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Abstract— We consider the problem of sending two correlated
random sources over a Gaussian multiple-access channel. The
sources are assumed to be temporally memoryless. The perfor-
mance criterion is the MSE and we seek linear transceivers that
minimize it. When the bandwidth expansion factor is unity, it is
shown that uncoded transmission is the best linear code for any
SNR. When the bandwidth expansion factor is two, we present
a scheme that involves uncoded transmission of one source with
appropriate power adaptation and uncoded transmission of the
other source and its negative with appropriate power adaptation.
This scheme is shown to strictly ourperform coding strategies
based on TDMA.

I. I NTRODUCTION

Sensor networks have great potential in applications such
as environmental monitoring and currently there is a vibrant
research activity in this area. In one design of such networks,
the sensors organize themselves into clusters and the data
collected is sent to a cluster head for further processing.
Since the sensors observe the same physical phenomenon, their
observations are correlated. Moreover, due to their proximity
to each other, they share the same wireless communication
channel to the cluster head. This naturally leads to the prob-
lem of communicating correlated information sources over a
multiple-access channel (MAC). This is a challenging problem
for which the source-channel separation theorem does not
hold in general ([1]) and a single-letter characterizationof
the capacity region is not known. In fact, it is known that
source-channel separation can be substantially worse thanjoint
source-channel coding ([2]). In this paper, we look at linear
(over the real field) joint source-channel codes for transmitting
two correlated memoryless sources over a Gaussian MAC. One
motivation for this is the simplicity of linear processing which
makes it attractive for building low-cost sensors. Another
motivation is a recent result in [3], which shows that for
transmitting memoryless, bivariate Gaussian sources overthe
Gaussian MAC, uncoded transmission is optimal below a
certain SNR. It is then natural to ask if linear codes can
improve over uncoded transmission for SNR greater than the
threshold given in [3]. In this paper, we study the best linear
transceivers for this problem.

This paper is organized as follows. The problem statement
is given in Section II. In Section III-A, we present an
upper-bound on the MSE achievable with block linear

codes, while in Section III-B we present a lower bound. In
Section III-C we prove that when the source and channel
bandwidths are the same, uncoded transmission is the best
linear code for any SNR. In Section III-D we show that
when the bandwidth expansion factor is two, then the linear
code corresponding to the upper-bound in Section III-A uses
uncoded transmission of one source with power adaptation,
and uncoded transmission of the other source and its negative
with power adaptation. This code is better than TDMA based
codes.

Notation: Bold small-case letters denote vectors while bold
capital letters denote matrices.111 denotes the all ones vector,000
denotes the zero vector/matrix,IIIn denotes then × n identity
matrix, diag(xxx) denotes the diagonal matrix with diagonalxxx.
We use:= and=: to define terms; for example,2+x2 =: 2+y
implicitly definesy := x2. The least achievable MSE using
linear codes is denoted by MSE∗.

II. PROBLEM STATEMENT

Suppose we have two correlated sources{s1,t, s2,t}N
t=1

that are i.i.d. with zero mean and covariance matrix
( 1 ρ

ρ 1

)

,
ρ ∈ [0, 1]. These sources are to be transmitted over the
Gaussian MAC channel. For simplicity, we write the source
symbols in vector notationsssk, k = 1, 2. The source vectors
sssk are to be transmitted usingM uses of the channel. The
bandwidth expansion factor is defined to beB = M/N , and
in this paper, for simplicity we only considerB = 1, 2. Each
source is encoded separately and has a power constraintP .
Let xxxk = HHHksssk be the encoded signal, whereHHHk is a real
M × N encoding matrix. To ensure the power constraint we
need:

E
[

‖xxxk‖2
]

= tr
{

HHHkHHH
T
k

}

≤ MP, k = 1, 2 (1)

where we have used the fact that the covariance matrix ofsssk

is the identityIIIN . The output of the Gaussian MAC channel
is:

yyy =
K
∑

k=1

xxxk + www.

Let
HHH := [HHH1 HHH2]



and
sss :=

[

sssT
1 sssT

2

]T
.

Then
yyy = HHHsss + www.

We note thatsss has zero mean and covariance matrix

CCC =

[

1 ρ
ρ 1

]

⊗ IIIN .

The receiver generates an estimateŝss and the metric of interest
to us is

MSE =
1

2N
E
[

‖ŝss − sss‖2
]

.

For a fixed transmitter, the MMSE linear receiver can be
obtained by finding the MMSE estimate for eachsi, which
is the ith component ofsss. Let

rrri = E[siyyy] = HHHCCCeeei (2)

whereeeei has 1 in theith position and zero entries otherwise.
Let

RRR = E[yyyyyyT ] = HHHCCCHHHT + σ2IIIM . (3)

Then for the MMSE estimatêsi:

E[(si − ŝi)
2] = 1 − rrrT

i RRR−1rrri = 1 − tr
{

RRR−1rrrirrr
T
i

}

.

Then the MSE is

MSE =

2N
∑

i=1

E[(si − ŝi)
2]/(2N)

= 1 − tr

{

RRR−1

(

1

2N

2N
∑

i=1

rrrirrr
T
i

)}

= 1 − tr

{

RRR−1HHHCCC

(

1

2N

2N
∑

i=1

eeeieee
T
i

)

CCCHHHT

}

= 1 − 1

2N
tr
{

RRR−1HHHCCC2HHHT
}

. (4)

Problem Statement: Minimize the MSE (4) over all
encoding matricesHHH1,HHH2 satisfying the power conditions
(1). (We recall that the least achievable MSE is denoted by
MSE∗.)

To address this problem, it is convenient to express the MSE
and the power constraints in a different form. LetGGG := HHH

√
CCC;

sinceCCC is invertible we work withGGG instead ofHHH. Using
tr{AB} = tr{BA} and (3), we get

MSE = 1 − 1

2N
tr
{

GGGT (GGGGGGT + σ2IIIm)−1GGGCCC
}

. (5)

From the singular value decomposition we haveGGG = UUUΣΣΣVVV T ,
whereUUU is anM ×M orthogonal matrix,VVV is an2N × 2N
orthogonal matrix, andΣΣΣ is an M × 2N matrix with zeros
outside the main diagonal and the singular values ofGGG along
the main diagonal. Letr = min{M, 2N} and λ1 ≥ λ2 ≥
· · · ≥ λr be the singular values ofGGG. We note thatr = N for

B = 1 andr = 2N for B = 2. Let θi := λ2
i and for a vector

xxx, ‖xxx‖2
CCC := xxxTCCCxxx. Then it is shown in Appendix I that

MSE = 1 − 1

2N

r
∑

i=1

θi

σ2 + θi

‖vvvi‖2
CCC (6)

wherevvvi is the ith column ofVVV .
We note thatCCC has eigenvalue(1 + ρ) with eigenvectors

1√
2

[

1
1

]

⊗ eeei =
1√
2

[

eeei

eeei

]

, i = 1, ..., N

and eigenvalue(1 − ρ) with eigenvectors

1√
2

[

1
−1

]

⊗ eeei =
1√
2

[

eeei

−eeei

]

, i = 1, ..., N.

Hence ifvvvi is partitioned into twoN×1 vectorsvvv(j)
i , j = 1, 2,

then we can write

‖vvvi‖2
CCC =

(1 + ρ)

2
‖vvv(1)

i +vvv
(2)
i ‖2 +

(1 − ρ)

2
‖vvv(1)

i −vvv
(2)
i ‖2 (7)

in (6). Further it is shown in Appendix II that (1) becomes

r
∑

i=1

∥

∥

∥

∥

∥

vvv
(1)
i + vvv

(2)
i

2
√

(1 + ρ)
± vvv

(1)
i − vvv

(2)
i

2
√

(1 − ρ)

∥

∥

∥

∥

∥

2

θi ≤ MP. (8)

Equivalent Problem: Find an orthogonal matrixVVV and non-
negative {θi} such that (6) is minimized subject to (8).
(We note thatUUU does not influence the MSE or the power
constraints, and hence we take it to be the identity.)

III. M AIN RESULTS

A. An Upper Bound on MSE∗

One way to obtain an upper-bound is to fix some orthogonal
matrix VVV and then minimize with respect to{θi}, which is
the minimization of a convex function (6) under the linear
constraints (8). Below we provide a way to choose a goodVVV .

For simplicity let ai = ‖vvvi‖2
CCC and letbi :=

∑i
j=1 aj , i =

1, ..., r, b0 := 0. From (6) we get

MSE = 1 − 1

2N

r
∑

i=1

[

1 − σ2

σ2 + θi

]

ai

= 1 − br

2N
+

σ2

2N

r
∑

i=1

(bi − bi−1)

σ2 + θi

= 1 −
[

1 − 1

σ2 + θr

]

br

2N

− σ2

2N

r−1
∑

i=1

[

1

σ2 + θi+1
− 1

σ2 + θi

]

bi.

Sinceθi ≥ θi+1 ≥ 0, the coefficients ofbi are non-positive.
Thus in order to minimize the MSE we want to choosebi as
large as possible under the conditions (8).

DefineVVV i to be the2N×i matrix with columnsvvv1, vvv2,...,vvvi.
Then we note thatVVV T

i VVV i = IIIi and

bi = tr
{

VVV T
i CCCVVV i

}

.



Then from [4, (4), pp. 72] we get that

bi ≤ ξ1 + · · · + ξi

where ξ1 = ξ2 = · · · = ξN = (1 + ρ), ξN+1 = ξN+2 =
· · · = ξ2N = (1 − ρ) are the eigenvalues ofCCC. We see
that the upper bound onbi is achieved if we choosevvvi to
be the eigenvector ofCCC corresponding to the eigenvalueξi,
i = 1, ..., r. Let VVV C denote the orthogonal matrix whose
columns are the eigenvectors ofCCC. For the choice ofVVV = VVV C ,
we have

MSE = 1 − 1

2N

r
∑

i=1

ξi +
σ2

2N

r
∑

i=1

ξi

σ2 + θi

. (9)

If we now minimize (9) over{θi} subject to (8), then we
obtain an upper bound on the least achievable MSE. We note
that this is a convex optimization problem. It is discussed in
detail in subsequent sections forB = 1, 2.

Remark: The matrixVVV C is obtained by ignoring the power
constraints. It therefore leads to a lower bound on the MSE for
any given{θi}. However, minimizing this lower bound over
{θi} subject to (8) does not lead to a lower bound on MSE∗,
since this excludes those{θi} that do not satisfy (8) whenVVV C

is used.

B. A Lower Bound on MSE∗

One way to obtain a lower bound is to minimize (6) under
a constraint weaker than (8). We do so now. By expanding the
norm and using‖vvvi‖ = 1 it is easy to show that

1

2

∥

∥

∥

∥

∥

vvv
(1)
i + vvv

(2)
i

2
√

(1 + ρ)
+

vvv
(1)
i − vvv

(2)
i

2
√

(1 − ρ)

∥

∥

∥

∥

∥

2

+
1

2

∥

∥

∥

∥

∥

vvv
(1)
i + vvv

(2)
i

2
√

(1 + ρ)
− vvv

(1)
i − vvv

(2)
i

2
√

(1 − ρ)

∥

∥

∥

∥

∥

2

≥ 1

2(1 + ρ)
.

Hence the power constraints (8) lead to the following weaker
constraint

r
∑

i=1

θi ≤ 2(1 + ρ)MP. (10)

Since this constraint does not depend uponVVV , minimization
overVVV once again gives us (9). If we now minimize (9) under
(10), then we obtain a lower bound on MSE∗. We note that
this is a convex optimization problem and we analyze it in
subsequent sections.

C. No Bandwidth Expansion

In this caseM = N andr = N . We first consider the upper
bound derived in Section III-A. From (9), substituting for the
eigenvalues and eigenvectors ofCCC we get that

MSE = 1 − (1 + ρ)

2
+

1 + ρ

2N

N
∑

i=1

σ2

σ2 + θi

. (11)

Also the power constraints (8) become
N
∑

i=1

θi ≤ 2(1 + ρ)NP. (12)

We note that this coincides with the weaker constraint (10) de-
rived in Section III-B. Thus the convex optimization problems
for finding the upper and lower bound on MSE∗ coincide,
and solving this problem gives us MSE∗. To obtain MSE∗,
we minimize (11) under (12) using the fact that the harmonic
mean is bounded above by the arithmetic mean with equality
iff all the numbers are equal. We get thatθ∗i = 2(1 + ρ)P ,
i = 1, ..., N . This gives

MSE∗ = 1 − (1 + ρ)

2

[

1 − σ2

σ2 + 2(1 + ρ)P

]

=
1 + (1 − ρ2)γ

1 + 2(1 + ρ)γ
(13)

whereγ := P/σ2 is the SNR at each of the transmitters. The
corresponding encoding matrix is given by

HHHk =
√

PIIIN .

Thus forB = 1 uncoded transmission is optimal.

D. Bandwidth Expansion of Two

Now considerB = 2, r = 2N . We first consider the
upper bound derived in Section III-A. Substituting for the
eigenvalues and eigenvectors ofCCC, from (9) we get that

MSE =
(1 + ρ)σ2

2

1

N

N
∑

i=1

1

σ2 + θi

+
(1 − ρ)σ2

2

1

N

2N
∑

i=N+1

1

σ2 + θi

(14)

and the power constraints (8) are now given by
N
∑

i=1

θi

1 + ρ
+

M
∑

i=N+1

θi

1 − ρ
≤ 2MP = 4NP. (15)

To find an upper bound on MSE∗ we have to minimize (14)
under (15). Due to space constraints we do not give the details
of this minimization, but the solution is given by

θ∗i = 2(1 + ρ)Q∗

1, i = 1, ..., N ;

θ∗i = 2(1 − ρ)Q∗

2, i = N + 1, ..., 2N

where forγ ≥ ρ
2(1−ρ2)

Q∗

1 = P +
ρσ2

2(1 − ρ2)
, Q∗

2 = P − ρσ2

2(1 − ρ2)
,

and forγ < ρ
2(1−ρ2)

Q∗

1 = 2P, Q∗

2 = 0.

The corresponding upper bound is

MSE∗ ≤ 1
1

1−ρ2 + 2γ
if γ ≥ ρ

2(1 − ρ2)

≤ 1 + 2(1 − ρ2)γ

1 + 4(1 + ρ)γ
otherwise.

(16)
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Fig. 1. The linear code corresponding to the upper bound (LCUB)
outperforms the TDMA based scheme. Hereρ = 0.8.

The corresponding transmission scheme is as follows:

1) Source 1 uses uncoded transmission fort = 1, ..., N
with power Q∗

1 and repeats the uncoded transmission
with powerQ∗

2 for t = N + 1, ..., 2N .
2) Source 2 uses uncoded transmission fort = 1, ..., N

with powerQ∗

1 and transmits the negative of the source
at powerQ∗

2 for t = N + 1, ..., 2N .

Unfortunately, the above upper bound does not match with
the lower bound (which we do not present here due to space
constraints). However we next compare this code with TDMA.
For ease of reference, we refer to the above code as LCUB
(linear code corresponding to the upper bound). ForM = 2N ,
in the TDMA scheme, source 1 transmits fort = 1, ..., N
with power 2P and source 2 fort = N + 1, ..., 2N with
power2P . Assume now that the sources are jointly Gaussian.
For the transmission of a Gaussian source over a Gaussian
channel with number of source symbols equal to the number
of channel uses, it is well-known that uncoded transmission
is the best amongst the class of all possible codes ([5]). Thus
for the TDMA scheme with single-user decoding, uncoded
transmission is optimal and in this case

MSETDMA,1 =
1

1 + 2γ
.

If joint decoding is used, then we get

MSETDMA,2 =
1 + 2(1 − ρ2)γ

1 + 4γ + 4(1 − ρ2)γ2
.

The TDMA scheme is also a linear transmitter, but it can be
checked that it is worse than LCUB. In Figure 1 we compare
LCUB and the TDMA scheme forρ = 0.8; it is evident that
the loss of TDMA is high for low SNR.

IV. CONCLUSIONS

In this paper we presented lower and upper bounds for
the least MSE obtainable using linear joint source-channel

codes for transmitting correlated sources over a MAC channel.
These bounds coincide forB = 1 and uncoded transmission
is optimal in this case. ForB = 2, the transmission scheme
corresponding to our upper bound performs superior to any
scheme based on TDMA. We do not know if this scheme is
the optimal linear code.

APPENDIX I
ALTERNATE EXPRESSIONS FORMSE

We first prove (6). We note that

GGGGGGT = UUUΣΣΣΣΣΣTUUUT .

SinceUUUUUUT = IIIM , we get that
(

GGGGGGT + σ2IIIM

)

−1

= UUU
(

ΣΣΣΣΣΣT + σ2IIIM

)

−1

UUUT .

Therefore

GGGT
(

GGGGGGT + σ2IIIM

)

−1

GGG = VVV ΣΣΣT
(

ΣΣΣΣΣΣT + σ2IIIM

)

−1

ΣΣΣVVV T .

We note thatΣΣΣΣΣΣT is a diagonal matrix with eigenvaluesλ2
i ,

i = 1, ..., r with eigenvectorseeei. Hence, using the spectral
decomposition, we get

GGGT
(

GGGGGGT + σ2IIIM

)

−1

GGG = VVV ΣΣΣT

[

r
∑

i=1

eeeieee
T
i

λ2
i + σ2

]

ΣΣΣVVV T

= VVV

[

r
∑

i=1

λ2
i

λ2
i + σ2

eeeieee
T
i

]

VVV T

=

r
∑

i=1

λ2
i

λ2
i + σ2

vvvivvv
T
i

wherevvvi is theith column ofVVV . Then substituting in (5), we
get

MSE = 1 − 1

2N

r
∑

i=1

λ2
i

λ2
i + σ2

tr
{

vvvivvv
T
i CCC
}

= 1 − 1

2N

r
∑

i=1

θi

σ2 + θi

‖vvvi‖2
CCC

which is the desired expression (6).

APPENDIX II
ALTERNATE EXPRESSIONS FORPOWER CONDITIONS

We now obtain the power constraints in terms ofvvvi, θi. We
see that the MSE does not depend onUUU and hence we just
take it to be the identity. Thus

GGG =











√
θ1vvv

T
1√

θ2vvv
T
2

...√
θrvvv

T
r











and

HHH = GGG
√

CCC−1 =













√
θ1vvv

T
1

√

CCC−1

√
θ2vvv

T
2

√

CCC−1

...√
θrvvv

T
r

√

CCC−1













.



We note that
√

CCC−1 has eigenvalues1/
√

1 + ρ, 1/
√

1 − ρ
with the same eigenvectors as the corresponding eigenvectors
of CCC. Therefore partitioningvvvi as in (7),

√

CCC−1vvvi =
1

2
√

1 + ρ

[

vvv
(1)
i + vvv

(2)
i

vvv
(1)
i + vvv

(2)
i

]

+
1

2
√

1 − ρ

[

vvv
(1)
i − vvv

(2)
i

−(vvv
(1)
i − vvv

(2)
i )

]

.

Thus we get that

HHH1 =
1

2
√

1 + ρ













√
θ1(vvv

(1)
1 + vvv

(2)
1 )T

√
θ2(vvv

(1)
2 + vvv

(2)
2 )T

...√
θr(vvv

(1)
r + vvv

(2)
r )T













+
1

2
√

1 − ρ













√
θ1(vvv

(1)
1 − vvv

(2)
1 )T

√
θ2(vvv

(1)
2 − vvv

(2)
2 )T

...√
θr(vvv

(1)
r − vvv

(2)
r )T













and

HHH2 =
1

2
√

1 + ρ













√
θ1(vvv

(1)
1 + vvv

(2)
1 )T

√
θ2(vvv

(1)
2 + vvv

(2)
2 )T

...√
θr(vvv

(1)
r + vvv

(2)
r )T













− 1

2
√

1 − ρ













√
θ1(vvv

(1)
1 − vvv

(2)
1 )T

√
θ2(vvv

(1)
2 − vvv

(2)
2 )T

...√
θr(vvv

(1)
r − vvv

(2)
r )T













.

Substituting in (1), the power constraints become

r
∑

i=1

∥

∥

∥

∥

∥

vvv
(1)
i + vvv

(2)
i

2
√

(1 + ρ)
± vvv

(1)
i − vvv

(2)
i

2
√

(1 − ρ)

∥

∥

∥

∥

∥

2

θi ≤ MP

which is the desired result.
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