
An abstract machine for HOcore

Lionel Zoubritzky

August 11, 2017

Contents

1 Introduction 3

2 HOcore 3

3 Definition of the abstract machine 5
3.1 Definitions and notations . 5

3.1.1 Freedom and well-formedness . 5
3.1.2 Level . 6
3.1.3 Environments . 8
3.1.4 State of the machine . 9

3.2 Transitions between states . 10
3.2.1 Abstraction and transmission . 10
3.2.2 Transition . 10

4 Preservation of well-formedness 11
4.1 Well-formed abstraction theorem . 11
4.2 Transition theorem . 12

5 Translation 12
5.1 Forward translation . 12
5.2 Partial translation . 13
5.3 Backward translation . 13
5.4 Equivalence of states . 14
5.5 Well-formed forward translation . 14

6 Partial translation properties 15
6.1 Dual properties of the level . 15
6.2 Partial translation in an empty environment 15
6.3 Consistency of the translation . 16

1

6.4 Stability of ≡ by + . 17
6.5 Partial translation lemma . 17
6.6 Well-formed translation property . 18
6.7 Elementary transmissions . 18
6.8 Partial translation theorem . 19

7 Soundness 20
7.1 Simplification lemma . 20
7.2 One-step theorem . 21
7.3 Transmission theorem . 22
7.4 Main lemma . 23
7.5 Soundness property . 24

8 Completeness 24

9 Machine bisimilarity 25
9.1 Definition for HOcore . 25
9.2 Definition for the abstract machine . 26

9.2.1 Extension of syntax . 26
9.2.2 New LTS . 26
9.2.3 Machine bisimulation . 27

9.3 Intermediate lemma . 27

10 Equivalence of bisimilarities 28
10.1 Weak equivalence . 29
10.2 Size of the abstract machine . 30
10.3 Stability of ≈m by + . 32
10.4 Strong equivalence . 33

2

1 Introduction

HOcore is a minimal higher-order process calculus inspired of HOπ. It is minimal in the
sense that it remains Turing-complete [3] , although it does not have any name restriction.
It also has the property that strong barbed congruence and IO bisimilarity coincide and
are decidable [4].

We describe a simple abstract machine for HOcore and prove its soundness and com-
pleteness. To do this, we propose a translation between HOcore processes and machines
an prove that any reduction of the process matches a transition of the machine and the
converse.

We then refine the definition of the machine to create a notion of machine bisimilarity,
and prove that it is equivalent modulo translation to IO bisimilarity for HOcore processes.

Overall, the machine is quite similar to the Krivine Abstract Machine, with environ-
ments used to simulate reductions, only distributed in a multiset of processes that may
interact if there is a valid transmission available.

This work is organized as follow:

• Part 2 presents the semantics of HOcore

• Part 3 introduces notations for the abstract machine

• Part 4 presents the main results on well-formedness

• Part 5 introduces the translation between processes and machines

• Part 6 details various consequences of the previous definitions

• Part 7 presents the proof of the soundness of the machine

• Part 8 presents the proof of the completeness of the machine

• Part 9 introduces the notion of machine bisimilarity

• Part 10 presents the proof of the equivalence between bisimilarities

2 HOcore

Definition 1. A (HOcore) process is defined as

P ::= ā 〈P 〉 a(x).P P ‖ P x ?

where x ranges over the variables and a over the channels.

• ā 〈P 〉 designates the emission of P on channel a. HOcore is higher-order in the sense
that the message P is itself a process.

3

• a(x).P designates the reception on channel a of a process that will replace x in process
P .

• P ‖ Q designates the parallel composition of P and Q. This operation is commutative,
associative and admits ? as neutral element.

• x is a variable. A process is closed if all its variables x have been bound within
receptions of the form a(x).P .

• ? designates the empty process.

Processes may also be represented using de Bruijn variables with the locally nameless
convention [2]:

P ::= ā 〈P 〉 a.P P ‖ P i x ?

where i is a natural integer which represents a bound variable and x ranges over the free
variables.

From now on, we shall only use this latter representation.

Examples:

• The process ā 〈?〉 ‖ a(x).x is noted in de Bruijn ā 〈?〉 ‖ a.0.

• The process (b(x).(y ‖ a(y).x)) ‖ b̄ 〈c(x).ā 〈x〉〉 is noted in de Bruijn (b.(y ‖ a.1)) ‖
b̄ 〈c.ā 〈0〉〉.

• The process Ω = ā 〈a(x).(x ‖ ā 〈x〉)〉 ‖ (a(x).(x ‖ ā 〈x〉)) is represented in de Bruijn
by Ω = ā 〈a. (0 ‖ ā 〈0〉)〉 ‖ (a. (0 ‖ ā 〈0〉)).

Since ‖ is commutative, associative and admits ? as neutral element, a process may also
be represented as a multiset of objects which may be either an emission ā 〈P 〉, a reception
a.P or a variable i or x.

HOcore only has one reduction rule, consisting of the transmission of a message on a
channel. It may be defined using the following construct:

Definition 2. Given two processes Q and R and a depth i ∈ N, the substitution
R {Q/i} is a process defined by induction on the structure of R by:

• b̄ 〈P 〉 {Q/i} = b̄ 〈P {Q/i}〉

• (b.P) {Q/i} = b. (P {Q/(i+ 1)}).

• (P1 ‖ P2) {Q/i} = P1 {Q/i} ‖ P2 {Q/i}.

4

• i {Q/i} = Q and for all bound variable j 6= i, j {Q/i} = j.

• x {Q/i} = x.

• ? {Q/i} = ?.

This substitution is simple because of the locally nameless setting we use. We will see
in 3.1.1 a notion of well-formedness to ensure that all de Buijn indices are bound.

Definition 3. Let P be a process of the form ā 〈s〉 ‖ (a.r) ‖ P ′. Let t = (ā 〈s〉 , a.r) be
the pair emission / reception (such a pair is called a valid transmission of P . P ′ is called
the difference between the process P and the transmission t, which is noted P ′ = P \ t).
Then, there is a possible reduction on channel a which results in P ′′ = r {s/0} ‖ P ′.
This is noted P t→ P ′′, or simply P → P ′′ if no precision is required.

Examples:

• ā 〈?〉 ‖ a.0 (ā〈?〉,a.0)−→ ?.

• b.(y ‖ a.1) ‖ b̄ 〈c.ā 〈0〉〉 → y ‖ (a.c.ā 〈0〉)

• Ω = ā 〈a. (0 ‖ ā 〈0〉)〉 ‖ (a. (0 ‖ ā 〈0〉))→ Ω.

3 Definition of the abstract machine

3.1 Definitions and notations

3.1.1 Freedom and well-formedness

We begin by defining a notion of well-formedness for processes, which will be necessary to
build the abstract machine since it can only work with well-formed processes.

Definition 4. The freedom of a process P , noted f(P) is defined by induction with

• f(ā 〈P 〉) = f(P).

• f(a.P) = f(P)− 1.

• f(P ‖ Q) = max(f(P), f(Q)).

• f(i) = i+ 1.

• f(x) = f(?) = 0.

5

Note that if there is no bound variable in P , f(P) ≤ 0.

Definition 5. A process P is said to be well-formed when f(P) ≤ 0.
A process P is said to be closed if it is well-formed and contains no free variable.

Examples:

• f(?) = 0 so it is both closed and well-formed.

• f(a.(b.0 ‖ b̄ 〈x〉)) = −1 so it is well-formed. Since it has a free variable x, it is not
closed.

• f(a.ā 〈?〉) = −1 so it is well-formed, and it is also closed.

• f(a.b.0 ‖ a.1) = 1 so it is not well-formed, thus not a closed process.

• f(Ω) = 0 where Ω = ā 〈a.(0 ‖ ā 〈0〉)〉 ‖ (a.(0 ‖ ā 〈0〉)).

3.1.2 Level

The notion of freedom can be approached by another point of view which consists in com-
paring the bound variables with their level, that is the number of binder above them. We
now define these notions properly:

Definition 6. Let P and Q be processes and l a natural integer. We define the predicate
"Q is at level l in P", noted Level(P,Q, l), by

• (A) Level(Q,Q, 0).

• (P) Level(P,Q, l)⇒ Level(R ‖ P,Q, l) if P 6= ? and R 6= ?.

• (S) Level(P,Q, l)⇒ Level(ā 〈P 〉 , Q, l).

• (R) Level(P,Q, l)⇒ Level(a.P,Q, l + 1).

Note that if Q is not a subprocess of P , then for all l, Level(P,Q, l) is false. Moreover, Q
may be at level l and at level l′ in P with l 6= l′, for instance in P = Q ‖ a.Q.

Lemma 1. Let P , Q and R be processes with P 6= ? and Q 6= ?. Then:

1. Level(P ‖ Q, i, l)⇔ Level(P, i, l) or Level(Q, i, l).

2. Level(ā 〈R〉 , i, l)⇔ Level(R, i, l)

3. Level(a.R, i, l + 1)⇔ Level(R, i, l)

6

Proof of 1. In all three cases, the converse implication is a direct consequence of axiom
respectively (P), (S) and (R). We now show the direct implication.

1. Let i and l be so that Level(P ‖ Q, i, l). The only rule that may lead to Level(P ‖
Q, i, l) is (P) because i is not of the form P ′ ‖ Q′ (otherwise (A) could also have
applied).

So there is P0 and Q0 so that P ‖ Q = P0 ‖ Q0 and either Level(P0, i, l) or
Level(Q0, i, l). Since both cases are symmetric, let’s suppose that Level(P0, i, l). As
long as Pj is of the form P ′ ‖ Q′, the same method applies, so we may build a de-
creasing sequence P0, ..., Pn and Q0, ..., Qn such that Pj ‖ Qj = Pj+1 ‖ Qj+1 and
Level(Pj , i, l), until Pn is no more of the form P ′ ‖ Q′.
Since Pn is an atom, it belongs either to P or to Q. Let’s suppose it belongs to
P , i.e. P = Pn ‖ P ′. Then Level(Pn, i, l) by construction of the Pj , thus, by (P),
Level(P, i, l). If it belongs to Q, then Level(Q, i, l).

Hence the implication.

2. Let i and l be so that Level(ā 〈R〉 , i, l). The only rule that may lead to Level(ā 〈R〉 , i, l)
is (S) because i is not of the form ā 〈P 〉, thus Level(R, i, l).

3. Let i and l be so that Level(a.R, i, l + 1). The only rule that may lead to
Level(a.R, i, l + 1) is (R) because i is not of the form a.P , thus Level(R, i, l).

Lemma 2. If P contains at least one bound variable, then its freedom is so that
f(P) ≥ 1 + max{i− l | Level(P, i, l), i bound variable of P}.

Proof of 2. By induction on the structure of P :

• P cannot be ? nor x because it contains at least one bound variable.

• If P = ā 〈Q〉, then by definition f(P) = f(Q) and by hypothesis Q contains at least
one bound variable so the induction gives f(Q) ≥ 1 + max{i − l | Level(Q, i, l)}.
But by 2. of the last lemma, Level(Q, i, l) ⇔ Level(P, i, l) so f(P) ≥ 1 + max{i −
l | Level(P, i, l)}.

• If P = a.Q then by definition, f(P) = f(Q)−1 and by hypothesis Q contains at least
one bound variable, so by induction f(Q) ≥ 1 + max{i− l | Level(Q, i, l)}. By 3. of
the last lemma, Level(Q, i, l)⇔ Level(P, i, l + 1) so

f(P) ≥ 1 + max{i− l | Level(Q, i, l)} − 1

= max{i− l | Level(P, i, l + 1)}
= max{1 + i− (l + 1) | Level(P, i, l + 1)}
= 1 + max{i− l′ | Level(P, i, l′)}

7

• If P = Q ‖ R with both Q 6= ? and R 6= ?, then, by definition, f(P) =
max(f(Q), f(R)). If Q contains at least one bound variable, then by induction,
f(Q) ≥ 1 + max{i − l | Level(Q, i, l)}. The same is valid for R. Moreover, because
of 1. of the last lemma, Level(Q, i, l) or Level(R, i, l)⇔ Level(P, i, l). Thus, since all
the bound variables of P are either in Q or R, f(P) ≥ 1 + max{i− l | Level(P, i, l)}.

• If P = i, then f(P) = i+ 1. Moreover, by (A), Level(P, i, 0), and i is the only bound
variable of P , so 1 + max{i− l | Level(P, i, l)} = 1 + i.

Theorem 3. Let P be a process. If it is well-formed, then for all bound variable i
within P , Level(P, i, l)⇒ i < l.

Proof of 3. If there is no bound variable in P , the proposition holds. Otherwise,
suppose there is a bound variable i of P and Level(P, i, l) so that i ≥ l. Then
1 + max{i− l | Level(P, i, l)} ≥ 1 + 0 = 1 so P is ill-formed.

The reciproque is also true, but we do not need it.

3.1.3 Environments

The abstract machine for HOcore works using processes annotated with environments to
simulate the reductions. We now define such environments.

Definition 7. An environment e is recursively defined as a list of annotated processes,
an annotated process being a pair (process, environment):

e ::= [] (P, e) :: e

For any environment e, we will note len(e) the length of e.

Definition 8. An environment is said to be well-formed if all its elements are well-
formed and, recursively, an annotated process (P, e) is said to be well-formed if e is well-
formed and f(P) ≤ len(e).

Finally, we define a few notions of size to be used in inductions:

Definition 9.

• The size of a process P is defined recursively by

– size(?) = 0

– size(i) = size(x) = 1

8

– size(P ‖ Q) = size(P) + size(Q)

– size(ā 〈P 〉) = 1 + size(P)

– size(a.P) = 1 + size(P)

• The size of an environment e is defined recursively by:

– size([]) = 0

– size((P, e) :: l) = 1 + size(P) + size(e) + size(l)

Beware that the size of an environment is not its length.

• The size of an annotated process (P, e) is defined as
size ((P, e)) = size(e) + size(P).

3.1.4 State of the machine

We may now define the abstract machine. Much like in the definition of a process, the
following definition by induction may be replaced by a definition with a multiset.

Definition 10. A state M of the machine is defined by induction with

M ::= (ā 〈P 〉 , e) (a.P, e) M +M x ?

• The operation + is commutative, associative and admits ? as neutral element. It is
the equivalent of the parallel composition for processes.

• ? designates the empty state, similarly to the empty process.

Definition 11. The well-formedness of a state M is defined by induction on the
structure of M :

• If M = (P, e), it is well-formed if the annotated process (P, e) is well-formed, that is
if e is well-formed and f(P) ≤ len(e).

• If M = M1 +M2, it is well-formed if both M1 and M2 are well-formed

• ? and x are well-formed.

Examples:

• ? is well-formed.

• (ā 〈?〉 , e1) + (a.0, e2) is a well-formed state as long as e1 and e2 are well-formed envi-
ronments.

• (ā 〈0〉 , []) is an ill-formed annotated process, thus an ill-formed state.

9

3.2 Transitions between states

The only possible transition of the machine state consists in sending an emission to a
reception in the same channel, similarly to the reduction of a process. The main difference
comes from the treatment of the reception, where there is no substitution in the machine.

3.2.1 Abstraction and transmission

We first need to define a few operations:

Definition 12. To abstract a process P in an environment e consists in creating a new
state noted J(P, e)KM and defined by induction on the structure of P :

• J(ā 〈Q〉 , e)KM = (ā 〈Q〉 , e).

• J(a.Q, e)KM = (a.Q, e).

• J(Q ‖ R, e)KM = J(Q, e)KM + J(R, e)KM.

• J(i, e)KM = Je [i]KM if variable i is a valid index of e. Otherwise, the abstraction fails.

• J(x, e)KM = x.

• J(?, e)KM = ?.

Definition 13. To select a transmission in a state M consists in choosing a channel a
so that M = (ā 〈s〉 , e1) + (a.r, e2) +M ′.

If there is no channel a that satisfies the property that there is both an emission and a
reception on channel a, then M is said to be terminal, and there is no transmission.

Otherwise, the pair t = ((ā 〈s〉 , e1), (a.r, e2)) of annotated emission / annotated recep-
tion is said to be a transmission. Such a transmission is said to be valid for M if (ā 〈s〉 , e1)
is an emission and (a.r, e2) is a reception that both exist in M .

Definition 14. If t = (S,R) is a valid transmission for state M , let’s note M =
S +R+M ′. The difference between M and transmission t is defined as M \ t = M ′.

3.2.2 Transition

We may now define a transition on a state M . The machine simulates the reduction
by selecting a transmission if there is a valid one, then putting the emitted process in
the environment of the reception so that it becomes a well-formed process, ready to be
abstracted into a well-formed state. The preservation of well-formedness will be proven
shortly after.

The abstraction we use here does not look inside of emissions and receptions, which is
the main difference between the transition of the machine and the actual reduction of the

10

process. However, the abstraction of a variable requires an environment: this is necessary
to allow the machine and the process it represents to have equivalent reductions.

To preserve the original semantics of HOcore, the machine operates one transition at a
time, so parallelism is only simulated in the non-deterministic choice of the transmission,
but it could easily be adapted to perform multiple parallel transitions at a time. This
non-determinism is another important difference with the Krivine Abstract Machine, and
it comes from both the inherent non-determinism of HOcore and the choice made here not
to implement a specific reduction strategy.

Definition 15.
If M is terminal, there is no possible transition.
Otherwise, let t = (S,R) be a valid transmission of M . Let’s note R = (a.r, e) and

S = (ā 〈s〉 , e′).
The result of this transition is M ′ = (M \ t) + J(r, (s, e′) :: e)KM.
We will noteM t→M ′ or, more simply,M →M ′, similarly to the reduction of a process.

4 Preservation of well-formedness

We now prove that well-formedness is preserved through transition.
This result is necessary to prove that the machine is complete, which means that any

sequence of reductions starting from a well-formed process matches an equivalent sequence
of translations of the machine that represents the process.

4.1 Well-formed abstraction theorem

Theorem 4. Let (P, e) be a well-formed annotated process. Then J(P, e)KM is well-formed
and the abstraction does not fail.

Proof of 4. Let’s procede by complete induction on size ((P, e)). We note n = len(e).

• If size ((P, e)) = 0 then P = ?, so J(P, e)KM = ? which is well-formed, thus the
proposition holds.

• Otherwise,

– If P = x then J(x, e)KM = x is well-formed.

– If P = Q ‖ R with size(Q) > 0 and size(R) > 0, then we have both
size ((Q, e)) < size ((P, e)), size ((R, e)) < size ((P, e)) and J(Q ‖ R, e)KM =
J(Q, e)KM + J(R, e)KM, so the proposition is true by induction.

11

– If P = ā 〈Q〉 or a.Q, then J(P, e)KM = (P, e). Since (P, e) is a well-formed
annotated process, J(P, e)KM is well-formed.

– If P = i is a variable, then f(P) = i + 1, but (P, e) is a well-formed annotated
process, so f(P) ≤ n i.e. i < n. Thus i is a valid index of e and this step of the
abstraction does not fail.
Let (P ′, e′) = e[i]. Therefore, J(P, e)KM = J(P ′, e′)KM.
However, size ((P ′, e′)) = size(e′) + size(P ′) and size(e) ≥ 1 + size(P ′) + size(e′),
thus size(e) > size ((P ′, e′)), so size ((P ′, e′)) < size ((P, e)) and the hypothesis is
valid by induction.

4.2 Transition theorem

We will now prove the main theorem regarding the preservation of well-formedness:

Theorem 5. If state M is well-formed and M →∗ M ′, then M ′ is well-formed.

Proof of 5. By induction on the number n so that M →n M ′ :

• If n = 0, then M ′ = M is well-formed.

• Suppose M t→M ′ with t = (S,R), R = (a.r, e) and S = (ā 〈s〉 , e′).
Then M ′ = (M \ t) + J(r, (s, e′) :: e)KM. The annotated process (a.r, e) is well-formed
so f(r) ≤ len(e) + 1 = len((s, e′) :: e). Moreover, since M is well-formed, e is also
well-formed, and so is (s, e′), so environment (s, e′) :: e is well-formed. Thus, the
annotated process (r, (s, e′) :: e) is well-formed.

Thus, because of theorem 4, J(r, (s, e′) :: e)KM is well-formed. So is M \ t because all
the annotated processes that appear in M \ t also appear in M and M is well-formed.

Thus, we may conclude that M ′ is well-formed.

5 Translation

We now define a translation of HOcore terms into states. This will allow to define and
prove both soudness and completeness properties.

5.1 Forward translation

The forward translation converts a process into a state.

Definition 16. Given a well-formed HOcore process P , the translation of P into a
state, noted JP KM, is J(P, [])KM.

12

Intuitevly, this means that all emissions and receptions Q that were put in parallel in P
were mapped to (Q, []), and are now separated by + instead of ‖. The free variables were
kept as such. Thus, the resulting state is syntactically quite close to the original process.

5.2 Partial translation

The next definition is the core of the backward translation. It is parametrized by a natural
integer, the depth d which accounts for the level of the currently translated subprocess, and
comes from the use of de Bruijn variables.

Definition 17. The partial translation of a process P in an environment e, with depth
d, noted J(P, e)KdP is a process defined by induction on the structure of P :

• J(?, e)KdP = ?

• J(x, e)KdP = x

• J(Q ‖ R, e)KdP = J(Q, e)KdP J(R, e)KdP

• J(ā 〈Q〉 , e)KdP = ā
〈
J(Q, e)KdP

〉
• J(a.Q, e)KdP = a.

(
J(Q, e)Kd+1

P

)
• J(i, e)KdP =

{
i if i < d

Je [i− d]K0
P else, if i− d is a valid index of e

The translation fails otherwise.

In essence, the partial translation recursively translates all the processes and subpro-
cesses into a new one, where all the bound variables that were mapped to a process in a
precedent transition are now actually replaced by this process, found in the environment.
The depth is used to keep track of which bound variable corresponds to which index of the
environment.

The various properties of the partial translation will be discussed further.

5.3 Backward translation

We may now define the backward translation of a state toward a process.

Definition 18. Let M be a state. We define by induction on the structure of M its
backward translation, noted JMKP with

• J(P, e)KP = J(P, e)K0
P .

13

• JM1 +M2KP = JM1KP ‖ JM2KP .

• J?KP = ?.

• JxKP = x.

If one of the partial translations fails, the translation fails.

Given the nature of the partial translation, the meaning of the backward translation
is that all the successive transitions whose traces were kept in the environments are now
executed all at once. To do this, the environments are translated into substitutions.

5.4 Equivalence of states

Definition 19. We will therefore say that two states M and M ′ are equivalent and we
note M ≡M ′ when JMKP = JM ′KP . The standard representant of the equivalence class to
which belongs M is noted M̂ and is defined as M̂ = JJMKPKM.

Examples:

• Let M1 = (ā 〈?〉 , []) and M2 = (ā 〈0〉 , [?]). Then M1 ≡ M2 and we have JM1KP =

JM2KP = ā 〈?〉 and M̂1 = M̂2 = M1.

• Let M1 =
(
b. (0 ‖ 1) ,

[(
ā 〈0〉 ‖ 0 ‖ c.0,

[
? ; (d̄ 〈?〉 , [])

])])
and

M2 = (b. (0 ‖ c.0 ‖ 1) , [((ā 〈?〉 , []))]).
Then M1 ≡M2 and JM1KP = JM2KP = b.(0 ‖ ā 〈?〉 ‖ c.0).

5.5 Well-formed forward translation

The last theorem of the section ensures that the forward translation of a well-formed term
leads to a well-formed state. This is important to ensure the soundness of the machine.

Theorem 6. If P is well-formed, then JP KM is well-formed.

Proof of 6. By induction on the structure of P

• If P = ?, then JP KM = ? is well-formed

• If P = x, then JP KM = x is well-formed

• If P = Q ‖ R then both Q and R are well-formed, so, by induction, both JQKM and
JRKM are well-formed. Thus JP KM = JQKM + JRKM is well-formed.

• If P = ā 〈Q〉 or P = a.Q then f(P) ≤ 0 = len([]), thus JP KM = (P, []) is well-formed.

• P cannot be a bound variable since it is well-formed.

14

6 Partial translation properties

We establish here a few properties of the partial translation to further explain its meaning
and to ensure that the translation is consistent and may be operated without failure under
the right conditions.

6.1 Dual properties of the level

We begin with the following properties of the level which will be useful in the next proof.

Theorem 7. The dual following properties of the level hold:

• (P′) Level(P,Q ‖ R, l)⇒ Level(P,Q, l).

• (S′) Level(P, ā 〈Q〉 , l)⇒ Level(P,Q, l).

• (R′) Level(P, a.Q, l)⇒ Level(P,Q, l + 1).

Proof of 7. By induction on the rule that led to the predicate. We give as example the
proof for (P′), the other ones are similar.
Let Q′ = Q ‖ R. By induction on the rule that led to Level(P,Q′, l):

• (A): Level(P,Q′, l), l = 0 and P = Q′. Then, by (A), Level(Q,Q, 0), thus by (P),
Level(Q′, Q, 0) that is Level(P,Q, l).

• (P): Level(P ′, Q′, l) with P = P ′ ‖ R′. Then, by induction, Level(P ′, Q, l) thus by
(P), Level(P,Q, l).

• (S): Level(P ′, Q′, l) with P = ā 〈P ′〉. Then, by induction, Level(P ′, Q, l) thus by (S),
Level(P,Q, l).

• (R): Level(P ′, Q′, l − 1) with P = a.P ′. Then, by induction, Level(P ′, Q, l − 1) thus
by (R), Level(P,Q, l).

6.2 Partial translation in an empty environment

We may now show the following result, which gives an intuition on the meaning of the
partial translation.

Lemma 8. Let P be a well-formed process, let Q be any subterm that may appear
within P and let l be an integer so that Level(P,Q, l). Then J(Q, [])KlP = Q and the partial
translation does not fail.

Proof of 8. By induction on the structure of Q:

15

• If Q = ? then J(Q, [])KlP = ?.

• If Q = x then J(Q, [])KlP = x.

• IfQ = Q1 ‖ Q2 then by (P′), Level(P,Q1, l) and Level(P,Q2, l). Thus J(Q1 ‖ Q2, [])KlP =

J(Q1, [])KlP J(Q2, [])KlP = Q1 ‖ Q2 = Q by induction

• If Q = ā 〈R〉 then by (S′), Level(P,R, l). Thus, J(Q, [])KlP = ā
〈
J(R, [])KlP

〉
= ā 〈R〉

by induction.

• If Q = a.R then by (R′), Level(P,R, l+1). Thus, J(Q, [])KlP = a.
(
J(R, [])Kl+1

P

)
= a.R

by induction.

• If Q = i is a variable, then, since P is well-formed, i is bound in P , so by theorem 3,
i < l. Thus, it is kept untouched, the translation does not fail and J(Q, [])KlP = i = Q.

In particular, at level 0, if P is well-formed then J(P, [])K0
P = P .

6.3 Consistency of the translation

The following theorem ensures that the standard representant M̂ of an equivalent class of
≡ is well-defined.

Theorem 9. For all process P that is well-formed, JJP KMKP = P and the partial
translations do not fail.

Proof of 9. Let M = JP KM. We show the theorem by induction on the structure of P :

• If P = ā 〈Q〉 or a.Q, then M = (P, []) so JMKP = J(P, [])K0
P = P because of the

preceding lemma, and the partial translation does not fail.

• If P = Q ‖ R, then M = M1 + M2 where M1 = JQKM and M2 = JRKM, thus
JMKP = JM1KP ‖ JM2KP . By induction, JM1KP = Q and JM2KP = R, hence the
result.

• If P = ? then M = ? so JMKP = ? and the translation does not fail.

• If P = x then M = x so JMKP = x and the translation does not fail.

• P cannot be a bound variable because it is well-formed.

Because of this last theorem, M ≡ M̂ and ̂̂M = M̂ .

16

6.4 Stability of ≡ by +

We prove a small corollary of the definition of the backward translation.

Lemma 10. For all well-formed states M1, M2 and M ′:
M1 ≡M2 ⇔M1 +M ′ ≡M2 +M ′.

Proof of 10. By definition of the backward translation, for all well-formed N1 and N2, we
have JN1 +N2KP = JN1KP ‖ JN2KP . Thus, if M1 ≡ M2, JM1 +M ′KP = JM1KP ‖ JM ′KP =
JM2KP ‖ JM ′KP = JM2 +M ′KP .

Reciprocally, if JM1KP ‖ JM ′KP = JM2KP ‖ JM ′KP , then by identification of the struc-
tures, JM1KP = JM2KP .

6.5 Partial translation lemma

We now generalize the last results on failure of the partial translation to the most general
case. Note that this result is optimal in the sense that if f(P) > len(e)+d, then the partial
translation J(P, e)KdP is bound to pfail.

Lemma 11. Let P , e and d be so that f(P) ≤ len(e) + d. Then the partial translation
J(P, e)KdP does not fail.

Proof of 11. By induction on the structure of P , for all e and d that satisfy the condition:

• if P = ? then J(P, e)KdP = ?.

• if P = x then J(P, e)KdP = x.

• if P = Q ‖ R, then f(Q) ≤ f(P) and f(R) ≤ f(P) so, by induction, both par-
tial translations J(Q, e)KdP and J(R, e)KdP do not fail. Thus, the partial translation
J(P, e)KdP = J(Q, e)KdP

∥∥∥ J(R, e)KdP does not fail.

• if P = ā 〈Q〉, then f(Q) = f(P) ≤ len(e) +d so, by induction, J(Q, e)KdP does not fail.
Thus, J(P, e)KdP = ā

〈
J(Q, e)KdP

〉
does not fail.

• if P = a.Q, then f(Q) = f(P) + 1 ≤ len(e) + (d + 1) so, by induction, J(Q, e)Kd+1
P

does not fail. Thus, J(P, e)KdP = a.
(
J(Q, e)Kd+1

P

)
does not fail.

• if P = i is a variable, then f(P) = i + 1, so i − d < len(e). Thus, either i < d, in
which case it remains untouched, either i− d ∈ {0, len(e)− 1} in which case i− d is
a valid index of e. In both cases, the partial translation does not fail.

17

6.6 Well-formed translation property

We may now prove a generalized form of theorem 9.

Theorem 12. If M is well-formed, then the backward translation JMKP does not fail.

Proof of 12. This is quite straightforward, by induction on the structure of M :

• If M = (P, e). Then, since M is well-formed, (P, e) is well-formed, which means that
f(P) ≤ len(e). Thus, thanks to the lemma 11 we know that J(P, e)K0

P does not fail.

• IfM = M1 +M2, bothM1 andM2 are well-formed and by induction, the translations
JM1KP and JM2KP do not fail, so JMKP does not fail either.

• If M = ?, JMKP = ? and the translation does not fail.

• If M = x, JMKP = x and the translation does not fail.

Considering this theorem, the transition theorem and the well-formed forward transla-
tion theorem, we have proven so far that starting from a well-formed process P , its forward
translationM = JP KM exists and is well-formed, thus for anyM ′ resulting from transitions
of M i.e. M →∗ M ′, M ′ is well-formed so its backward translation JM ′KP does not fail.

All that remains to show to prove the soundness of the machine is that there is a chain
of reductions so that P →∗ JM ′KP .

6.7 Elementary transmissions

We refine here the notion of transmission to prove another propery of stability by ≡.

Definition 20. Given a transmission t = (S,R),

• The reduced transmission of t, noted JtKP , is defined as JtKP = (JSK0
P , JRK0

P).

• The standard transmission of t, noted t̂, is defined as t̂ =
((

JSK0
P , []

) (
JRK0

P , []
))

.

Theorem 13.

1. If t is a valid transmission for state M , then JtKP is a valid transmission of JMKP and
t̂ is a valid transmission of M̂ .

2. LetM be a state. If t′ is a valid transmission of JMKP (respectively M̂) on channel a,
then there is a valid transmission t of M on channel a so that t′ = JtKP (respectively
t′ = t̂).

3. If t is a valid transmission for stateM , then JM \ tKP = JMKP\JtKP and M̂ \ t = M̂\t̂.

18

Proof of 13.
1. Let t = (S,R) with S = (ā 〈s〉 , e1) and R = (a.r, e2). Let M ′ be so that M =

S + R + M ′. S and R are both of the form (P, e) so JSKP = JSK0
P and JRKP = JRK0

P .
Thus JMKP = JSK0

P JRK0
P JM ′KP . Since we have JtKP = (JSK0

P , JRK0
P), JtKP is a valid

transmission for JMKP .
Similarly, since JSK0

P is of the form ā 〈P 〉 and JRK0
P is of the form a.P , we haver

JSK0
P

z

M
=
(
JSK0
P , []

)
and likewise for R. Thus M̂ =

(
JSK0
P , []

)
+
(
JRK0

P , []
)

+ M̂ ′

and t̂ =
((

JSK0
P , []

)
,
(
JRK0

P , []
))

hence the result.

2. We consider the first case: JMKP and JtKP . Let t′ = (ā 〈s′〉 , a.r′) and JMKP =
ā 〈s′〉 a.r′ M ′′ . The definition of JMKP imposes the following structure for M : M =

(ā 〈s〉 , e1)+(a.r, e2)+M ′, with J(ā 〈s〉 , e1)K0
P = ā 〈s′〉, J(a.r, e2)K0

P = a.r′ and JM ′KP = M ′′.
Let t = ((ā 〈s〉 , e1), (a.r, e2)). Then JtKP = t′ and t is a valid transmission for M .

The second case (with M̂ and t̂) is very similar.

3. Let t = (S,R) and M = S + R + M ′. Then JM \ tKP = JM ′KP and JMKP \ JtKP =(
JSKP JRKP JM ′KP

)
\
(

JSKP JRKP
)

= JM ′KP .
The second case is very similar too.

6.8 Partial translation theorem

The next theorem aims at linking the main notions seen until now: the abstraction of an
annotated process, the partial translation and the backward translation.

Theorem 14. Let (P, e) be an annotated process. Then
JJ(P, e)KMKP = J(P, e)K0

P .

Proof of 14. By induction on size ((P, e)):

• If size ((P, e)) = 0 then P = ?, thus JJ(P, e)KMKP = J(P, e)K0
P = ?.

• Otherwise,

– If P = x then JJ(P, e)KMKP = JP K0
P = x.

– If P = Q ‖ R with neither Q = ? nor R = ?, then by definition, JJ(P, e)KMKP =

JJ(Q, e)KMKP JJ(R, e)KMKP and by induction, JJ(Q, e)KMKP = J(Q, e)K0
P and

JJ(R, e)KMKP = J(R, e)K0
P . Thus, JJ(P, e)KMKP = J(Q, e)K0

P ‖ J(R, e)K0
P =

J(P, e)K0
P .

– If P = ā 〈Q〉 or P = a.Q, then J(P, e)KM = (P, e). Therefore, by definition,
JJ(P, e)KMKP = J(P, e)K0

P .

19

– If P = i is a variable, then

∗ Either i < len(e), in which case i is a valid index of e. Thus, J(P, e)KM =
Je [i]KM so JJ(P, e)KMKP = JJe [i]KMKP and J(P, e)K0

P = Je [i]K0
P . But

size (e [i]) < size ((P, e)) so, by induction, the proposition holds.
∗ Either i ≥ len(e) in which case both J(P, e)KM and J(P, e)K0

P fail.

7 Soundness

We are now going to prove that the machine is sound, in the sense that any transition per-
formed by the machine matches a possible transition of the HOcore process it is translated
into.

To do this, we begin by showing that any transition performed by the machine matches
a possible transition of its standard representant (main lemma). Afterwards, we may con-
clude using the close relation there is between a standard representant and its backward
translation.

7.1 Simplification lemma

The following lemma taken with c = d = 0 means that if s is a well-formed annotated
process, that is suited to be translated into a process, then the obtained process may not
be re-translated into anything other than itself.

This is quite intuitive since the obtained process should be well-formed, thus indepen-
dant of the environment it may be annotated with.

Lemma 15. Let S = (P, e) be an annotated process and depth c be so that f(P) ≤
len(e)+c and e is well-formed. Let f be an environment. Then, for all d ≥ c, J(JSKcP , e

′)KdP =
JSKcP .

Proof of 15. By induction on size ((P, e)):

• If size ((P, e)) = 0 then P = ?, thus J(JSKcP , e
′)KdP = JSKcP = ?.

• Otherwise,

– If P = x then JSKcP = x thus J(JSKcP , e
′)KdP = x.

– If P = Q ‖ R then J(JSKcP , e
′)KdP = J(J(Q, e)KcP , e

′)KdP J(J(R, e)KcP , e
′)KdP thus,

by induction, J(JSKcP , e
′)KdP = J(Q, e)KcP ‖ J(R, e)KcP = JSKcP .

– If P = ā 〈Q〉 then J(JSKcP , e
′)KdP = ā

〈
J(J(Q, e)KcP , e

′)KdP
〉
. By induction,

J(J(Q, e)KcP , e
′)KdP = J(Q, e)KcP .

20

– If P = a.Q then J(JSKcP , e
′)KdP = a.

(r
(J(Q, e)Kc+1

P , e′)
zd+1

P

)
. By induction,

r
(J(Q, e)Kc+1

P , e′)
zd+1

P
= J(Q, e)Kc+1

P .

– If P = i is a variable, then

∗ Either i < c, so JSKcP = i and i < c ≤ d, thus J(JSKcP , e
′)KdP = i.

∗ Either i ≥ c in which case, since f(P) = i + 1 ≤ len(e) + c, i − c is a valid
index of e so the translations do not fail. Thus JSKcP = Je [i− c]K0

P and

J(JSKcP , e
′)KdP =

r
(Je [i− c]K0

P , e
′)
zd
P
. By induction, with s′ = e [i− c] and

c′ = 0 ≤ d, we have
r

(Je [i− c]K0
P , e

′)
zd
P

= Je [i− c]K0
P hence the result.

7.2 One-step theorem

The following theorem links the substitution, used in the definition of the reduction of an
HOcore process, with the partial translation in an environment made of a singleton.

Theorem 16. Let i be a natural integer, s be a well-formed process, s̃ = [(s, [])] and
r be a process so that f(r) ≤ i+ 1. Then, r{s/i} = J(r, s̃)KiP .

Proof of 16. By induction on the structure of r:

• If r = ?, then r{s/i} = J(r, s̃)KiP = ?.

• If r = x, then r{s/i} = J(r, s̃)KiP = x.

• If r = P ‖ Q, then r{s/i} = P{s/i} ‖ Q{s/i}, we have both f(P) ≤ f(r) and f(Q) ≤
f(r) and J(r, s̃)KiP = J(P, s̃)KiP ‖ J(Q, s̃)KiP . Thus, by induction, P{s/i} = J(P, s̃)KiP
and Q{s/i} = J(Q, s̃)KiP hence the result.

• If r = ā 〈P 〉 then r{s/i} = ā 〈P{s/i}〉, J(r, s̃)KiP = ā
〈
J(P, s̃)KiP

〉
and f(P) = f(r)

thus the induction allows to conclude.

• If r = a.P then r{s/i} = a. (r{s/(i+ 1)}) and J(r, s̃)KiP = a.
(
J(P, s̃)Ki+1

P

)
, and

f(P) = f(r) + 1 ≤ (i+ 1) + 1 thus the induction allows to conclude.

• If r is a variable, then

– If r = i then r{s/i} = s and J(r, s̃)KiP = J(s, [])K0
P = s since it is the partial

translation of a well-formed annotated process in an empty environment.

– If r < i then r{s/i} = J(r, s̃)KiP = r.

– r > i is an impossible case because f(r) ≤ i+ 1.

21

7.3 Transmission theorem

The transmission theorem establishes an equality between two terms whose translations did
not happen at the same time.

Using the upcoming notations, P designates a process which is translated only once after
multiple transitions, whereas in P ′, R was first partially translated, and is now translated
again after one last transition.

The equality shows that the order in which the partial translations and the transitions
were operated does not change the equivalence class of the resulting state.

Theorem 17. Let S be a well-formed annotated process, d a natural integer and
R = (r, e), an annotated process so that f(r) ≤ len(e) + d and e is well-formed. Let
S̃ =

[(
JSK0
P , []

)]
.

Let P = J(r, S :: e)KdP and P ′ =
r(

JRKd+1
P , S̃

)zd
P
.

Then P = P ′.

Proof of 17. By induction on the structure of r:

• If r = ? or x, P = P ′ = r.

• If r = Q ‖ R, then we have P =

P1︷ ︸︸ ︷
J(Q,S :: e)KdP ‖

P2︷ ︸︸ ︷
J(R,S :: e)KdP and P ′ =

P ′
1︷ ︸︸ ︷r(

J(Q, e)Kd+1
P , S̃

)zd
P
‖

P ′
2︷ ︸︸ ︷r(

J(R, e)Kd+1
P , S̃

)zd
P
.

By induction, P1 = P ′1 and P2 = P ′2, thus P = P ′.

• If r = ā 〈Q〉, then P = ā

〈 X1︷ ︸︸ ︷
J(Q,S :: e)KdP

〉
. Moreover, JRKd+1

P = ā
〈
J(Q, e)Kd+1

P

〉
, thus

P ′ = ā

〈r(
J(Q, e)Kd+1

P , S̃
)zd
P︸ ︷︷ ︸

X2

〉
. By induction, X1 = X2 so P = P ′.

• If r = a.Q, then P = a.


X1︷ ︸︸ ︷

J(Q,S :: e)Kd+1
P

. Moreover, JRKd+1
P = a.

(
J(Q, e)Kd+2

P

)

thus P ′ = a.

r(
J(Q, e)Kd+2

P , S̃
)zd+1

P︸ ︷︷ ︸
X2

. By induction, X1 = X2 so P = P ′.

22

• If r = i is a variable, then

– Either i < d+ 1, in which case JRKd+1
P = i, thus

∗ If i < d then P = P ′ = i.
∗ If i = d then P = J(d, S :: e)KdP = JSK0

P and

P ′ =
r(

JRKd+1
P , S̃

)zd
P

=
r(
d,
[
(JSK0

P , [])
])zd

P
=

r(
JSK0
P , []

)z0

P
= JSK0

P
because of lemma 15.

– Either i ≥ d + 1, in which case JRKd+1
P = Je [i− d− 1]K0

P , same as P =

J(r, S :: e)KdP = Je [i− d− 1]K0
P .

But
r(

JRKd+1
P , S̃

)zd
P

=
r(

Je [i− d− 1]K0
P , S̃

)zd
P

= Je [r − d− 1]K0
P since e is

made of well-formed annotated processes and because of lemma 15. so P = P ′.

7.4 Main lemma

The main lemma is the last step before the proof of soundness. It reduces the problem of
dealing with any machine state M to a more specific state, M̂ whose properties are much
easier to study since all its environments are empty.

Theorem 18. If M is a well-formed machine state and M t−→ M1, then M̂
t̂−→ M2

where M2 ≡M1.

Proof of 18. Let (S,R) = t. We have already proven that t̂ was a valid transmission of
M̂ (see Elementary transmissions).

Let’s now write M1 = (M \ t) +M ′1, like in the definition of a transition. Similarly, let’s
write M2 = (M̂ \ t̂) +M ′2. We have also seen that M̂ \ t = M̂ \ t̂, so (M \ t) ≡ (M̂ \ t̂).

To prove that M1 ≡ M2, we now only have to prove that M ′1 ≡ M ′2, because of the
stability by +. Let (a.r, e) = R and (ā 〈s〉 , e′) = S. We can note M ′1 = J(r, (s, e′) :: e)KM.

Moreover, since t̂ =
(((

ā
〈
J(s, e′)K0

P

〉)
, []
)
,
(
a.
(
J(r, e)K1

P

)
, []
))

, we can rewriteM ′2 =
r(

J(r, e)K1
P , S̃

)z
M

with S̃ =
[(

J(s, e′)K0
P , []

)]
.

Both forms are well-defined thanks to theorem 4.
Moreover, JM ′1KP = J(r, (s, e′) :: e)K0

P and JM ′2KP =
r(

J(r, e)K1
P , S̃

)z0

P
because of theo-

rem 14. Thus, theorem 17 applies, with depth 0.
Hence JM ′1KP = JM ′2KP , that is M

′
1 ≡M ′2, so M1 ≡M2.

23

7.5 Soundness property

We may now prove that the machine is sound.

Theorem 19. Let M be a well-formed state. If M →∗ M ′ then JMKP →∗ JM ′KP

Proof of 19. By induction on n so that M →n M ′:

• If n = 0, M = M ′ so JMKP →0 JM ′KP .

• If M →n+1 M ′, let N be so that M →n N
t→ M ′. By induction, JMKP →∗ JNKP .

Let’s show that JNKP → JM ′KP . First, note that since M is well-formed, so are M ′

and N because of theorem 5, and consequently, because of property 12, both JNKP
and JM ′KP exist.

The main lemma implies that N̂ t̂→ N ′ and N ′ ≡M ′.
Let (S,R) = t̂, that may be decomposed into (ā 〈s′〉 , []) = S and (a.r′, []) = R.

Let’s note N ′ = (N̂ \ t̂) + N ′′. By definition, N ′′ = J(r′, [(s′, [])])KM. Because of
theorem 14, JN ′′KP = J(r′, [(s′, [])])K0

P .

Thus, because of theorem 16, JN ′′KP = r′{s′/0}, hence

JN ′KP =
r
N̂ \ t̂

z

P
+ JN ′′KP =

(r
N̂

z

P
\

q
t̂
y
P

)
+ r′{s′/0}.

Let t̃ =
q
t̂
y
P = (ā 〈s′〉 , a.r′). Then, by definition of the reduction,

r
N̂

z

P

t̃→ JN ′KP ,

thus JNKP
t̃→ JM ′KP .

8 Completeness

We now prove that the machine is complete, in the sense that any transition performable
by the terms matches a possible transition of the machine. To put it more formally, we
prove the following theorem:

Theorem 20. If P is a well-formed term and P t′→ P ′, then for all well-formed M so
that JMKP = P , there is a valid transmission t of M so that JtKP = t′ and M t→ M ′ with
JM ′KP = P ′.

Proof of 20. The existence of a valid transmission t of M so that JtKP = t′ comes from a
property of the elementary transmissions. Considering the unique M ′ so that M t−→ M ′,

the soundness of the machine ensures that there is a P ′′ so that P
JtKP−→ P ′′ and JM ′KP = P ′′.

But P
JtKP−→ P ′ already, so P ′ = P ′′.

24

9 Machine bisimilarity

In this section, we define a notion of bisimilarity between abstract machines.

9.1 Definition for HOcore

We begin by recalling the definition of IO bisimilarity for HOcore. To do this, we need to
change the Labelled Transition System we used up to now. Let’s now consider that the old
LTS, whose labels were of the form P

t→ Q with t a valid transmission of P , does not exist.

Definition 21. The LTS of HOcore consists in two possible transitions: input transi-

tions of the form P
a−→ Q or output transitions of the form P

ā〈R〉−→ Q. They are defined by
three rules:

1. a.P a−→ P

2. ā 〈P 〉 ā〈P 〉−→ ?

3. for α being either a or ā 〈R〉, P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
.

Definition 22. A symmetric relation R on HOcore processes is

• a higher-order output bisimulation if PRQ and P
ā〈P ′′〉−→ P ′ imply that there are Q′

and Q′′ so that Q
ā〈Q′′〉−→ Q′ with P ′RQ′ and P ′′RQ′′.

• an open bisimulation if whenever PRQ:

– P
a→ P ′ implies that there is Q′ so that Q a→ Q′ and P ′RQ′.

– P = v ‖ P ′ implies that there is Q′ so that Q = v ‖ Q′ and P ′RQ′, where v is
either a bound variable i or a free variable x.

Definition 23. IO bisimilarity, written ∼◦IO, is defined as the largest relation on HO-
core processes that is a higher-order output bisimulation and is open.

It has been proven in [4] that IO bisimilarity coincides with strong barbed congruence
and that both are decidable.

25

9.2 Definition for the abstract machine

We now define a notion of bisimilarity for the abstract machine.
Such a notion is defined and used in [1], where it uses the locally nameless convention

with a fresh variables factory in order to deal with bound variables. However, this approach
is impossible in our case because it requires that there be a unique environment for the
whole machine, whereas here there are as many environments as there are atoms of the
form (ā 〈P 〉 , e) or (a.P, e) in the machine.

Indeed, with M = (a.P, e) +N for instance, we would have JMKP
a→ J(P, e)K1

P ‖ JNKP
whereas, if n represents a fresh variables factory, (M,n)

a→ (J(P, n :: e)KM+N,n+ 1). But
(J(P, n :: e)KM + N,n + 1) cannot correspond to J(P, e)K1

P ‖ JNKP because n only appears
in one part of the machine, where it ought to appear in both to establish a correspondence.

Instead of this method, we use another way consisting in the transformation of the de
Bruijn variables into free variables that keep track of the former value of the variable. To
define this properly, we need to extend the syntax.

9.2.1 Extension of syntax

We extend the definition of abstract machine to be able to create a valid notion of machine
bisimilarity.

First, we extend the syntax of environments:

e = (P, e) :: e � :: e []

The new symbol � represents a hole in the environment. We also extend the associated
size with size(� :: e) = size(e).

We may then adapt the notion of abstraction to change the case of the variable:

• If i is a valid index of e and e [i] 6= �, then J(i, e)KM = Je [i]KM

• If i is a valid index of e and e [i] = �, or if i is not a valid index of e, then J(i, e)KM = i.
For all bound variable i, i is a free variable. Moreover, i is considered different than
all the other free variables that may appear in the machine.

The partial translation is adapted similarly, with J(i, e)KdP = i when i < d or when i− d
is an invalid index of e or when e [i− d] = �.

Note that the abstractions and the partial translations may no more fail. Consequently,
neither forward nor backward translations may fail either.

9.2.2 New LTS

Similarly to the definition of IO bisimilarity, we change the old LTS, whose labels were of
the form M

t→M ′ with t a valid transmission of M , into a new one.

26

Definition 24. The LTS of the machine consists in the following different possible
transitions:

• (a.r, e) +M
a→ J(r,� :: e)KM +M .

• (ā 〈s〉 , e) +M
(a)−→ J(s, e)KM.

• (ā 〈s〉 , e) +M
a+−→M .

• x+M
x→M .

• ?
?→.

There are five possible types of flags:

• ? is the terminal flag.

• (a), a+, a and x are called the non-terminal flags. a ranges over the channel names
and x over the free variables.

9.2.3 Machine bisimulation

We use the notion of machine bisimulation developped in [1], conditioned by the LTS for
the machines we just saw.

Let f range over the non-terminal flags of the machine.

Definition 25. A symmetric relation R is a machine bisimulation if M1RM2 implies:

• If M1
f→M ′1 then there is M ′2 so that M2

f→M ′2 and M ′1RM ′2.

• If M1
?−→ then M2

?−→.

Machine bisimilarity, noted ≈m is the largest machine bisimulation.

9.3 Intermediate lemma

We now prove a theorem that links the extensions of the syntax and the partial translation.

Definition 26. The environment
n times︷ ︸︸ ︷

� :: � :: ... :: � :: e is noted �n :: e.

Theorem 21. Let P be a process. Then J(P,�n :: e)K0
P = J(P, e)KnP .

Proof of 21. By induction on the structure of P :

27

• If P = ? then J(P,�n :: e)K0
P = J(P, e)KnP = ?.

• If P = x then J(P,�n :: e)K0
P = J(P, e)KnP = x.

• If P = Q ‖ R then J(P,�n :: e)K0
P = J(Q,�n :: e)K0

P J(R,�n :: e)K0
P thus, by in-

duction J(P,�n :: e)K0
P = J(Q, e)KnP J(R, e)KnP so finally J(P,�n :: e)K0

P = J(P, e)KnP .

• If P = ā 〈Q〉 then J(P,�n :: e)K0
P = ā

〈
J(Q,�n :: e)K0

P

〉
and by induction we have

J(Q,�n :: e)K0
P = J(Q, e)KnP so J(P,�n :: e)K0

P = J(P, e)KnP .

• If P = a.Q then J(P,�n :: e)K0
P = a.

(
J(Q,�n :: e)K1

P

)
and by induction, J(Q,�n :: e)K1

P =
q
(Q,�n+1 :: e)

y0

P = J(Q, e)Kn+1
P so J(P,�n :: e)K0

P = a.
(
J(Q, e)Kn+1

P

)
= J(P, e)KnP .

• If P = i then

– Either i ≥ len(e) + n in which case J(P,�n :: e)K0
P = J(P, e)KnP = i.

– Either i < n in which case J(P,�n :: e)K0
P = J(P, e)KnP = i.

– Either n ≤ i < n+len(e) in which case J(P,�n :: e)K0
P = J(P, e)KnP = Je [i− n]K0

P .

As a consequence of this theorem, we have the following result which will serve as an
intermediate lemma in the proof of the strong equivalence of bisimilarities:

Lemma 22. ̂J(P,�n :: e)KM = JJ(P, e)KnPKM

Proof of 22. Because of the theorem 14 we have J(P,�n :: e)K0
P = JJ(P,�n :: e)KMKP so

̂J(P,�n :: e)KM =
q
JJ(P,�n :: e)KMKP

y
M

=
r
J(P,�n :: e)K0

P

z

M
= JJ(P, e)KnPKM because of the preceding lemma.

10 Equivalence of bisimilarities

In this last section, we prove the equivalence between machine bisimilarity and IO bisimi-
larity for processes, modulo translation.

28

10.1 Weak equivalence

We now show the following theorem:

Theorem 23. Let P and Q be well-formed processes. Then

P ∼◦IO Q⇔ JP KM ≈m JQKM

Proof of 23.

• Let ≈′ = {(JP KM , JQKM) | P ∼◦IO Q, P and Q well-formed}. We show that ≈′ is a
machine bisimulation. To do this, let P and Q be so that JP KM ≈′ JQKM.

– If JP KM
?−→, then P = ?. Thus, since P ∼◦IO Q, Q = ? so JQKM = ?

?−→.

– If JP KM
a→ M , then JP KM = (a.rP , []) + M ′. Thus P = (a.rP) ‖ P ′, M ′ =

JP ′KM and M = J(rP , [�])KM + JP ′KM.
Since P ∼◦IO Q, Q = (a.rQ) ‖ Q′ and rP ‖ P ′ ∼◦IO rQ ‖ Q′. Thus JQKM =

(a.rQ, []) + JQ′KM
a→ N = J(rQ, [�])KM + JQ′KM.

But for all process R, JRKM = J(R, [�])KM because the abstraction of (i, []) and
(i, [�]) are the same. Thus M = JrP ‖ P ′KM and N = JrQ ‖ Q′KM.
By definition of ≈′, JrP ‖ P ′KM ≈′ JrQ ‖ Q′KM so M ≈′ N .

– If JP KM
(a)−→M , then JP KM = (ā 〈sP 〉 , []) +M ′.

Thus P = ā 〈sP 〉 ‖ P ′ hence M = JsP KM and Q = ā 〈sQ〉 ‖ Q′ with both

sP ∼◦IO sQ and P ′ ∼◦IO Q′. So JQKM
(a)−→ N = JsQKM. By definition of ≈′,

JsP KM ≈′ JsQKM. Thus M ≈′ N .

– If JP KM
a+−→M , then JP KM = (ā 〈sP 〉 , []) +M ′.

Thus P = ā 〈sP 〉 ‖ P ′ with M ′ = JP ′KM, hence M = M ′ = JP ′KM and Q =

ā 〈sQ〉 ‖ Q′ with both sP ∼◦IO sQ and P ′ ∼◦IO Q′. So JQKM
a+−→ N = JQ′KM.

By definition of ≈′, JP ′KM ≈′ JQ′KM. Thus M ≈′ N .

– If JP KM
x→ M , then JP KM = x + M ′, so P = v ‖ P ′, with M ′ = JP ′KM and

either x = i and v = i, or v = x.
Thus Q = v ‖ Q′, with P ′ ∼◦IO Q′. Hence, JQKM = x+ JQ′KM

x→ JQ′KM and by
definition of ≈′, JP ′KM ≈′ JQ′KM.

– If JP KM
ĩ→M , the precedent proof applies by replacing x with i.

• Let ∼′= {(P,Q) | JP KM ≈m JQKM , P and Q well-formed}. We show that ∼′ is an
IO bisimulation. To do this, let P and Q be so that P ∼′ Q.

29

– If P a→ P ′, then P = (a.rP) ‖ P ′′ with P ′ = rP ‖ P ′′.
Thus JP KM = (a.rP , [])+JP ′′KM

a→MP = J(rP , [�])KM+JP ′′KM = JrP ‖ P ′′KM.
Since JP KM ≈m JQKM, JQKM

a→ MQ with MP ≈m MQ. Thus JQKM =
(a.rQ, []) + N , hence Q = (a.rQ) ‖ Q′′ with N = JQ′′KM. Therefore,
Q

a→ Q′ = rQ ‖ Q′′ and MQ = J(rQ, [�])KM + JQ′′KM = JrQ ‖ Q′′KM.
Since MP ≈m MQ, JrP ‖ P ′′KM ≈m JrQ ‖ Q′′KM, thus, by definition of ∼′,
rP ‖ P ′ ∼′ rQ ‖ Q′, that is P ′ ∼′ Q′.

– If P
ā〈sP 〉−→ P ′ then P = ā 〈sP 〉 ‖ P ′. Thus, JP KM = (ā 〈sP 〉 , []) + JP ′KM which

admits two transitions: JP KM
(a)−→ JsP KM and JP KM

a+−→ JP ′KM.
Since JP KM ≈m JQKM, JQKM also admits two transitions flagged with (a) and
a+, so JQKM = (ā 〈sQ〉 , []) +N . Thus Q = ā 〈sQ〉 ‖ Q′ with N = JQ′KM.

Moreover, JQKM
(a)−→ JsQKM and JQKM

a+−→ JQ′KM so, since JP KM ≈m JQKM,
we have both JsP KM ≈m JsQKM and JP ′KM ≈m JQ′KM.

Thus Q
ā〈sQ〉−→ Q′ and by definition of ∼′, sP ∼′ sQ and P ′ ∼′ Q′.

– If P = v ‖ P ′, then JP KM = x + JP ′KM with, if v = i then x = i else x = v.
Thus JP KM

x→ JP ′KM.
Since JP KM ≈′ JQKM, JQKM

x→ N thus JQKM = x + N , so Q = v + Q′ with
N = JQ′KM.
Moreover, JP ′KM ≈m JQ′KM so, by definition of ∼′, P ′ ∼ Q′.

10.2 Size of the abstract machine

In order to prove a generalization of the last theorem, we need to define a notion of size for
the abstract machine.

Definition 27. For a given process P , we note #P the number of bound variables
within P . The measure of an annotated process (P, e), noted |(P, e)| is recursively defined
by |(P, e)| = 1 + size(P) + #P × |e| where the measure of an environment e, noted |e| is
defined as |[]| = 0, |� :: l| = |l| and |(P, e) :: l| = |(P, e)|+ |l|

The size of an abstract machine M , noted size (M) is defined by induction with:

• size (M +N) = size (M) + size (N).

• size ((ā 〈P 〉 , e)) = |(P, e)|.

• size ((a.P, e)) = |(P,� :: e)|.

• size (x) = 1.

30

• size (?) = 0.

Lemma 24. size (J(P, e)KM) < |(P, e)|.

Proof of 24. By induction on size((P, e)):

• If size((P, e)) = 0 then P = ? so J(P, e)KM = ? whose size is 0, whereas |(P, e)| =
1 + size(P) + #P × |e| ≥ 1.

• Otherwise:

– If P = ā 〈Q〉, then J(P, e)KM = (ā 〈Q〉 , e). Thus,
size (J(P, e)KM) = |(Q, e)| = 1 + size(Q) + #Q × |e| = size(P) + #P × |e| =
|(P, e)| − 1.

– If P = a.Q, then J(P, e)KM = (a.Q, e). Thus
size (J(P, e)KM) = |(Q,� :: e)| = 1+size(Q)+#Q×|� :: e| = size(P)+#P×|e| =
|(P, e)| − 1.

– If P = Q ‖ R, then size (J(P, e)KM) = size (J(Q, e)KM) + size (J(R, e)KM). Thus,
by induction, size (J(P, e)KM) ≤ |(Q, e)| − 1 + |(R, e)| − 1 = size(Q) + size(R) +
(#Q+ #R) |e| = |(P, e)| − 1.

– If P = x then size (J(P, e)KM) = size (x) = 1 and |(P, e)| ≥ 1 + size(P) = 2.
– If P = i, then

∗ Either i is not a valid index of e, thus J(P, e)KM = i so size (J(P, e)KM) = 1
and |(P, e)| ≥ 1 + size(P) = 2.

∗ Either i is a valid index of e, so size (J(P, e)KM) = size (Je [i]KM) whereas
|(P, e)| = 1 + size(P) + #P × |e| = 2 + |e|. Since i is a valid index of e, e [i]
is

· either one element of the form (Q, f), so |e| ≥ |(Q, f)|. By induction,
size (J(Q, f)KM) < |(Q, f)|. But then |(P, e)| ≥ 2 + |(Q, f)| ≥ |(Q, f)| so
finally size (J(P, e)KM) = size (J(Q, f)KM) < |(P, e)|.

· either �, in which case size (J(P, e)KM) = size(i) = 1 and |(P, e)| ≥
1 + size(P) = 2.

This notions now allows to build induction using it, because of the following property:

Theorem 25. Let f be a non-terminal flag and M and M ′ be states so that M f→M ′.
Then size (M ′) < size (M).

Proof of 25. By case on f :

31

• If f = a, then M = (a.r, e) + N
a→ M ′ = J(r,� :: e)KM + N but size (M ′) =

size (J(r,� :: e)KM) + size (N) < |(r,� :: e)| + size (N) = size ((a.r, e)) + size (N) =
size (M).

• If f = (a), then M = (ā 〈s〉 , e) + N
(a)−→ M ′ = J(s, e)KM but size (M ′) =

size (J(s, e)KM) < |(s, e)| ≤ |(s, e)|+ size (N) = size ((ā 〈s〉 , e)) + size (N) = size (M).

• If f = a+, then M = (ā 〈s〉 , e) + N
a+−→ M ′ = N but size (M ′) = size (N) <

size ((ā 〈s〉 , e)) + size (N) = size (M).

• If f = x then M = x+N
x→M ′ = N but size (M ′) = size (N) < size (x) + size (N) =

size (M).

10.3 Stability of ≈m by +

We may now establish the following property, which is quite intuitive:

Theorem 26. Let M1, M2, N1 and N2 be states so that M1 ≈m N1 and M2 ≈m N2.
Then M1 +M2 ≈m N1 +N2.

Proof of 26. By induction on size (M1 +M2).

• If size (M1 +M2) = 0 then M1 = M2 = N1 = N2 = ?.

• Else, suppose M1 +M2
f→M . By case on f :

– If f = a, then M1 +M2 = (a.r, e) +M ′ +Mi. Since both cases are symmetric,
we suppose that Mi = M2. Thus M1 = (a.r, e) +M ′ so N1 = (a.r′, e′) +N ′ with
J(r,� :: e)KM +M ′ ≈m J(r′,� :: e′)KM +N ′.
Thus M1 + M2

a→ M = J(r,� :: e)KM + M ′ + M2. By induction, M ≈m
J(r′,� :: e′)KM + N ′ + N2, but N1 + N2

a→ N = J(r′,� :: e′)KM + N ′ + N2,
so M ≈m N .

– If f = (a), then M1 + M2 = (ā 〈s〉 , e) + M ′ + Mi. Again, let’s take Mi =
M2. Thus, M1 = (ā 〈s〉 , e) + M ′ so N1 = (ā 〈s′〉 , e′) + N ′ with J(s, e)KM ≈m
J(s′, e′)KM.

Thus M1 +M2
(a)−→M = J(s, e)KM+M2. By induction, M ≈m J(s′, e′)KM+N2,

but N1 +N2
(a)−→ J(s′, e′)KM +N2, so M ≈m N .

– If f = a+, then M1 + M2 = (ā 〈s〉 , e) + M ′ + Mi. Again, let’s take Mi = M2.
Thus, M1 = (ā 〈s〉 , e) +M ′ so N1 = (ā 〈s′〉 , e′) +N ′ with M ′ ≈m N ′.

ThusM1+M2
a+−→M = M ′+M2. By induction,M ≈m N ′+N2, butN1+N2

a+−→
N ′ +N2, so M ≈m N .

32

– If f = x, then M1 + M2 = x + M ′ + Mi. Again, let’s take Mi = M2. Thus,
M1 = x+M ′ so N1 = x+N ′ with M ′ ≈m N ′.
ThusM1 +M2

x→M = M ′+M2. By induction, M ≈m N ′+N2, but N1 +N2
x→

N ′ +N2, so M ≈m N .

10.4 Strong equivalence

The weak equivalence is actually a restriction of a more general result, which completes it
with all the remaining machine states, in which environments may not be empty (or filled
with �):

Theorem 27. Let M1 and M2 be well-formed states. Then

M1 ≈m M2 ⇔ JM1KP ∼
◦
IO JM2KP

We prove it using the following lemma:

Lemma 28. M ≈m M̂ .

Proof of 28. By induction on size (M):

• If size (M) = 0, then M = ?, so M̂ = ?, thus M ≈m M̂ .

• Else, let’s first prove that M̂ simulates M :

– If M a→ M ′, then M = (a.r, e) + M ′′
a→ J(r,� :: e)KM + M ′′, so M̂ =(

a.
(
J(r, e)K1

P

)
, []
)

+ M̂ ′′
a→

r(
J(r, e)K1

P , [�]
)z
M

+ M̂ ′′ =
r
J(r, e)K1

P

z

M
+ M̂ ′′.

First, note that ̂J(r,� :: e)KM =
r
J(r, e)K1

P

z

M
because of lemma 22.

Thus, by induction,
r
J(r, e)K1

P

z

M
≈m J(r,� :: e)KM. By induction, we also have

M ′′ ≈m M̂ ′′.
Hence, by stability of ≈m by +, M ′ ≈m

r
J(r, e)K1

P

z

M
+ M̂ ′′.

– IfM
(a)−→M ′, thenM = (ā 〈s〉 , e)+M ′′ (a)−→ J(s, e)KM, so M̂ =

(
ā
〈
J(s, e)K0

P

〉
, []
)

+

M̂ ′′
(a)−→

r(
J(s, e)K0

P , []
)z
M

=
r
J(s, e)K0

P

z

M
.

But ̂J(s, e)KM =
r
J(s, e)K0

P

z

M
because of lemma 22, so, by induction, J(s, e)KM ≈mr

J(s, e)K0
P

z

M
.

33

– If M a+−→M ′, then M = (ā 〈s〉 , e) +M ′′
a+−→M ′′, so M̂ =

(
ā
〈
J(s, e)K0

P

〉
, []
)

+

M̂ ′′
a+−→ M̂ ′′.

Thus, by induction, M ′′ ≈m M̂ ′′.

– If M x→M ′, then M = x+M ′′
x→M ′′, so M̂ = x+ M̂ ′′

x→ M̂ ′′.
By induction, M ′′ ≈m M̂ ′′.

• The proof that M simulates M̂ uses the exact same arguments, since the general
structure of M can be deduced from that of M̂ .

We may finally conclude the proof of the strong equivalence.

Proof of 27.

M1 ≈m M2 ⇔ M̂1 ≈m M̂2 as we just saw

⇔ JJM1KPKM ≈m JJM2KPKM by definition of M̂
⇔ JM1KP ∼

◦
IO JM2KP

because of the weak equivalence of bisimilarities.

34

References

[1] Malgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, Damien Pous,
and Alan Schmitt. Fully Abstract Encodings of λ-Calculus in HOcore through Abstract
Machines. In LICS 2017, Proceedings of LICS 2017, Reykjavik, Iceland, June 2017. To
appear.

[2] Arthur Charguéraud. The locally nameless representation. Journal of Automated Rea-
soning, 49(3):363–408, October 2012.

[3] Martín Escarrá, Petar Maksimović, and Alan Schmitt. HOCore in Coq. In Vingt-
sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Le Val d’Ajol,
France, January 2015.

[4] Ivan Lanese, Jorge A. Peréz, Davide Sangiorgi, and Alan Schmitt. On the Expressiveness
and Decidability of Higher-Order Process Calculi. In 23rd Annual IEEE Symposium
on Logic in Computer Science (LICS 2008), Proceedings of the 23rd Annual IEEE
Symposium on Logic in Computer Science (LICS 2008), pages 145–155, Pittsburgh,
Pennsylvania, United States, June 2008.

35

	Introduction
	HOcore
	Definition of the abstract machine
	Definitions and notations
	Freedom and well-formedness
	Level
	Environments
	State of the machine

	Transitions between states
	Abstraction and transmission
	Transition

	Preservation of well-formedness
	Well-formed abstraction theorem
	Transition theorem

	Translation
	Forward translation
	Partial translation
	Backward translation
	Equivalence of states
	Well-formed forward translation

	Partial translation properties
	Dual properties of the level
	Partial translation in an empty environment
	Consistency of the translation
	Stability of by +
	Partial translation lemma
	Well-formed translation property
	Elementary transmissions
	Partial translation theorem

	Soundness
	Simplification lemma
	One-step theorem
	Transmission theorem
	Main lemma
	Soundness property

	Completeness
	Machine bisimilarity
	Definition for HOcore
	Definition for the abstract machine
	Extension of syntax
	New LTS
	Machine bisimulation

	Intermediate lemma

	Equivalence of bisimilarities
	Weak equivalence
	Size of the abstract machine
	Stability of m by +
	Strong equivalence

