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Abstract—In this paper, we address the problem of opti-
mization of the training sequence length for frequency selective
channels when a Maximum a posteriori (MAP) equalizer is
used. The optimal length of the training sequence is found
by maximizing an effective signal-to-noise ratio (SNR) and an
effective channel capacity of the training-based transmission
scheme. We study these problems of optimization when the
training and data powers are equal and when they are allowed
to be different. When the powers can be different, we give the
optimal power allocation.

I. INTRODUCTION

Equalization is used to combat intersymbol interference on
frequency selective channels. The optimal equalizer [1] to be
used is based on Maximum a posteriori (MAP) detection. It
makes decision on a symbol-by-symbol basis and is optimum
since it minimizes the bit error probability when the channel
is known by the receiver. In practice, the channel impulse
response is estimated by sending known training symbols.
When the length of the training sequence increases, the
variance of the channel estimation error decreases, but the
information throughput decreases as well. Thus, a trade-off has
to be found. Several methods have been proposed to design
the optimal training sequence length. The solution presented
in [2] and [3] is based on maximizing a lower bound of
the capacity of the training-based scheme respectively for a
single-input single-output (SISO) frequency selective channel
and for a multiple-input multiple-output (MIMO) flat fading
channel. Another approach tries to find the optimal sequence
that minimizes the Mean Square Error (MSE) of the channel
estimator for different systems [4]-[7]. All these works do not
take into account the receiver used.
In this paper, we consider the particular case where a MAP
equalizer is used for a transmission over a SISO frequency
selective channel. We introduce simple expressions of the ef-
fective Signal-to-Noise Ratio (SNR) and the effective channel
capacity for the training-based scheme. We find the training se-
quence lengths maximizing these quantities when the training
and data powers are equal. When the powers can be different,
we also give the optimal power allocation.
The paper is organized as follows. In Section II, we describe
the transmission system model. Section III studies the opti-
mization of the training sequence length when the training
and data powers are equal. In Section IV, we find the optimal

power allocation and the optimal training sequence length
when the training and data powers are allowed to be different.
Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
The operator (.)T denotes the transposition, and Im is the
m × m identity matrix.bxc, dxe and |x| are respectively the
greatest integer lower than x, the smallest integer greater than
x and the absolute value of x.

II. TRANSMISSION SYSTEM MODEL

We consider a data transmission system over a frequency se-
lective channel. The input information bit sequence is mapped
to the symbol alphabet A. For simplicity, we will consider
only the BPSK modulation (A = {−1, 1}). We assume that
transmissions are organized into bursts of T symbols. The
channel is supposed to be invariant during the transmission.
The received baseband signal sampled at the symbol rate at
time k is

xk =
L−1∑

l=0

hlsk−l + nk (1)

where L is the channel memory and sk, for 1−L ≤ k ≤ T−1,
are the transmitted symbols. In this expression, nk are modeled
as independent random variables of real white Gaussian noise
with normal probability density function N (0, σ2) where
N (α, σ2) denotes a Gaussian distribution with mean α and
variance σ2. The term hl is the lth tap gain of the channel,
which is assumed to be real valued.
The channel is estimated by using a training sequence of
length Tp ≥ 2L − 1. We assume that this sequence has
ideal autocorrelation and crosscorrelation properties. Let s̃ =
(sTp−L, ..., s1−L)T be the vector of training symbols and
h = (h0, ..., hL−1)T the vector of channel taps. The least

square channel estimate ĥ =
(
ĥ0, ..., ĥL−1

)T

is given by [8]:

ĥ =
(
HL (s̃)T

HL (s̃)
)−1

HL (s̃)T
x̃ (2)

where HL (s̃) is the (Tp−L+1)×L Hankel matrix having the
first column

(
sTp−L, ..., s0

)T
and the last row (s0, ..., s1−L)

and x̃ = (x0, ..., xTp−L)T is the output of the channel
corresponding to the training sequence.
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Hence, we obtain

ĥ− h ∼ N
(

0, σ2
(
HL (s̃)T

HL (s̃)
)−1

)

= N
(
0, σ2

(Tp−L+1)σ2
p
IL

) (3)

where σ2
p is the transmit power during the training phase.

III. OPTIMIZATION OF THE TRAINING SEQUENCE LENGTH
FOR EQUAL POWERS

We consider at the receiver a MAP equalizer using the
BCJR algorithm [1]. We first assume that the transmit powers
during the training and data transmission phases are equal
to the unit. We will be interested in the optimization of the
training sequence length by maximizing an effective SNR and
an effective channel capacity that we will define.

A. Maximization of the effective SNR

When the channel is estimated, the Bit Error Rate (BER) at
the output of the MAP equalizer can be approximated at high
SNR as [9]

P ' Q

(
dmin

2σ

(
1 +

L

Tp − L + 1

)− 1
2
)

(4)

where dmin is the channel minimum distance [10].
Hence, the equivalent signal to noise ratio at the output of the
MAP equalizer using the channel estimate is given by

SNReq,ĥ =
d2

min

4σ2

(
1 +

L

Tp − L + 1

)−1

(5)

Increasing the training sequence length leads to an improve-
ment of the channel estimate quality but also to a loss in data
throughput. Thus, in order to take account this loss, we define
an effective SNR at the output of the equalizer as

SNReff,eq,ĥ = T−Tp

T SNReq,ĥ

= T−Tp

T
d2

min

4σ2

(
1 + L

Tp−L+1

)−1 (6)

Our goal is to maximize SNReff,eq,ĥ under the constraints
Tp ≤ T and Tp ≥ r0, where r0 = 2L − 1. Let x ∈ R+

and f(x) = d2
min

4σ2
T−x

T

(
1 + L

x−L+1

)−1

. Notice that
SNReff,eq,ĥ = f(Tp). Let f ′′(x) be the second derivative of
f(x). Since f ′′(x) < 0, for x ∈ R+, the function f is concave.
Thus, it has a unique maximum reached for x∗ ∈ R+, such as:

x∗ = −1 +
√

L + TL. (7)

We consider the two possible cases:
- If x∗ < r0 ⇔ T < 4L − 1 then the length of the training
sequence T ∗p maximizing SNReff,eq,ĥ is equal to r0.
- If r0 ≤ x∗ ≤ T ⇔ T ≥ 4L − 1 then T ∗p = r∗1 where
r∗1 = arg maxx∈{bx∗c ,dx∗e} f(x).
We can summarize the previous results as follows:

T ∗p = (r∗1 − r0)+ + r0 (8)
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Fig. 1. MAP equalizer BER performance versus SNReff for different
values of the length of the training sequence.

where (x)+ =
{

x if x ≥ 0;
0 elsewhere.

When T ≥ 4L − 1, the optimum value of SNReff,eq,ĥ can
be approximated by

SNR∗
eff,eq,ĥ

' d2
min

4σ2

(
1 +

L + 1
T

− 2
√

L + TL

T + 1

)
. (9)

Simulation results
In our simulations, we consider Channel3 with impulse
response (0.5; 0.71; 0.5). Figure 1 shows the BER performance
of the MAP equalizer when the channel is estimated, for dif-
ferent values of the length of the training sequence (Tp = 10,
27 and 100) with respect to SNReff = T−Tp

T SNR, where
SNR is the signal-to-noise ratio at the input of the MAP
equalizer. We set the number of symbols per burst T to 256.
According to the previous analytical results, the optimal length
of the training sequence is T ∗p = 27. This is confirmed by the
simulations since they show that the equalizer presents its best
performance, at high SNR, when Tp = T ∗p .

B. Maximization of the effective channel capacity

In the case of channel estimation, the channel capacity of
the training-based scheme using the MAP equalizer is given
by

C =
1
2

log
(
1 + SNReq,ĥ

)
. (10)

In order to take into account the loss in channel capacity due
to the pilot symbols, we define an effective channel capacity
as

Ceff =
1
2

T − Tp

T
log(1 + SNReq,ĥ). (11)

We define g(x) = (T −x) log
(
1 + d2

min

4σ2
x−L+1

x+1

)
for x ∈ R+,

then Ceff = g(Tp). Since g′′(x) < 0, for x ∈ R+,
g is concave. Hence, it has an unique maximum reached
for y∗ ∈ R+. As g′(0)g′(T ) < 0, then according to the
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theorem of intermediate values y∗ ∈]0, T [. Thus, two cases
are considered:
- If g′(r0) ≤ 0 then T ∗p = r0.
- If g′(r0) > 0 then y∗ ∈]r0, T [ and Tp

∗ =
argmaxy∈{by∗c,dy∗e}g(y).
Hence,

T ∗p = (r∗2 − r0)+ + r0 (12)

where r∗2 = arg maxy∈{by∗c,dy∗e} g(y).

IV. JOINT OPTIMIZATION OF THE TRAINING SEQUENCE
LENGTH AND POWER ALLOCATION

We assume now that the training and data powers are
allowed to be different. Thus, the Tp pilot symbols are
transmitted with a power σ2

p and the Td = T−Tp data symbols
are transmitted with a power σ2

d.

A. Maximization of the effective signal-to-noise ratio

When the channel is estimated by the least square estimator
and pilot and data symbols have different power levels, the
expression of the BER at the output of the MAP equalizer is
given by

P = Q




√
d2

min

4
σ2

d

σ2

(
1 +

Lσ2
d

(Tp − L + 1)σ2
p

)−1

 . (13)

This result can be proved by using the same proof as in [9]
while taking into account the pilot and data powers.
The equivalent signal-to-noise ratio at the output of the MAP
equalizer becomes

SNReq,ĥ =
d2

min

4
σ2

d

σ2

(
1 +

Lσ2
d

(Tp − L + 1)σ2
p

)−1

. (14)

In this case, we define the effective signal-to-noise ratio
SNReff,eq,ĥ as:

SNReff,eq,ĥ =
T − Tp

T

d2
min

4
σ2

d

σ2

(
1 +

Lσ2
d

(Tp − L + 1)σ2
p

)−1

(15)
Now, consider the following optimization problem:





max SNReff,eq,ĥ

(
Tp, σ

2
p, Td, σ

2
d

)
s.t.
σ2

pTp + σ2
dTd = σ2

t T
Tp + Td = T
σ2

p, σ2
d ≥ 0

r0 ≤ Tp ≤ T

(16)

where σ2
t T is the total transmit energy per burst.

We denote the fraction of the total transmit energy used in the
data transmission phase as

σ2
dTd = ασ2

t T , 0 < α < 1 (17)

Thus, the effective SNR can be written as

SNReff,eq,̂h =
ασ2

t d2
min

4σ2

(
1+

αTpL

(1−α) (T−Tp) (Tp− L+1)

)−1

(18)

The problem (16) is equivalent to




max SNReff,eq,ĥ (Tp, α)
s.t.
r0 ≤ Tp ≤ T
0 < α < 1

(19)

Proposition 1 The optimal training sequence length and
the optimal pilot symbol power maximizing the effective SNR
under the constraints of (16) are given by

T ∗p = (r∗3 − r0)
+ + r0

σ∗
2

p = (1−α∗(T∗p ))σ2
t T

T∗p

(20)

where r∗3 = arg maxx∈{bx∗c,dx∗e} f1 (x, α∗(x)), f1(x, α) =
ασ2

t d2
min

4σ2

(
1+ αxL

(1−α) (T−x) (x−L+1)

)−1

, x∗ =
√

TL− T ,

α∗(x) = A(x)−
√

A(x)Lx

A(x)−Lx and A(x) = (T − x)(x− L + 1).
The proof of Proposition 1 is given in the Appendix.

The power of data symbols maximizing SNReff,eq,bh is
then given by

σ∗
2

d =
α∗(T ∗p )σ2

t T

T − T ∗p
(21)

The optimum value of the effective signal-to-noise can be
approximated by

SNR∗
eff,eq,bh '

d2
minσ2

t

4σ2

A
(
T ∗p

) (
1− α∗

(
T ∗p

))2

LT ∗p
(22)

Simulation results
Figure 2 shows the BER at the output of the MAP equalizer
with respect to SNReff for Channel3, T = 256 and σ2

t = 1.
We consider the scenarios given in Table I. According to (20),
the theoretical values of the optimal length of the training
sequence and the optimal pilot symbol power are respectively
T ∗p = 23 and σ∗

2

p = 1.18. Simulations in Figure 2 confirm
that the MAP equalizer best performance are achieved when
Tp = T ∗p and σ2

p = σ∗
2

p .

Scenario Tp σ2
p

S1 T ∗p σ∗
2

p

S2 50 σ∗
2

p

S3 10 σ∗
2

p

S4 T ∗p 0.75σ∗
2

p

S5 T ∗p 1.5σ∗
2

p

TABLE I
SCENARIOS CONSIDERED IN FIGURE 2.

B. Maximization of the effective channel capacity

In the following, we define Ceff , the effective channel
capacity as:

Ceff =
1
2

T − Tp

T
log

(
1 + SNReq,ĥ(Tp, α)

)
(23)
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Fig. 2. BER versus SNReff : MAP equalizer performance for different
values of Tp and σ2

p for Channel3, T = 256 and σ2
t = 1.

We want to solve the optimization problem given by:




max Ceff (Tp, α) = 1
2

T−Tp

T

log
(
1 + d2

min

4σ2
ασ2

t T
T−Tp

(T−Tp)(Tp−L+1)(1−α)
(T−Tp)(Tp−L+1)(1−α)+LαTp

)

s.t.
r0 ≤ Tp ≤ T
0 < α < 1

(24)

Let x, α ∈ R+ and

g1(x,α) =
T − x

2T
log

(
1+

d2
minασ2

t T

4σ2

(x−L+1)(1−α)
(T−x)(x−L+1)(1−α)+Lαx

)
.

Hence, Ceff (Tp, α) = g1(Tp, α).
Proposition 2 The length of the training sequence and the
training power maximizing the effective channel capacity are
given by

T ∗p = arg maxy∈{by∗c ,dy∗e} g1(y, α∗(y))

σ∗
2

p = (1−α∗(T∗p ))σ2
t T

T∗p

(25)

where α∗(x) = A(x)−
√

A(x)Lx

A(x)−Lx , A(x) = (T − x)(x− L + 1),

and y∗ = arg minr0≤x≤T

∣∣∣∂g1
∂x (x, α∗(x))

∣∣∣.
The proof of Proposition 2 is given in the Appendix.

Simulation results
Figure 3 shows the effective channel capacity as a function
of the pilot symbol power for L = 3, T = 256, σ2

t = 0.2
and σ2 = 1 for different values of Tp. By using (25), we have
T ∗p = 13 and σ∗

2

p = 0.46. This is confirmed by the simulations
since the effective channel capacity is maximized for these
values. Figure 4 shows the effective channel capacity as a
function of Tp for L = 3, T = 256 and σ2

t = 1 for different
values of ρ = 1/σ2. We notice that the length of the training
sequence maximizing the effective channel capacity grows
when the noise variance at the input of the MAP equalizer
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Fig. 3. Effective channel capacity versus σ2
p for different values of the length

of the training sequence, L = 3, T = 256, σ2
t = 0.2 and σ2 = 1.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
p

C
ef

f

ρ=6dB 

 ρ=8dB

 ρ=10dB

 ρ=12dB

Fig. 4. Effective channel capacity versus Tp for L = 3, T = 256 and
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t = 1 for different values of ρ.

increases. Table II gives the values of T ∗p and σ∗
2

p obtained
by solving (24) for different values of σ2

t . We suppose that
the total length of the burst is T = 256, the channel memory
length L = 3 and ρ = 8dB. When σ2

t increases, T ∗p decreases
and σ∗

2

p increases.

V. CONCLUSION

In this paper, we consider the problem of optimizing the
training sequence length when a MAP equalizer is used.
We study two cases: the case where the training and data
powers are equal and the case where they are allowed to be
different. We define an effective signal-to-noise ratio and an
effective channel capacity for the training-based transmission
scheme. We find the training sequence lengths maximizing
these quantities in the case of equal powers. When the powers
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σ2
t T ∗p σ∗

2
p

0.1 15 0.18
0.2 13 0.42
0.5 10 1.42
1 9 3.15
2 7 8.38
5 6 25.30

TABLE II
T ∗p AND σ∗

2
p MAXIMIZING Ceff VERSUS σ2

t FOR T = 256, L = 3 AND
ρ = 8dB.

are allowed to be different, we also give the optimal power
allocation.

VI. APPENDIX

A. Proof of Proposition 1

Let {x, α} ∈ [L, +∞[×R∗+ and

f1(x, α) =
ασ2

t d2
min

4σ2

(
1+

αxL

(1−α) (T−x) (x− L+1)

)−1

.

Thus, SNReff,eq,ĥ = f1(Tp, α).
Now, consider the following relaxed optimization problem:





max f1(x, α)
s.t.
r0 ≤ x ≤ T
0 < α < 1

(26)

Since, ∂2f1
∂α2 < 0, f1 is concave with respect to α, for a fixed

value of x. Thus, when x is fixed, f1 has a unique maximum
achieved for α = α∗(x) such as

α∗(x) =
A(x)−

√
A(x)Lx

A(x)− Lx
(27)

where A(x) = (T−x)(x−L+1). Notice that 0 < α∗(x) < 1.
Hence, by using the combinatorial optimization [11], the
solution of (26) is:

(T ∗p , α∗) =
(

arg max
r0≤m≤T

f1(m,α∗(m)), α∗(T ∗p )
)

(28)

where m is an integer.
Let x ∈ [L, +∞[ and

F1(x) = f1(x, α∗(x)) =
σ2

t d2
min

4σ2

A(x)√
A(x)Lx + Lx

(29)

As F ′′1 (x) < 0, for x ∈ [L, +∞[, F1 is concave. Thus, F1

has a unique maximum reached for x = x∗ ∈ [L,+∞[.
By calculating the derivative of F1, we can show that it is
maximized for x∗ =

√
TL− T . Suppose that T ≥ r2

0
L−1 , then

x∗ ≥ r0.
Let (T1, α1) be the solution of (19). Suppose that T1 /∈
{bx∗c, dx∗e}. Hence, there are the two possibilities: T1 <
bx∗c = x1 or T1 > dx∗e = x2.
As ∂2f1

∂x2 (x, α) < 0, f1 is concave with respect to x for a fixed
value of α.

- If T1 < x1 < x2, we have f1(T1, α1) ≥ f1(x1, α1) ≥
f1(x2, α1). Hence, f1(x2,α1)−f1(T1,α1)

x2−T1
< f1(x2,α1)−f1(x1,α1)

x2−x1
.

On the other hand, f1(x, α) is concave with respect to
x for a fixed value of α. Thus, f1(x2,α1)−f1(T1,α1)

x2−T1
≥

f1(x2,α1)−f1(x1,α1)
x2−x1

which is impossible.
- If T1 > x2 > x∗, f1(x∗, α∗) ≥ f1(x2, α

∗) ≥ f1(T1, α
∗).

Hence, f1(T1,α∗)−f1(x
∗,α∗)

T1−x∗ < f1(T1,α∗)−f1(x2,α∗)
T1−x2

. On the
other hand, f1(x, α) is concave in x for a given value of
α. Thus, f1(T1,α∗)−f1(x

∗,α∗)
T1−x∗ ≥ f1(T1,α∗)−f1(x2,α∗)

T1−x2
which is

impossible.
Thus, the training sequence length maximizing the effective
signal-to-noise ratio is

r∗3 = arg max
x∈{bx∗c,dx∗e}

f1 (x, α∗(x)) .

If T <
r2
0

L−1 , then x∗ < r0. As F1 is concave, T ∗p = r0.
In conclusion,

T ∗p = (r∗3 − r0)
+ + r0. (30)

B. Proof of Proposition 2

The effective channel capacity can be written
as Ceff (Tp, α) = g1(Tp, α) where g1(x, α) =
1
2

T−x
T log

(
1 + d2

min

4σ2
ασ2

t T
T−x

(T−x)(x−L+1)(1−α)
(T−x)(x−L+1)(1−α)+Lαx

)
, for

{x, α} ∈ [r0,+∞[×R∗+.
Since, ∂2g1

∂α2 < 0, g1 is concave with respect to α for a fixed
value of x. Thus, when x is fixed, g1 has a unique maximum
reached for α = α∗(x) such as

α∗(x) =
A(x)−

√
A(x)Lx

A(x)− Lx
(31)

where A(x) = (T − x)(x−L + 1). Note that 0 < α∗(x) < 1.
Hence, the solution of (24) is [11]:

(T ∗p , α∗) =
(

arg max
r0≤m≤T

g1(m,α∗(m)), α∗(T ∗p )
)

(32)

where m is an integer.
Let x ∈ [r0, +∞[ and

G1(x) = g1(x, α∗(x))

= (T − x) log
(

1 + σ2
t Td2

min

4σ2
x−L+1√

A(x)Lx+Lx

)
.

(33)

As G′′1(x) < 0, for x ∈ [r0, +∞[, G1 is concave. Besides,
G′1(T ) < 0. Thus, we consider the two possible cases:

- If G′1(r0) ≤ 0 ⇔ |G′1(r0)| = minr0≤x≤T |G′1(x)|
⇔

∣∣∣∂g1
∂x (r0, α

∗(r0))
∣∣∣ = minr0≤x≤T

∣∣∣∂g1
∂x (x, α∗(x))

∣∣∣,
then T ∗p = r0 and α∗ = α∗(r0)

- If G′1(r0) > 0, then according to the theorem of
intermediate values, there exists a unique y∗ ∈
]r0, T [ such as ∂g1

∂x (y∗, α∗(y∗)) = 0. Hence, T ∗p =
arg maxy∈{by∗c ,dy∗e}G1(y) and α∗ = α∗(T ∗p ).

536 ISCCSP 2008, Malta, 12-14 March 2008



REFERENCES

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. IT-32, pp. 1–100, March 1974.

[2] B. Hassibi and B. M. Hochwald, “How much training is needed in
multiple-antenna wireless links?,” IEEE Trans. on Inf. Theory, vol. 49,
no. 4, pp. 951–963, April 2003.

[3] H. Vikalo, B. Hassibi, B. Hochwald, and T. Kailath, “On the capacity of
frequencey-selective channels in training-based transmission schemes,”
IEEE Trans. on Signal Processing, vol. 52, no. 9, pp. 2572–2583,
September 2004.

[4] I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for
MIMO OFDM systems in mobile wireless channels,” IEEE Trans. on
Signal Processing, vol. 51, no. 6, pp. 1615–1624, June 2003.

[5] T.-L. Tung, K. Yao, and R.E. Hudson, “Channel estimation and adaptive
power allocation for performance and capacity improvement of multiple-
antenna ofdm systems,” IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC 01), , no. 2, March 2001.

[6] T.F. Wong and B. Park, “Training sequence optimization in MIMO
systems with colored interference,” IEEE Trans. on communications,
vol. 52, no. 11, pp. 1939–1947, November 2004.

[7] S. Buzzi, M. Lops, and S. Sardellitti, “Performance of iterative data
detection and channel estimation for single-antenna and multiple-antennas
wireless communications,” IEEE Trans. on Vehicular Technology, vol. 53,
no. 4, pp. 1085–1104, July 2004.

[8] S. Crozier, D. Falconer, and S. Mahmoud, “Least sum of squared errors
(LSSE) channel estimation,” IEE Proceedings, vol. 138, pp. 371–378,
August 1991.

[9] N. Sellami, A. Roumy, and I. Fijalkow, “The impact of both a
priori information and channel estimation errors on the MAP equalizer
performance,” IEEE Trans. on Signal Processing, vol. 54, no. 7, pp.
2716–2724, July 2006.

[10] G.D. Forney, “Maximum-likelihood sequence estimation for digital
sequences in the presence of intersymbol interference,” IEEE Trans. on
Inf. Theory, vol. 18, pp. 363–378, May 1972.

[11] H.P. Christos and K. Steiglitz, Combinatorial optimization: algorithms
and complexity, Prentice Hall, New Jersey, USA, 1982.

ISCCSP 2008, Malta, 12-14 March 2008 537




