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Abstract—In this paper, we jointly optimize the training
interval length and the power allocation for MIMO (Multiple-
Input Multiple-Output) flat fading channels when a Maximum A
Posteriori (MAP) detector is used at the receiver and the training
and data powers are allowed to vary. We calculate the equivalent
Signal-to-Noise Ratio (SNR) at the output of the MAP detector.
Based on this expression, we define an effective SNR taking
into account the data throughput loss due to the use of pilot
symbols. We find that the optimal length of the training interval
maximizing this quantity is equal to the number of transmit
antennas. When the values of the pilot and data powers are not
allowed to be different, we give the optimal training interval
length maximizing the effective SNR and we show that it can be
larger than the number of transmit antennas.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems provide
significant increase in capacity especially when the channel
is known [1]. In practice, the channel estimation procedure is
performed by transmitting training symbols that are known at
the receiver. When the length of the training interval increases,
the channel estimation becomes more reliable. However, this
leads to a loss in terms of data throughput. Thus, a trade-
off has to be found. Several methods have been proposed
to design the optimal training interval length. The solution
presented in [2] is based on maximizing a lower bound of
the capacity of the training-based scheme for a MIMO flat
fading channel. Another approach proposed to find the opti-
mal training interval length that minimizes the Mean Square
Error (MSE) of the channel estimator [3] and therefore does
not take into account the equalizer performance. In [4], we
considered a transmission over a single-input single-output
(SISO) frequency selective channel where a Maximum A
Posteriori (MAP) equalizer is used. We proposed to maximize
an effective Signal-to-Noise Ratio (SNR) computed at the
output of the MAP equalizer and that takes into account the
loss in terms of data throughput due to the use of the pilot
symbols. In this paper, we propose to generalize this study
to MIMO flat fading channels. At the receiver, we consider
a Maximum A Posteriori (MAP) detector. The channel is
estimated by the least square estimator [5]. We derive the
expression of the equivalent SNR at the output of the MAP
detector when the training and data powers are allowed to be
different. Based on this expression, we define an effective SNR
taking into account the loss in terms of data throughput due to

the use of the training symbols. We propose to jointly optimize
the length of the training interval and the power allocation
by maximizing this effective SNR. We show that the optimal
training interval length is equal to its minimum value nT ,
where nT is the number of the transmit antennas. Notice that
a similar result was found in [2] by maximizing a lower bound
on the training-based channel capacity.
The paper is organized as follows. In Section II, we describe
the transmission system model. In Section III, we give the
expression of the equivalent SNR at the output of the MAP
detector. Section IV studies the joint optimization of the
training interval length and the power allocation. Section V
gives simulation results.
Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
The operator (.)T denotes the transposition, and Im is the
m × m identity matrix. The quantities btc, dte and |t| are
respectively the greatest integer lower than t, the smallest
integer greater than t and the absolute value of t.

II. TRANSMISSION SYSTEM MODEL

We consider a MIMO system composed of nT transmit
antennas and nR receive antennas. The input data informa-
tion bit sequence is mapped to the symbol alphabet A. For
simplicity, we consider the BPSK modulation (A = {−1, 1}).
We assume that transmissions are organized into bursts of T
symbols and that the first Tp ones are pilot symbols. The
channel is supposed to be invariant during one burst and to
change independently from burst to burst. We also assume that
the training and data powers are allowed to be different. The
received baseband signal sampled at the symbol rate at time
k at the receive antenna p is
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where x

(i)
k is the kth symbol transmitted by the ith transmit

antenna, σ2
p and σ2

d are respectively the powers of the pilot
symbols and the data symbols and hji is the channel tap
gain between the jth transmit antenna and the ith receive
antenna. The channel tap gains hji are modeled as independent
zero mean complex Gaussian variables. We assume that for a
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is the mathematical expectation. In (1), n
(p)
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independent samples from a random variable with normal
probability density function (pdf) N (0, σ2) where N (α, σ2)
denotes a Gaussian distribution with mean α and variance σ2.
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Under the assumption that enough pilot symbols have
been transmitted (Tp ≥ nT ), the least square channel estimate
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=
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is given by [5]
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We assume that the training sequences have ideal autocor-
relation and crosscorrelation properties which means that
XT X = σ2
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. Hence, we obtain
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III. EQUIVALENT SNR AT THE OUTPUT OF THE MAP
DETECTOR

We consider a MAP detector at the receiver. From (1), the
received signal y

k
= (y(1)

k , y
(2)
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k )T at the nR receive

antennas at time k, for Tp ≤ k ≤ T − 1, is given by
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mitted symbols, the MAP detector calculates the probabilities
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Since the transmitted symbols are equiprobable, the MAP
detector has only to calculate the probability p(y
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which is given by
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where X1 is the set of all values that can be taken by xk such
that x
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where Ĥ is the estimated version of H .
Proposition 1: When the channel is estimated by the least

square estimator and pilot and data symbols have different
power levels, respectively σ2

p and σ2
d, the equivalent signal-to-

noise ratio at the output of the MAP detector is given by
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where σ2, nT and Tp are respectively the noise variance, the
number of transmit antennas and the training interval length.
The proof of Proposition 1 is given in the Appendix.

IV. JOINT OPTIMIZATION OF THE TRAINING INTERVAL
LENGTH AND POWER ALLOCATION

Increasing the training interval length leads to an improve-
ment of the channel estimate quality but also to a loss in terms
of data throughput. Thus, in order to take this loss into account,
we define as in [4] an effective SNR at the output of the MAP
detector as
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Our goal is to maximize SNReff,eq under a sum energy
constraint and a total blocklength constraint. Hence, we define
the following optimization problem
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where Td is the length of data symbols block and σ2
t T is the

total transmit energy per block.
We denote the fraction of the total transmit energy used in the
data transmission phase as

σ2
dTd = ασ2

t T, 0 < α < 1 (12)

The effective SNR can then be written as
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t (T − Tp)α(1− α)
(1− α)(T − Tp) + nT α

(13)

Interestingly, the effective SNR depends only on the energy
ratio α defined in (12) and on the training interval length, for
fixed σ2

t , T and nT . Hence, the problem (11) is equivalent to




max SNReff,eq(Tp, α)
s.t.
nT ≤ Tp ≤ T − 1, 0 < α < 1

(14)



Even more interestingly, the constraints are now independent
in the sense that each constraint function depends on α or
Tp [6, p133]. This will allow the simplification of the reso-
lution of the optimization problem as stated in the following
Proposition.

Proposition 2: When T 6= 2nT , the optimal training inter-
val length and the optimal pilot symbol power maximizing the
effective SNR under the constraints of (11) are given by
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When T = 2nT , the solution of (11) is
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The proof of Proposition 2 is omitted for the sake of space.
The power of data symbols maximizing the effective SNR is
then given by
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Remark 2: When the values of the pilot and data powers are
not allowed to be different and then are not considered in the
optimization problem, the training interval length maximizing
the effective SNR may be larger than nT and is given by

T ∗p = (r∗ − nT )+ + nT (19)
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T−t
Tσ2

(
1 + nT

t

)−1 and t∗ = −nT +
√

n2
T + nT T .

Notice that for T > 3nT + 4, T ∗p > nT .

V. SIMULATION RESULTS

In this section, we propose to validate our analytical re-
sults by simulations. Figure 1 shows the Bit Error Rate
(BER) at the output of the MAP detector with respect
to SNReff = T−Tp

T SNR where SNR is the signal-to-
noise ratio at the input of the MAP detector for T = 256,
σ2

t = 4dB, nT = nR = 2. The channel tap gains hji

are modeled as independent zero mean complex Gaussian
variables with variance 0.5. According to (15), T ∗p = nT = 2
and σ∗

2

p = 14.18dB. We consider four scenarios given in Table
I where σ∗

2

p (Tp) is the value of the pilot power maximizing
the effective SNR for a given value of Tp (see Remark 1).
Simulations in Figure 1 confirm that the MAP detector best
performance are achieved when Tp is equal to its minimum
value nT = 2 and σ2

p = σ∗
2

p = 14.18dB.

Scenario Tp σ2
p

S1 T ∗p = 2 σ∗
2

p = 14.18dB

S2 8 σ∗
2

p (8)

S3 16 σ∗
2

p (16)

S4 32 σ∗
2

p (32)

TABLE I
SCENARIOS CONSIDERED IN FIGURE 1.
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Fig. 1. BER versus SNReff at the output of the MAP detector for
T = 256, σ2

t = 4dB and nT = nR = 2 (joint optimization of the training
interval length and the power allocation).

Figure 2 shows the optimal training and data powers maximiz-
ing the effective SNR with respect to T , the burst length, for
nT = 5 and σ2

t = 6dB. Notice that σ∗
2

p is given by (15) when
T 6= 10 and by (16) when T = 10. The expression of σ∗

2

d is
given by (17). The solid lines are obtained using our study. The
dotted ones are obtained using the results of [2]. We notice that
the criteria of the maximization of the effective SNR gives the
same results as the one based on maximizing a lower bound
of the capacity [2]. We verify that when T increases, σ∗

2

p

increases as well and when T = 2nT , σ∗
2

p = σ∗
2

d = σ2
t . This

result can be proved by using (17).
Now, we consider the case where the pilot and data powers

are not allowed to be different, σ2
p = σ2

d = σ2
t = 1 (see

Remark 2). We plot in Figure 3 the BER at the output of the
MAP detector with respect to SNReff for T = 256 and for
different values of Tp. From (19), T ∗p = 21. This confirms
that when the pilot and data powers are not considered
in the optimization problem, the training sequence interval
maximizing the effective SNR may be larger than nT .

VI. CONCLUSION

In this paper, we considered the joint optimization problem
of the training interval length and power allocation for MIMO
flat fading channels when a MAP detector is used at the
receiver. We defined an effective SNR at the output of the
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Fig. 3. BER versus SNReff at the output of the MAP detector for
T = 256, σ2

p = σ2
d = σ2

t = 1 and nT = nR = 2 (optimization of the
training interval length for equal powers).

MAP detector. We proved that the optimal training interval
length maximizing the effective signal-to-noise ratio is equal
to the number of transmit antennas nT and we gave the optimal
power allocation.

VII. APPENDIX: PROOF OF PROPOSITION 1

The received signal at the pth receive antenna corresponding

to the data transmission phase, y(p) =
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is the flat fading channel between the nT transmitted
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The data estimate according to the MAP criterion is given by
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For the sake of conciseness, the exponent p is omitted from
y(p), n(p), h(p) and ĥ
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its estimate. In the following, we consider an error event
characterized by its length mq . Hence, we suppose that there
exists an interval of size mq such that all the symbols of x̂(q)

are different from the corresponding symbols of x(q) while
the preceding and the following symbols are the same for
x̂(q) and x(q). Let x
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transmitted symbols and estimated ones corresponding to the
error interval.
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of length m is that x̂m is better than xm in the sense of the
MAP criterion. Hence
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where m =
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and Hm(ĥ) are the subvector of y
and the estimated channel matrix corresponding to the error
intervals.
Let em = x̂m − xm be the vector of errors. The event (22) is
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Let Hm(∆h) = Hm(ĥ)−Hm(h). The expression (23) is then
equivalent to
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where nm is the subvector of n corresponding to the error
event.
Using the assumptions given in [7], we obtain that
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to 0. Hence, ‖Hm(ĥ)em‖ → ‖εm‖.
Thus, we obtain
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We suppose that ∆h ∼ N (0, C), C being the covariance matrix
of ∆h. Defining Cm(x) = Hm(xm)CHm(xm)T , Hm(xm)
being the Hankel matrix such as Hm(xm)∆h = Hm(∆h)xm,
we obtain
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Hence, the probability of the error event P (Em) is given by
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We suppose that a perfect training sequence of length Tp is
used and then ĥpj = hpj + σekj , 1 ≤ j ≤ nT , where kj are
modeled as independent real Gaussian random with zero mean
and variance 1. From (4), σe = σ√

Tpσp

. Thus, Cm(x) −→
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eIm, and εT
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The overall error probability Pe(Σ) can then be approximated
by
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By comparing the error probability obtained at the output of
the MAP detector when the channel is perfectly known [8]
and the one given in (30) when the channel is estimated, we
conclude that the equivalent SNR at the input of the MAP
detector is [7]

SNReq =
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(
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)−1

. (31)
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