decision is accepted

and executed. Different possibilities in the behavior of the

user will be considered in our future work. The planning

algorithm can be re-executed after the subsequent decision

point is reached implementing a receding horizon paradigm.

In this work we assume decision points are spaced Tdecision
time units apart from each other, where Tdecision < Thorizon.

Assuming that ξi is an accurate model of the random

behaviour of pedestrians, the Chernoff bound [22] predicts

that with N = 10 simulation runs the estimate of the

probability of success has maximum error of ±0.3 with 70%

confidence. The confidence increases and the maximum error

decreases as N increases, for example, with N = 50 the



probability of success has a maximum error of ±0.2 with

90% confidence. The algorithm improves on these figures by

effectively re-estimating the probability as the user moves

along the path – the algorithm updates in a time that is

approximately an order of magnitude less than the time of

the simulated path.

To generate simulation runs, the algorithm solves (1) using

a standard ODE solver [25]. The solver uses an adaptive step

size to increase efficiency, minimise errors and to ensure

that important points (e.g., hidden peaks) are not lost due to

sampling.

IV. SIMULATION MODEL

To demonstrate our algorithm we have implemented a

prototype on a off-the-shelf, low power embedded system,

the Beagleboard xM1. It is a portable device that may run

from battery power and provides performance comparable

to a small computer. We use PLASMA-lab2 as the statistical

model checking library. To test the algorithm we have created

a virtual environment containing fixed objects and other ped-

estrians that react to the user’s presence. The pedestrians are

assigned individual global plans to simulate their objectives

and individual parameters that reflect the variation seen in

reality. These informations are unknown to the planner in

order to increase the sense of reality. We thus used a different

set of parameters for the Social Force Model and the noise

term ξ in the planner. In this way we simulate pedestrians that

are reactive to the user and each other, with behaviour that

is realistically unpredictable. Moreover, the simulated device

has limited omnidirectional sensing range, we suppose it is

able to detect agents moving within a radius of 4 meters

with respect to the current position of the user. In the final

application, a sensor board connected to the single board

computer will provide the real (estimated) positions and

velocities of the user and nearby pedestrians.

V. SIMULATIONS

In order to show the benefits of using SMC and the Social

Force Model together (SMC + SFM ), we compared our

proposed solution with two different strategies:

• SMC with a linear motion model (SMC+LIN ): when

detected, an agent is suposed to keep moving with

same speed and same direction. We added a normally

distributed noise (equal to ξi in SMC+SFM ) in order

to randomize simulations.

• Social Force Model only (SFM ): we analyze the evo-

lution of the environment without any decision points

(Tdecision = ∞).

For SMC+SFM and SMC+LIN we used the following

parameters: Thorizon = {1, 2, 4, 6, 8}, Tdecision = 1 and

N = 50. We performed 500 independent runs for SFM and

500 for every combination of Thorizon for SMC+SFM and

SMC +LIN . Our objective was to demonstrate that 1) the

higher complexity of our approach leads to valuable payoff

1http://www.beagleboard.org
2https://project.inria.fr/plasma-lab/

in terms of performance and 2) it can be implemented online

on an embedded device with limited computing power.

a) Algorithm performance analysis: We have devised

two scenarios that challenge our algorithm and highlight

significant features of its performance. In the first one

(namely, scenario 1) the user moves on a straight line close

to a fixed obstacle, while three agents are moving towards

him. In the second one (namely, scenario 2) the user attempts

to visit a market stall at the end of the market while some

pedestrians block the user’s progress by entering the scenario

and moving from one market stall to another. The user’s

global plan is a straight line from the left to the right of

the market. Figures 2 and 3 depict the trajectories on the

plane and the distances over time with respect to the user,

respectively, for one particular run of scenario 2. We defined

4 parameters to measure performance: 1) the time needed

for the user to reach the right side of the scenario (Texit), 2)

the measured probability of respecting the minimum safety

distance to agents (Psafe), 3) ǫx and 4) ǫθ. The last two are

defined below.

Let x(t) represent the cartesian coordinates of the posi-

tion of the user after the planning for each time t, θ(t)
represent its orientation w.r.t. a fixed frame, x̃(t) the long

term plan and θ̃(t) the orientation decided according to

the long term plan. One possible way for quantifying the

performance of the planner is by the integral error of

the difference between the corrected plan and the long

term plan: ǫx = E

{

√

1
T

∫ T

0
|x(t) − x̃(t)|2 dt

}

A simi-

lar performance metric can be defined for the orientation:

ǫθ = E

{

√

1
T

∫ T

0

∣

∣

∣
θ(t)− θ̃(t)

∣

∣

∣

2

dt

}

. This second error term

along with Psafe can be used to quantify the comfort of the

user. Indeed, frequent changes in the direction reduce the user

experience, especially if elderly, and so does the probability

of accidents. Table I and Table II reports the results we

obtained for scenario 1 and scenario 2, respectively.

Scenario 1 is the most problematic for SFM due to

the limitations of this model discussed previously. This is

reflected in the results, as SMC+SFM and SMC+LIN
exhibit a higher Psafe and a lower ǫθ, especially when

Thorizon is large. SMC + SFM , in turn, outperforms

SMC + LIN on all parameters. In scenario 2, from the

safety and comfort point of view of the user, SMC+SFM
approach obtain a higher Psafe and a lower ǫθ with respect to

SFM and SMC +LIN , when Thorizon ≤ 6. We observed

a decrease of performance of the SMC-based approaches

when Thorizon > 6. This is motivate by the fact that the

tested temporal logic formula is less likely to be satisfied over

a large horizon in a crowded environment. As a consequence,

the planning algorithm suggests the user to stop and/or to

change direction in order to avoid the unfeasible path (higher

ǫθ). In general, SFM tends to keep the user closer to the

global plan, even though it is not able to provide the same

comfort level as SMC + SFM .

b) Temporal Performance on the Beagleboard: We

measured the CPU time needed by the Beagleboard xM to



TABLE I

SCENARIO 1: PERFORMANCE FOR SMC + SFM , SMC + LIN AND SFM MODELS. 500 SIMULATIONS EACH WERE CONDUCTED.

Parameter Unit SMC + SFM SMC + LIN SFM

Thorizon [s] 1 2 4 6 8 1 2 4 6 8 -
Texit [s] 23.08 23.38 22.72 21.68 21.11 23.17 24.63 24.55 24.42 24.19 23.56
Psafe - 0.7444 0.8923 0.9933 0.9981 0.9985 0.7511 0.8709 0.9565 0.9989 0.9925 0.7386
ǫx [m] 0.3504 0.9914 1.4377 1.6131 1.7386 0.3322 0.9832 1.4761 1.9007 2.0384 0.3062
ǫθ [DEG] 53.19 37.22 13.93 10.84 9.36 55.89 48.03 40.11 24.66 22.47 36.86

TABLE II

SCENARIO 2: PERFORMANCE FOR SMC + SFM , SMC + LIN AND SFM MODELS. 500 SIMULATIONS EACH WERE CONDUCTED.

Parameter Unit SMC + SFM SMC + LIN SFM

Thorizon [s] 1 2 4 6 8 1 2 4 6 8 -
Texit [s] 26.82 23.89 24.08 21.12 20.27 27.33 31.48 36.03 29.98 23.71 23.16
Psafe - 0.9908 0.9998 0.9993 0.9977 0.9316 0.9882 0.9965 0.9977 0.9925 0.9486 0.9665
ǫx [m] 0.7677 0.7927 0.6497 0.5701 0.5430 0.7902 1.4279 1.2607 0.8282 0.6760 0.3825
ǫθ [DEG] 9.97 5.50 9.20 10.59 19.97 10.62 14.25 20.33 21.56 21.52 13.67

TABLE III

PERFORMANCE (CPU TIME/SIMULATION STEP) ON THE BEAGLEBOARD,

FOR SMC + SFM (Tdecision = 1, Thorizon = 4) AND SFM . 500

SIMULATIONS EACH WERE CONDUCTED.

Scenario SFM + SMC [ms] SFM [ms]
µ σ µ σ

Scenario 1 228.9 392.1 1.1 1.2
Scenario 2 2026.1 2432.1 10.1 11.2

execute the scenarios presented in the previous section. We

executed 500 simulations of the two scenarios for SMC +
SFM and SFM . We timed the execution of every single

simulation step using the standard POSIX libraries available

on UNIX systems and finally we computed the average time

µ and the standard deviation σ reported in Table III. We

observed a large standard deviation, related to the chosen

type of ODE solver that uses an adaptive step size. However,

if Thorizon = 1 seconds, the current implementation is able

to successfully (i.e. within the deadline of 1000 ms) compute

a step of the proposed algorithm in 93.4% of the cases for

the simple scenario and in 40.9% of the cases for the market

scenario.

VI. CONCLUSION AND ONGOING WORK

The social force model is essentially a deterministic

model of the average behaviour of individual pedestrians

in crowded situations. The trajectory of a real pedestrian

will often include apparently random deviations, arising from

unexpected attractions and distractions along the way. In

our current implementation these deviations are modelled

by the noise term ξi in (1). In this way, our estimate of

the probability of success can include the potentially highly

non-linear consequences of pedestrians deviating from their

nominal trajectories. If ξi is an accurate model of the non-

deterministic behaviour of other pedestrians, our estimate of

the probability of success of the user’s path will also be

accurate and on average we can be reasonably confident that

our prediction is correct. It is important to note, however, that

in any concrete situation the trajectories of real pedestrians

may vary significantly from our prediction, as a result of
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Fig. 2. Scenario 2. The user (circle-shaped) enters the scenario
from the left-hand side and his goal is to exit on the right-hand side,
following a straight line. In the meanwhile, some agents move around
the area following their respective goals.
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Fig. 3. Scenario 2. Distances of the agents with respect to the user
during the run showed in Fig. 2. The safety distance is set to 0.5 m
(dashed line) and has been violated once in this particular run.

the variance of ξi. A goal of our ongoing research is

therefore to predict deviations from the average trajectory

more deterministically.

One means by which we propose to achieve greater

determinism in our model is to enrich the information about

the user and other pedestrians. Equation (2) includes the pos-

sibility to explicitly model incidental attractive and repulsive

forces that might, for example, arise from interesting shops



and areas with high probability of crowding, respectively.

Such forces would apply to pedestrians in general and would

be known in advance.

As part of our larger project [2], we also propose to include

advanced sensor techniques to recognise known interesting or

hostile people (e.g., using facial recognition) and to generally

avoid people exhibiting hostile behaviour. Such forces apply

asymmetrically and would obviously have to be included in

an anisotropic version of the social force model [20].

A significant part of the challenge of our motion planning

application is the performance of its implementation. Current

hardware performance forces us to accept the necessity of

multiple boards to handle the overall computational burden,

but there is a clear advantage if a portable device can be

made to work on a single board. The embedded computing

boards we have chosen for our implementation include high

performance graphical processor units (GPUs) that can be

used for general purpose computing. Since statistical model

checking lends itself to parallelisation, requiring multiple

independent simulation runs, we propose to exploit the GPU

to gain a significant increase in performance (potentially

several orders of magnitude). A further gain in performance

might be obtained by code optimisation, but to simplify

ongoing development we propose to leave this until the

overall design has stabilised.

In the current implementation Tdecision < Thorizon,

hence, the algorithm generates a number of trajectories that

effectively overlap by a relevant amount of time units the

trajectories it generated on the previous iteration. Since each

simulation trace is an independent realisation of a random

variable, the new and old trajectories are unlikely to coincide

exactly. Moreover, the predictions of older simulations are

likely to be less accurate with respect to the current reality.

Despite this, data from the three previous iterations may be

employed, suitably weighted, to build a probabilistic map of

the good and bad locations in the local environment. This

map can be used to avoid simulations that explore directions

that are very likely to be unsuccessful and to provide haptic

feedback if the user chooses to diverge from the proposed

path.

Our immediate goal is to validate our approach with more

complex simulations and under real conditions.
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