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Abstract— We consider the problem of sending two correlated codes, while in Section 1lI-B we present a lower bound. In
random sources over a Gaussian multiple-access channel. TheSection 1II-C we prove that when the source and channel
sources are assumed to be temporally memoryless. The perfor-y,nqyidths are the same, uncoded transmission is the best
mance criterion is the MSE and we seek linear transceivers that . ' -
minimize it. When the bandwidth expansion factor is unity, it is linear code for _any SNR. I_n Sectlon_ Il-D we show Fhat
shown that uncoded transmission is the best linear code for any When the bandwidth expansion factor is two, then the linear
SNR. When the bandwidth expansion factor is two, we present code corresponding to the upper-bound in Section IlI-A uses
a scheme that involves uncoded transmission of one source withyncoded transmission of one source with power adaptation,
appropriate power adaptation and uncoded transmission of the 54 yncoded transmission of the other source and its negativ

other source and its negative with appropriate power adaptation . . . -
This scheme is shown to strictly ourperform coding strategies with power adaptation. This code is better than TDMA based

based on TDMA. codes.

. INTRODUCTION Notation: Bold small-case letters denote vectors while bold

Sensor networks have great potential in applications suchpital letters denote matricesdenotes the all ones vect@r,
as environmental monitoring and currently there is a vibradenotes the zero vector/matrik, denotes the: x n identity
research activity in this area. In one design of such netsyorknatrix, diagz) denotes the diagonal matrix with diagonal
the sensors organize themselves into clusters and the dAuse= and=: to define terms; for example+a? =: 2+y
collected is sent to a cluster head for further processiriguplicitly definesy := 22. The least achievable MSE using
Since the sensors observe the same physical phenomenion, tiear codes is denoted by MSE
observations are correlated. Moreover, due to their pritxim
to each other, they share the same wireless communication
channel to the cluster head. This naturally leads to the-prob Suppose we have two correlated sourdes ;, sa,}ir,
lem of communicating correlated information sources overthat are i.i.d. with zero mean and covariance mafrix} ),
multiple-access channel (MAC). This is a challenging peabl p € [0,1]. These sources are to be transmitted over the
for which the source-channel separation theorem does &#ussian MAC channel. For simplicity, we write the source
hold in general ([1]) and a single-letter characterizatfn Symbols in vector notatiosy, k = 1,2. The source vectors
the capacity region is not known. In fact, it is known thas, are to be transmitted usingy/ uses of the channel. The
source-channel separation can be substantially worsgahen bandwidth expansion factor is defined to Be= M/N, and
source-channel coding ([2]). In this paper, we look at limedn this paper, for simplicity we only considd? = 1, 2. Each
(over the real field) joint source-channel codes for traitimgi  source is encoded separately and has a power consfPaint
two correlated memoryless sources over a Gaussian MAC. Ore$ =, = H),s;, be the encoded signal, whefé;, is a real
motivation for this is the simplicity of linear processindgieh M x N encoding matrix. To ensure the power constraint we
makes it attractive for building low-cost sensors. Anothdreed:
motivation is a recent result in [3], which shows that for
transmitting memoryless, bivariate Gaussian sources ther

Gaussian MAC, uncoded transmission is optimal below \@here we have used the fact that the covariance matriy, of

certain SNR. It is then natural to ask if linear codes cgg the identityI . The output of the Gaussian MAC channel
improve over uncoded transmission for SNR greater than tie

Il. PROBLEM STATEMENT

Ellzil?] =w{HHT} <MP, k=12 ()

threshold given in [3]. In this paper, we study the best linea K

transceivers for this problem. y= sz tw.
This paper is organized as follows. The problem statement k=1

is given in Section Il. In Section IlI-A, we present anlLet

upper-bound on the MSE achievable with block linear H :=[H, H,



and B=1andr =2N for B =2. Let0; := A? and for a vector

5= [s] sQT]T. z, ||z||% := z7Cz. Then it is shown in Appendix | that
Then 1 < 0; )
y— Hs+w. MSE:l—ﬁ;UQ+0i||vi||C (6)
We note thats has zero mean and covariance matrix wherew; is theit" column of V..
C— {1 ﬂ o1y We note thatC has eigenvaluél + p) with eigenvectors
1 [1 1 |e; .
The receiver generates an estimand the metric of interest V2 1 ©e = V2 e i=1,..,N
to us is
MSE — ﬁE [l — s)2] . and eigenvalugl — p) with eigenvectors
i . . . 1|1 1 i .
For a fixed transmitter, the MMSE linear receiver can be E {1] ®Ke; = \ﬁ [ee] , i=1,...,N.
obtained by finding the MMSE estimate for eagh which ‘
is thei'" component of. Let Hence ifv; is partitioned into twaV x 1 vectorsv!’’, j = 1,2,
r; = B[siy] = HCe; ) then we can write
1+ 1
wheree; has 1 in theit" position and zero entries otherwise. ||vill& = Chn )H M o2 + %Hv(l) o2 ()
Let . i
R = Elyy"] = HCH” + oI ,;. @ In (6). Further it is shown in Appendix Il that (1) becomes
T o 40@ D @ >

Then for the MMSE estimatg;:
E[(SZ — §z)2] =1- 'I'ZTR_l’I'Z' =1-1tr {R_l'ri'r;} .
Then the MSE is

—i—’U v, —v,;
2\/ I+p) 21 -p)
Equivalent Problem: Find an orthogonal matri¥ and non-
negative {6;} such that (6) is minimized subject to (8).
(We note thatU' does not influence the MSE or the power

9; < MP.  (8)

MSE = Z E( °l/(2N) constraints, and hence we take it to be the identity.)
1. M AIN RESULTS
=1-tr Zr T;
2N A. An Upper Bound on MSE,
) . One way to obtain an upper-bound is to fix some orthogonal
=1-tr{R "HC Ze e; |CH matrix V and then minimize with respect tf,}, which is
the minimization of a convex function (6) under the linear

-1— Ltr { R 1HC? HT} . ) constrailnts (8) Below we provide a way to choose a gb’od
2N For simplicity leta; = |jv;||% and letb; :== Y '_, a;, i =
1,..,7, by := 0. From (6) we get

7j=1

Problem Statement: Minimize the MSE (4) over all 1 & o2
encoding matricesH |, H, satisfying the power conditions MSE=1- o+ > {1 - 024_9} a
(2). (We recall that the least achievable MSE is denoted by =1 !
MSE*) 1 b, Jri r (bi_bifl)

2N 2N 4 o246

To address this problem, it is convenient to express the MSE 1 h b

and the power constraints in a different form. t= H/C; =1- [1 0 } 2;\[
T

sinceC is invertible we work withG instead ofH. Using .
tr{ AB} = tr{ BA} and (3), we get e 1 L,
02 + 07;+1 0’2 + 91

MSE=1— 1t {6766 +o’1,)'6c} . )
2N Sincef; > 0,11 > 0, the coefficients ob; are non-positive.
From the singular value decomposition we h&e- USV’, Thus in order to minimize the MSE we want to chodseas
whereU is an M x M orthogonal matrixV is an2N x 2N large as possible under the conditions (8).
orthogonal matrix, an® is an M x 2N matrix with zeros DefineV; to be the2 N x ¢ matrix with column, va,... ;.
outside the main diagonal and the singular value&aflong Then we note thaVZ-TVi =1, and
the main diagonal. Let = min{M,2N} and \; > Ay > -
- > A, be the singular values @. We note that = N for b =1r {Vi C’Vi} .



Then from [4, (4), pp. 72] we get that Also the power constraints (8) become

N
bi <&+ +& 29i§2(1+p)]\7p. (12)
1=1

where ¢, = = ... = = (1+p), = = . . . .
L %QN S 1 - p) afg the(eigeﬁz/aﬁjve? @_E\],VVEQ see We note that this coincides with the weaker constraint (¥0) d

that the upper bound ob; is achieved if we choose; to rived in Section IlI-B. Thus the convex optimization prafig

be the eigenvector of' corresponding to the eigenvalgg, for finding the upper and lower bound on MSEoincide,

i = 1,..,r. Let V& denote the orthogonal matrix whosend solving this problem gives us MSETo obtain MSE,
columns are the eigenvectors@f For the choice oV =V, We minimize (11) under (12) using the fact that the harmonic

we have mean is bounded above by the arithmetic mean with equality
L . ‘ iff all the numbers are equal. We get thgt = 2(1 + p) P,
o i i=1,...,N. This gives
=1- — . _ . ’ ’
MSE 2N Zg’ TN Z o2+ 0; ®) 1 2
=1 i=1 MSE* -1 ( +p) _ g
2
If we now minimize (9) over{6;} subject to (8), then we ) o?+2(1+p)P
obtain an upper bound on the least achievable MSE. We note _ 1t 1—p*)y (13)
that this is a convex optimization problem. It is discussed i 1+2(1+p)y
detail in subsequent sections fbr= 1, 2. where~y := P/o? is the SNR at each of the transmitters. The
corresponding encoding matrix is given by

Remark: The matrixV ¢ is obtained by ignoring the power He =PI
constraints. It therefore leads to a lower bound on the MSE fo k= N

any given{6;}. However, minimizing this lower bound overThus for B = 1 uncoded transmission is optimal.
{6;} subject to (8) does not lead to a lower bound on MSE

D. Bandwidth Expansion of Two
since this excludes thodé;} that do not satisfy (8) wheW WI p W

Now considerB = 2, r = 2N. We first consider the

is used.
upper bound derived in Section llI-A. Substituting for the
B. A Lower Bound on MSE, eigenvalues and eigenvectors@f from (9) we get that
N
One way to obtain a lower bound is to minimize (6) under MSE — (1+po*1 1
a constraint weaker than (8). We do so now. By expanding the 2 N P o2+ 6;
norm and using|v;|| = 1 it is easy to show that U oN
+(1—p)0'2 1 1 (14)
) A oA -
1 vgl) +vz(»2) vl(.l) — v,l@) 2 N i=N+1 0% +0;
22y/(0+p) 2¢/(1-p) and the power constraints (8) are now given by
2
Z(_1) +U£2) e —vz@) 1 N M

v 0; 0;
Y . ' <9MP=4NP. (15)
2y/(1+p) 2/(1-p) ;Hf’ i:ZN;rll_p

Hence the power constraints (8) lead to the following weakép find an upper bound on MSEwve have to minimize (14)
constraint under (15). Due to space constraints we do not give the detail

r of this minimization, but the solution is given by
Zei <2(1+4 p)MP. (10 § .
P 0 =2(1+p)Q7, i=1,...,N;

Since this constraint does not depend upbnminimization 0i =2(1—-p)s, i=N+1,...2N
overV once again gives us (9). If we now minimize (9) undewhere fory > 2(1%’1)2)

1
- > .
2 ~2(1+p)

(10), then we obtain a lower bound on MSBEMNe note that 9 9
this is a convex optimization problem and we analyze it in Qi =P+ L27 Qs=P— LQ,
subsequent sections. 2(1 = p?) 2(1-p?)

and fory < ﬁ

Q1 =2P, Q;=0.
The corresponding upper bound is

C. No Bandwidth Expansion

In this caseM = N andr = N. We first consider the upper
bound derived in Section IllI-A. From (9), substituting fdret

eigenvalues and eigenvectors@fwe get that MSE, < ————— if 7> ﬁ
a 7 + 27 —2(1- P
N o (16)
(1+p)  1+p o’ 1421 —p?
MSE=1— + . (11) <120 -p)y otherwise
2 2N ;U”‘)i S 141+ p)y o



codes for transmitting correlated sources over a MAC chianne

oo These bounds coincide fd8 = 1 and uncoded transmission
S~ o TowmA - st peceting ™ is optimal in this case. FoB = 2, the transmission scheme

corresponding to our upper bound performs superior to any
scheme based on TDMA. We do not know if this scheme is
the optimal linear code.

APPENDIX |
ALTERNATE EXPRESSIONS FORMSE

We first prove (6). We note that
GGT =Uuzz"U”.
SinceUUT = I,,, we get that

(GGT n 02IM) B (Z)ET + J2IM)_1 U’

Therefore

SNR (dB)

—1 —1
Fig. 1.  The linear code corresponding to the upper bound @CU G" (GGT + UQIM) G=vx" (EET + JQIM) v’
outperforms the TDMA based scheme. Here- 0.8.

We note thattx” is a diagonal matrix with eigenvalues,

¢ = 1,...,7 with eigenvectors;. Hence, using the spectral
The corresponding transmission scheme is as follows: decomposition, we get

1) Source 1 uses uncoded transmission tfoe 1,..., N . r T
with power Q7 and repeats the uncoded transmission G7 (GGT +02[M) G=vx" Z 26"'61' > svT
with powerQj for t = N +1,...,2N. Ao
2) Source 2 uses uncoded transmission tfoe 1,..., N r A
with power @7 and transmits the negative of the source =V Z 2 Jrl o2 eiel | V7
at power@; fort =N +1,...,2N. i=1""
Unfortunately, the above upper bound does not match with _ ET: A7 vl
the lower bound (which we do not present here due to space A g2t

constraints). However we next compare this code with TDMA.

i th . . .
For ease of reference, we refer to the above code as LCUBErev: is thei™ column of V. Then substituting in (5), we

(linear code corresponding to the upper bound). Hoe 2N, get
in the TDMA scheme, source 1 transmits for= 1,.... N 1 < 22 T
with power 2P and source 2 fot = N + 1,...,2N with MSE=1- oON Z mtr {vivi C}
power2P. Assume now that the sources are jointly Gaussian. ijl ’
For the transmission of a Gaussian source over a Gaussian —1_ 1 Z b; |2
channel with number of source symbols equal to the number 2N P o240, "¢
of channel uses, it is well-known that uncoded transmissi(\)/vrhiCh is the desired expression (6)
is the best amongst the class of all possible codes ([5])s Thu '
for the TDMA scheme with single-user decoding, uncoded APPENDIXII
transmission is optimal and in this case ALTERNATE EXPRESSIONS FORPOWER CONDITIONS
1 We now obtain the power constraints in termvgf6;. We
MSErparan = m see that the MSE does not dependdrand hence we just
If joint decoding is used, then we get take it to be the identity. Thus
L 21— )y Vot

MSErpamae = T+ 4y +4(1— ) a- @'UQ
The TDMA scheme is also a linear transmitter, but it can be \/9;’UT
checked that it is worse than LCUB. In Figure 1 we compare T
LCUB and the TDMA scheme fop = 0.8; it is evident that and
the loss of TDMA is high for low SNR. Voive™

IV. CONCLUSIONS H=GgVCc =

In this paper we presented lower and upper bounds for :
the least MSE obtainable using linear joint source-channel \/@v}f\/(}'_l

VoTve ™



We note thatv/C~' has eigenvalues/\/1+p, 1/v1—p
with the same eigenvectors as the corresponding eigemgecto
of C. Therefore partitioning; as in (7),

1
2\/1 +p
Thus we get that

( ) +0(2)
(1) +'u

’L

-1
C v, =

1 [ ol o®
VT [l o)

Vo) + )T
1| Ve +ed)T

H=—
D Wi P :
VoD 4 o)
V] o)
L1 VO (w5 —vi)T
21 —p :
VO —o?)T
and
\/0>
1 V05 (v}
Hy= ———
2v1+p
\/?
(1) (2))T
o f e |
21 —p :

VB — @)
Substituting in (1), the power constraints become

o £u® oy @

21 BN Ny

which is the desired result.

0, < MP

REFERENCES

[1] T. Cover, A. E. Gamal, and M. Salehi, “Multiple access amels with
arbitrarily correlated sourceslEEE Transactions on Information Theory,
vol. 26, no. 6, pp. 648-657, November 1980.

[2] M. Gastpar and M. Vetterli, “Power, spatio-temporal basth, and
distortion in large sensor networks,EEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 745-754, April 2005.

[3] A. Lapidoth and S. Tinguely, “Sending a bivariate Gaasssource over
a Gaussian MAC,” arXiv:cs.IT/061029, May 2006.

[4] H. Lutkepohl, Handbook of Matrices, John Wiley and Sons, New York,
1996.

[5] T. Cover and J. A. Thomagklements of Information Theory, John Wiley
and Sons, New York, 1991.



