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Abstract—In this paper, we address the problem of optimiza-
tion of the training sequence interval for MIMO (Multiple- Input
Multiple-Output) flat fading channels when an iterative receiver
composed of a likelihood generator and a Maximum A Posteriori
(MAP) decoder is used. At each iteration of the receiver, the
channel is estimated using the hard decisions on the transmitted
symbols at the output of the decoder. The optimal length of the
training interval is found by maximizing an effective signal-to-
noise ratio (SNR) taking into account the data throughput loss
due to the use of pilot symbols.

I. INTRODUCTION

Wireless communications technologies are attracted by the
Multiple-Input Multiple-Output (MIMO) systems since they
provide significant increase in capacity [1]. In order to ef-
ficiently detect the transmitted symbols, the receiver needs
a good estimate of the channel. The channel is classically
estimated by using training sequences known at the receiver
[2]. When the length of the training interval increases, the
channel estimate becomes more reliable. However, this leads
to a loss in terms of data throughput. Thus, instead of using
the training sequences only, the information carried by the
observations corresponding to the data symbols can also be
used to improve iteratively the channel estimation. At each
iteration, the channel estimator refines its estimation by using
the hard or soft decisions on the data symbols at the output
of the data detector or the channel decoder [3], [4], [5], [6].
A question that one can ask concerns the length of the training
interval to choose in order to obtain a satisfactory initial
channel estimate without decreasing significantly the data
throughput. Several methods have been proposed to answer
this question. The solution presented in [2] and [7] is based
on maximizing a lower bound of the capacity of the training-
based scheme respectively for a MIMO flat fading channel
and a single-input single-output (SISO) frequency selective
channel. Another approach tries to minimize the ratio of the
channel Mean Square Error (MSE) to the data throughput
[3] and therefore does not take into account the equalizer
performance. In this paper, we consider a coded transmission
over a MIMO flat fading channel. At the receiver, a turbo-
detector consisting of a likelihood generator and a Maximum

A Posteriori (MAP) decoder is considered. The channel is
iteratively estimated by a decision-directed channel estimator
using hard decisions on the coded bits at the output of the
decoder. We derive the expression of the equivalent SNR at
the output of the likelihood generator fed with the a priori
information (from the decoder) and the channel estimate. We
define, based on this expression, an effective SNR taking into
account the loss in terms of data throughput due to the use
of the training sequence. We propose to find the length of
the training interval maximizing this expression. We show
that when the decisions provided by the decoder are enough
reliable, the optimal training interval length is equal to its
minimum value nT , where nT is the number of the transmit
antennas. Notice that we have done the study in [6] when the
channel is Single Input Single Output (SISO) and frequency
selective.
Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
Im is the m ×m identity matrix. The operator (.)T denotes
the transposition and E(.) is the mathematical expectation.

II. TRANSMISSION SYSTEM MODEL

We consider a MIMO system composed of nT transmit
antennas and nR receive antennas. As shown in Figure 1, the
input data information bit sequence is encoded with a convo-
lutional encoder. The output of the encoder is demultiplexed
into nT streams that are interleaved by different interleavers Πi

and mapped to the symbol alphabet A = {−1, 1}. We assume
that transmissions are organized into bursts. Each burst of T
symbols is transmitted by one transmit antenna among nT and
the first Tp symbols are pilot symbols. The channel is supposed
to be invariant during one burst and to change independently
from burst to burst. The received baseband signal sampled at
the symbol rate at time k at the receive antenna p is

y
(p)
k =

nT∑

i=1

hpix
(i)
k + n

(p)
k (1)

where x
(i)
k is the kth symbol transmitted by the ith transmit

antenna and hji is the channel tap gain between the jth



transmit antenna and the ith receive antenna. The channel tap
gains hji are modeled as independent zero mean real Gaussian
variables. We assume that for a given receive antenna p,
E

(∑nT

i=1 |hpi|2
)

= 1. In (1), n
(p)
k are modeled as independent

samples from a random variable with normal probability
density function (pdf) N (0, σ2) where N (α, σ2) denotes a
Gaussian distribution with mean α and variance σ2.
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Fig. 1. Transmitter structure.

The initial channel estimate is provided to the receiver by a
least square estimator using the training sequences with length
Tp each, where nT ≤ Tp ≤ T [2] and Tp is the parameter to be
optimized. We assume that the training sequences have ideal
autocorrelation and crosscorrelation properties.

III. ITERATIVE RECEIVER WITH DECISION-DIRECTED
CHANNEL ESTIMATION

As shown in Figure 2, we consider an iterative receiver
composed of a likelihood generator, a MAP decoder and
a decision-directed channel estimator. The likelihood gener-
ator computes the likelihoods on the coded bits p(x(i)

k =
x|y

k
) for 1 ≤ i ≤ nT where x ∈ {−1, 1} and y

k
=

(y(1)
k , y

(2)
k , ..., y

(nR)
k )T is the received signal at the nR receive

antennas at time k. These likelihoods are deinterleaved, mul-
tiplexed and used by the decoder to calculate the A Posteriori
probabilities (APP) on the coded bits [8]. Then, based on these
APPs, the decoder calculates extrinsic probabilities which will
be interleaved, demultiplexed and then used by the likelihood
generator at the next iteration as a priori probabilities. We
start by presenting the likelihood generator. Then, we present
the iterative channel estimator.

A. Likelihood generator

From (1), the received signal at the nR receive antennas at
time k is given by

y
k

= Hxk + nk, (2)

where H is the channel matrix, xk = (x(1)
k , x

(2)
k , ..., x

(nT )
k )T

and nk = (n(1)
k , n

(2)
k , ..., n

(nR)
k )T . The likelihood generator

needs a good estimate Ĥ of the channel in order to efficiently
detect the transmitted symbols. We present in III-B the channel
estimator.
The likelihood generator has to calculate the likelihood

p(y
k
|x(i)

k = x) as

p(y
k
|x(i)

k = x) =
p(y

k
, x

(i)
k = x)

p(x(i)
k = x)

=
∑

xk∈X0

p(y
k
|xk)p(xk)

p(x(i)
k = x)

=
∑

xk∈X0

p(y
k
|xk)

nT∏

j=1,j 6=i

p
(
x

(j)
k

)

where X0 is the set of all values that can be taken by xk such
that x

(i)
k = x and p(x(j)

k ) are the a priori probabilities given
by the MAP decoder to the likelihood generator.
Using the channel estimate, according to (2), the probability
p(y

k
|xk) is

p(y
k
|xk) =

1
(πσ2)nR

exp

(
−‖y

k
− Ĥxk‖2
σ2

)
. (3)

B. Iterative channel estimator

At the first iteration of the iterative receiver, the channel
estimate is provided by a least square estimator which uses
the training symbols [2]. In order to refine the first channel
estimate, the channel estimator uses the hard decisions on
the transmitted coded symbols based on the APPs at the
output of the decoder. Hence, the channel estimator is fed with
nT Tp pilot symbols and nT δT estimates of the coded symbols

coming from the decoder. Let x(i) =
(
x

(i)
0 , ..., x

(i)
Tp+δT−1

)T

be the sequence transmitted by the ith transmit antenna
containing the Tp training symbols x

(i)
k for 0 ≤ k ≤ Tp − 1

and the δT data symbols x
(i)
k for Tp ≤ k ≤ Tp + δT − 1.

The corresponding received vector at the pth receive antenna

y(p) =
(
y
(p)
0 , y

(p)
1 , ..., y

(p)
Tp+δT−1

)T

, is given by

y(p) = Xh(p) + n(p) (4)

where h(p) = (hp1, hp2, ..., hpnT )T , n(p) =(
n

(p)
0 , n

(p)
1 , ..., n

(p)
Tp+δT−1

)T

and

X =




x
(1)
0 ... x

(nT )
0

. .

. .

x
(1)
Tp−1

... x
(nT )
Tp−1

x
(1)
Tp

x
(nT )
Tp

. .

. .

x
(1)
Tp+δT−1 ... x

(nT )
Tp+δT−1




In order to estimate the channel, the observation vector y(p)

is approximated as follows:

y(p) ≈ X̂h(p) + n(p) (5)

where X̂ is the estimated version of the matrix X containing
the hard decisions on the coded symbols at the output of the
decoder. The iteration process can be repeated several times
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Fig. 2. Receiver structure

and here the matrix X̂ corresponds to the estimated symbols
at the last iteration.
The least square channel estimate ĥ

(p)
=

(
ĥp1, ..., ĥpnT

)T

is
given by

ĥ
(p)

=
(
X̂T X̂

)−1

X̂T y(p). (6)

IV. EQUIVALENT SNR AT THE OUTPUT OF THE
LIKELIHOOD GENERATOR

We assume that δT is fixed such that δT >> nT . We also
assume that the vector of errors on the coded symbols at the
output of the decoder is independent of the noise vector. In
average, the errors are assumed to be uniformly distributed
over a burst. By generalizing the study of [4] to the MIMO
flat fading channels, we can show that the channel estimation
Mean Square Error (MSE) per receive antenna is given by

E
(‖δh‖2) =

σ2nT

Tp + δT
+ 4

β2δT 2 + (nT − 1)βδT

(Tp + δT )2
(7)

where δh = h(p) − ĥ
(p)

, β = 1
nT δT E(n), β2 = 1

nT δT 2 E(n2)
and n is the number of erroneous hard decisions on the coded
symbols at the output of the decoder, used by the channel
estimator. We give in the Appendix the proof of (7).
We assume that the a priori (extrinsic) Log Likelihood Ratios
(LLRs) at the input of the likelihood generator, fed back
from the decoder, are independent and identically distributed
(iid) samples from a random variable with the conditional
pdf N

(
±2
σ2

a
, 4

σ2
a

)
[9], [10], [11]. By generalizing the study

of [12], the equivalent signal-to-noise ratio at the output of
the likelihood generator fed with the a priori LLRs from the
decoder and the channel estimate can be approximated by

SNReq =
1
σ2

(1 + µ2)

(
1 +

E
(‖δh‖2)

σ2(1 + µ2)

)−1

(8)

where µ = σ
σa

and E
(‖δh‖2) is the channel estimation MSE

given in (7).

V. OPTIMIZATION OF THE TRAINING INTERVAL LENGTH

Increasing the training interval length leads to an improve-
ment of the channel estimate quality but also to a loss in
terms of data throughput. Thus, in order to take this loss into
account, we define as in [6] an effective SNR at the output of
the likelihood generator as

SNReff,eq = T−Tp

T SNReq

= T−Tp

T
(1+µ2)

σ2

(
1 +

E(‖δh‖2)
σ2(1+µ2)

)−1

.
(9)

Our goal is to maximize the effective SNR when the channel
is iteratively estimated by the decision-directed channel esti-
mator. Hence, we define the following optimization problem





max SNReff,eq

s.t.
nT ≤ Tp ≤ T − δT

(10)

Let t ∈ R∗+, t ≥ nT and

f1(t) =
T − t

T

(1 + µ2)
σ2

(1 + g(t))−1 (11)

where g(t) = (1+µ2)
σ2

(
σ2nT

t+δT + 4 β2δT 2+(nT−1)βδT
(t+δT )2

)
. Thus,

SNReff,eq = f1(Tp).
When g(t) << 1, f1(t) can be approximated by

f1(t) ≈ T − t

T

(1 + µ2)
σ2

(1− g(t)) (12)

which is a decreasing function.
When the δT decisions on the data symbols added to the
training interval for the nT transmit antennas are reliable,
g(Tp) << 1. Thus, the optimal length of the training sequence
is

T ∗p = nT . (13)

Remark 1: For the non-iterative receivers, the training interval
length maximizing the effective SNR may be larger than nT .



Remark 2: When the hard decisions used by the decision-
directed channel estimator are not reliable, the approximation
g(Tp) << 1 becomes inaccurate and the optimization problem
can not be solved analytically. However, it is easy to show that
when the decisions becomes less reliable, the optimal training
interval length increases. Table I gives an idea on the reliability
of the hard decisions used by the decision-directed channel
estimator for T = 512, δT = 100, nT = 2, SNR = 10dB
and σ2

a = 0.5. We suppose here that the channel estimator is
fed with artificial a posteriori LLRs modeled as iid samples
from a random variable with the conditional pdf N

(
±2
σ2

x
, 4

σ2
x

)

[9], [10], [11].

σ2
x β β2 T ∗p

2 0.24 0.060 117
1 0.16 0.026 78

0.7 0.12 0.015 52
0.6 0.10 0.011 40
0.5 0.08 0.007 25
0.3 0.03 0.002 2
0.1 0.008 0.0001 2

TABLE I
OPTIMAL TRAINING INTERVAL LENGTH FOR DIFFERENT VALUES OF σ2

x
FOR T = 512, δT = 100, nT = 2 AND σ2

a = 0.5.

VI. SIMULATION RESULTS

We propose to validate the theoretical MSE expression given
in (7). We simulate the decision directed channel estimator fed
with artificial a posteriori LLRs modeled as iid samples from
a random variable with the conditional pdf N

(
±2
σ2

x
, 4

σ2
x

)
[9],

[10], [11]. Figure 3 shows the channel estimation MSE curves
with respect to SNR for different values of T , nT and nR. The
channel tap gains hji are modeled as independent zero mean
complex Gaussian variables with variance 1/nT . The training
interval length is Tp = nT , δT = T − nT and σ2

x = 0.1. The
solid curves are obtained by simulations and the dotted curves
are obtained using (7). We note that the theoretical curves
approximate well the curves obtained by simulations.
Now, we consider the whole MIMO system with the channel
coding at the transmitter and the iterative receiver composed of
a likelihood generator and a MAP decoder. The information
data are encoded using the rate 1

2 convolutional code with
generator polynomials (7, 5) in octal. At the first iteration, the
channel is estimated by using the training sequences. At the
next iterations, it is estimated by using the decision-directed
technique. Figure 4 shows the BER performance at the output
of the MAP decoder at the convergence (after two iterations)
with respect to SNReff = T−Tp

T SNR, where SNR is the
signal to noise ratio at the input of the likelihood generator, for
nT = nR = 2, T = 512, δT = 450 and for different values of
Tp, the length of the training interval. The channel tap gains
hji are modeled as independent zero mean complex Gaussian
variables with variance 0.5. The δT estimates of the coded
symbols at the input of the channel estimator are obtained by
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Fig. 3. Channel estimation MSE curves with respect to SNR for different
values of T , nT and nR for Tp = nT and σ2

x = 0.1.

making hard decisions on the a posteriori LLRs at the output
of the MAP decoder. From (13), T ∗p = 2. This is confirmed
by simulations since they show that the MAP decoder presents
its best performance when Tp = 2.
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Fig. 4. BER at the output of the MAP decoder for different values of Tp.

VII. CONCLUSION

In this paper, we considered the problem of optimization
of the training interval length for MIMO flat fading channels
when an iterative receiver is used. The iterative receiver is
composed of a likelihood generator, a MAP decoder and a
decision-directed channel estimator. We calculated an effective
SNR at the output of the likelihood generator taking into
account the data throughput loss due to the use of pilot
symbols. We proved that the optimal training interval length
maximizing the effective signal-to-noise ratio is equal to the



number of transmit antennas when the decisions provided by
the decoder are reliable.

VIII. APPENDIX

Let x(i) =
(
x

(i)
0 , ..., x

(i)
Tp+δT−1

)T

be the sequence trans-
mitted by the ith transmit antenna containing the Tp training
symbols x

(i)
k for 0 ≤ k ≤ Tp−1 and the δT data symbols x

(i)
k

for Tp ≤ k ≤ Tp + δT −1. The corresponding received vector

at the pth receive antenna y(p) =
(
y
(p)
0 , y

(p)
1 , ..., y

(p)
Tp+δT−1

)T

,
is given by

y(p) = Xh(p) + n(p) (14)

where h(p) = (hp1, hp2, ..., hpnT )T , n(p) =(
n

(p)
0 , n

(p)
1 , ..., n

(p)
Tp+δT−1

)T

and X =
[
x(1), ..., x(nT )

]

is the matrix containing the pilots symbols and the nT δT data
symbols. In order to estimate the channel, the observation
vector y(p) is approximated as follows:

y(p) ≈ X̂h(p) + n(p) (15)

where X̂ is the estimated version of the matrix X containing
the hard decisions on the coded symbols at the output of the
decoder. X̂ can be written as

X̂ = X + δX (16)

where δXij ∈ {−2, 0, 2} for 0 ≤ i ≤ Tp + δT − 1 and
1 ≤ j ≤ nT .

The least square channel estimate ĥ
(p)

=
(
ĥp1, ..., ĥpnT

)T

is
given by

ĥ
(p)

=
(
X̂T X̂

)−1

X̂T y(p) (17)

For the sake of conciseness, the exponent p is omitted from
y(p), n(p), h(p) and ĥ

(p)
.

Under the assumptions that XT X = (Tp + δT )InT
and

X̂T X̂ = (Tp +δT )InT . The channel estimate can be rewritten
as

ĥ
(p)

= 1
Tp+δT InT

(
XT + δXT

)
(Xh + n)

= h + 1
Tp+δT

(
XT n + δXT Xh + δXT n

)
.

(18)

Hence,
δh = ĥ− h

= 1
Tp+δT (M1 + M2 + M3)

(19)

where M1 = XT n, M2 = δXT Xh and M3 = δXT n.
The channel estimation Mean Square Error (MSE) per receive
antenna is given by

E
(‖δh‖2) = E

[
Tr(δhδhT )

]

= Tr
(
E

[
δhδhT

])

= 1
(Tp+δT )2

(
Tr

(
E[M1M

T
1 ]

)
+Tr

(
E[M1M

T
3 ]

)
+Tr

(
E[M2M

T
2 ]

))

+ 1
(Tp+δT )2

(
Tr

(
E[M3M

T
1 ]

)
+ Tr

(
E[M3M

T
3 ]

))
(20)

It is easy to show that

Tr
(
E[M1M

T
1 ]

)
= σ2nT (Tp + δT ) (21)

Tr
(
E[M1M

T
3 ]

)
= −σ2nT E(n) (22)

Tr
(
E[M3M

T
1 ]

)
= −σ2nT E(n) (23)

Tr
(
E[M3M

T
3 ]

)
= 2σ2nT E(n) (24)

where n is the number of erroneous hard decisions on the
coded symbols at the output of the decoder, used by the
channel estimator.
To evaluate the term Tr

(
E[M2M

T
2 ]

)
, we assume that the

coefficients of h are decorrelated. Hence,

Tr
(
E[M2M

T
2 ]

)
= E

[
Tr

(
δXT XDhXT δX

)]
= E

[
Tr

(∑nT

i=1 Ejuju
T
j

)]

=
∑nT

i=1 EjE
[∥∥uj

∥∥2
]
.

(25)

where Dh = h hT , Ej = E(|hj |2) and the vectors uj for
1 ≤ j ≤ nT are defined by δXT X ≡ [u1, ..., unT

].
It can be checked that E

[∥∥uj

∥∥2
]

can be expressed as [4]

E
[∥∥uj

∥∥2
]

=
4

nT
E(n2) + 4β

nT∑

i=1,i 6=j

δT − |i− j| (26)

where β = 1
nT δT E(n).

Hence,

Tr
(
E[M2M

T
2 ]

)
= 4E

[‖h‖2]
(

1
nT

E(n2) + (nT − 1)δTβ − S
)

(27)

where S = β

(PnT
j=1 jEjPnT
j=1 Ej

− (nT − 1)
PnT

j=1 j2EjPnT
j=1 Ej

+ (nT−1)nT

2

)
.

Now, we assume that δT >> nT . Hence
S <<

(
1

nT
E(n2) + (nT − 1)δTβ

)
. As, E

[‖h‖2] = 1,
we have

Tr
(
E[M2M

T
2 ]

)
= 4

(
1

nT
E(n2) + (nT − 1)δTβ

)
(28)

Finally, the channel estimation MSE is given by

E
(‖δh‖2) = σ2nT

Tp+δT + 1
(Tp+δT )2

(
1

nT
E(n2) + (nT − 1)δTβ

)

= σ2nT

Tp+δT + δT 2β2+(nT−1)δTβ
(Tp+δT )2 .

(29)
where β2 = 1

nT δT 2 E(n2).
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[9] M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: principles
and new results,” IEEE Trans. on Communications, vol. 50, no. 5, pp.
754–767, May 2002.

[10] S. Ten Brink, “Convergence of iterative decoding,” IEEE Electronics
Letters, vol. 35, pp. 806–808, May 1999.

[11] N. Sellami, A. Roumy, and I. Fijalkow, “A proof of convergence of
the MAP turbo-detector to the AWGN case,” IEEE Trans. on Signal
Processing, vol. 56, no. 4, pp. 1548–1561, April 2008.

[12] A. Gorokhov, “On the performance of the viterbi equalizer in the
presence of channel estimation errors,” IEEE Signal Process. Letters,
vol. 5, no. 12, pp. 321–324, December 1998.


