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ABSTRACT
This paper addresses the problem of asymmetric distributed
coding of correlated binary Hidden Markov Sources, mod-
eled as a Gilbert-Elliott process. The model parameters
are estimated with an estimation-decoding Expectation-
Maximization algorithm. The rate gain obtained by ac-
counting for the memory of the sources is first assessed
theoretically. The method is then shown to improve the
PSNR versus rate performance of a Distributed Video Coding
system, based on Low-Density Parity-Check codes.

Index Terms— Source coding, Channel coding, Parame-
ter estimation, Linear codes.

1. INTRODUCTION
Distributed Source Coding (DSC) refers to the problem of
separate encoding and joint decoding of correlated sources.
Slepian and Wolf (SW) have established in 1973 [1] that, for
two dependent binary sources X and Y , the lossless com-
pression rate bound H(X,Y ) can be achieved when encod-
ing the two sources separately, as long as each single rate
is greater than the conditional entropy, and joint decoding is
performed. The lossy equivalent of the Slepian-Wolf theorem
for two correlated continuous-valued sources has been formu-
lated by Wyner and Ziv (WZ) [2]. The correlation between
the two sources can be modeled as a virtual Binary Symmet-
ric Channel (BSC). A way to achieve this compression rate
is to use channel codes, this solution is shown to be optimal
in [3] in the sense that a capacity achieving channel code can
be turned into an optimal DSC code. The first practical DSC
solutions used syndrome-based channel codes [4], as Low-
Density Parity-Check (LDPC) codes [5].

In this paper, we investigate non-uniform memory sources
where the memory is spread over the entire sampled data.
More precisely, the sequence of symbols is generated by a
Hidden Markov Model (HMM): the two-state Gilbert-Elliott
(GE) process [6]. The probability of a given symbol is de-
pendent only on the current state. The GE channel was in-
vestigated by Garcia-Frias [7] as a model for the correlation
between X and Y , we use it as a model for the source. The
estimation of the GE channel parameters was carried out by
[8]. We propose the joint estimation of the model parameters

This research was partially supported by the French European Commis-
sion in the framework of the FP7 Network of Excellence in Wireless COM-
munications NEWCOM++ (contract n.216715).

and the decoding of X using an Expectation Maximization
(EM) algorithm [9].

Distributed video coding (DVC) considers the succes-
sive images of some video sequence as correlated distributed
sources. The main idea in DVC is to migrate the system com-
plexity at the decoder side; meaning that the encoder only
carries out the most basic operations, and the decoder is as-
sumed to have enough power to carry out the joint decoding.
The WZ video coding system DISCOVER [10], is one of the
most effective and developed distributed video codec of the
moment. We show that the source model we propose fit to
the generated video bit planes, then we place our estimation-
decoding module in the DISCOVER codec, and we show that
a considerable gain results by exploiting the memory.

This paper is structured as follows. Section 2 presents
the GE source model, and defines its parameters. Section
3 describes the EM algorithm used for the joint estimation-
decoding. The performance of the EM algorithm is then as-
sessed with synthetic sources in section 4. Finally, section
5 presents the integration of the EM algorithm to the DIS-
COVER codec, and shows the rate gain.

2. THE HMM MODEL FOR DISTRIBUTED SOURCE
CODING

In order to efficiently model the video data flow, we consider
a two-state HMM: the GE process. The advantage of this
model is that one can model a source with infinite memory
with only few parameters. Let us first review the GE process.
The source X is dependent on an underlying and persistent
Markov state process. Let Σ be a finite Markov process hav-
ing two realizations (called states) 0 and 1. Σ is Markovian
with memory one in the sense that its realization at position
n only depends on its realization at position (n− 1). In each
state, the source X is drawn according to a Bernoulli law of
parameter p0 and p1 respectively (Fig 1). We define the tran-
sition probabilities t00, t10, t01 and t11 between the states.
Since t00 = 1− t01 and t11 = 1− t10, the set of parameters
of the model is θ = (p0, p1, t10, t01). They are defined by:

p0 = Pθ(Xn = 1|Σn = 0), p1 = Pθ(Xn = 1|Σn = 1)

t10 = Pθ(Σn = 0|Σn−1 = 1), t01 = Pθ(Σn = 1|Σn−1 = 0)
(1)

where Σ = ΣN1 is an N -long state sequence, and σ = σN1 =
{0,1}N its realization, and where X = XN

1 is an N -long
source sequence with realization x = xN1 = {0, 1}N .



Fig. 1. Diagram for the state generation.

In DSC, a second source Y with realization y is corre-
lated to X , where the correlation is modeled as a virtual BSC
with parameter p. More precisely, let Z represent the dif-
ference between X and Y , we assume that Y = X ⊕ Z with
P(Y 6= X) = P(Z = 1) = p. In asymmetric DSC, the source
Y is available at the decoder and X has to be recovered. As
the sources have memory, X can be compressed at the condi-
tional entropy-rate H(X|Y) = lim

N→∞
1
NH(X|Y). For our GE

model, this rate can be computed as in [11]. This entropy-
rate is lower than that of a uniform source. As an illustration,
for a GE source having the parameters (p0 = 0.07, p1 =
0.7, t10 = 0.03, t01 = 0.01), H(X|Y) = 0.5 occurs for a
BSC of parameter p = 0.299, instead of p = 0.11 if the
source is uniform. H(X|Y) is significantly decreased.

Motivated by the higher compression rate achievable
when taking into account the memory of the sources, we
propose an estimation-decoding algorithm that decodes the
source, and estimates its model parameters.

3. ESTIMATION-DECODING EM ALGORITHM
The compression of the sourceX is done with a channel code.
Let H be the parity-check matrix of a linear (N,K) code.
In the DSC setup, x of length N is mapped to its syndrome
sx = Hx of length (N − K), and y is transmitted to the
decoder. The decoder must estimate x̂ from sx, y, and the
correlation factor p: x̂ is the closest sequence to y with the
syndrome sx. When the source has no memory and when the
channel code is an LDPC code, this search can be efficiently
performed with a modified Message-Passing (MP) [5].

Our aim is to jointly estimate the memory source and its
parameter θ. This can be performed by an iterative algorithm
called the EM algorithm [9]. More precisely, the EM is an it-
erative optimization procedure that learns new parameters of
a stochastic model based on the improvement of a likelihood
computed from a set of observables. As side products we ob-
tain estimates of the hidden variables x and σ. Therefore the
EM can be seen as an estimation-decoding algorithm. Let l
be the label of the current iteration, and {xl, θl, σl} the cur-
rent estimates. Then, the next value of θ is computed so as to
maximize the mean log-likelihood function

θ(l+1) = arg max
θ

EX,Σ|Y,SX,θl log (Pθ(y,x, σ, sx))

where Pθ(y,x, σ, sx) stands for the likelihood function.
Fig. 2 presents the graph that helps us describe the message-
passing (MP) [12] that is performed for the joint estimation-
decoding of θ, σ and x. In the following, we explicit the
expectation and the maximization steps.

Fig. 2. Graph describing the joint estimation-decoding that is performed.

3.1. Expectation step
Using the Bayes rule:Pθ(y,x, σ, sx) = Pθ(y, sx|x, σ)Pθ(x, σ)
where Pθ(y, sx|x, σ) is independent of θ. Therefore, we only
need to compute EX,Σ|Y,SX,θl (log (Pθ(x, σ))), where

log (Pθ(x, σ)) = log (Pθ(σ1)) +

N∑
n=2

1∑
i=0

1∑
j=0

δσn−1=i,σn=j log(tij)

+

N∑
n=1

1∑
i=0

δσn=i,xn=1 log(pi) + δσn=i,xn=0 log(1− pi)

(2)

where δbool =

{
1, if bool = true

0, otherwise

3.2. Maximization step
Here, the mean log-likelihood function is maximized with re-
spect to θ under the constraints pi ∈ [0, 1],tij ∈ ] 0, 1 [ , and∑
j∈{0,1}

tij = 1. Using Lagrange multipliers, the new param-

eters are given by

p
(l+1)
i =

N∑
n=1

Pθl(Σn = i|y, sx)Pθl(Xn = 1|Σn = i,y, sx)

N∑
n=1

Pθl(Σn = i|y, sx)

t
(l+1)
ij =

N∑
n=2

Pθl(Σn−1 = i,Σn = j|y, sx)

N∑
n=2

Pθl(Σn = i|y, sx)

Since the graph of our source model has cycles (see
Fig. 2), the exact a posteriori probabilities (APP) are too
complex. However, the MP algorithm is known to provide
a good approximation for these quantities. In order to sim-
plify the notation, the APP and their approximation through
the MP algorithm are denoted the same. Pθl(σn|y, sx) and
Pθl(σn−1, σn|y, sx) are computed in section 3.3 using a
BCJR-like forward-backward algorithm. Pθl(xn|σn,y, sx)
is computed using an LDPC decoding sum-product algorithm
(section 3.4).

3.3. BCJR-like forward-backward algorithm
The forward-backward algorithm is run on the trellis which
states are 0 and 1 generating the source symbols. We define



γ
n,(n+1)
i,j = Pθ(yn|Σn = i, sx) · Pθ(Σn+1 = j|Σn = i, sx)

αnj =
∑

i∈{0,1}

α
(n−1)
i · γ(n−1),n

i,j

βni =
∑

i∈{0,1}

γ
n,(n+1)
i,j · β(n+1)

j

(3)

The equations in (3) define the recursions, where γn,(n+1)
i,j

is the transition probability between the states i at position n
and j at position (n + 1), αni is the forward probability for
the source being in state i at position n, βni is the backward
probabilities for the source being in state i at position n.

Now we define the source states APP:

Pθ(Σn = i,y|sx) = αni · βni
Pθ(Σn−1 = i,Σn = j,y|sx) = α

(n−1)
i · γ(n−1),n

i,j · βnj
(4)

Renormalizing Pθ(σn,y|sx) and Pθ(σn−1, σn,y|sx), we
get Pθ(σn|y, sx) and Pθ(σn−1,Σn = j|y, sx).

3.4. LDPC decoding sum-product algorithm
The messages are passed on the bipartite graph composed of
the variable nodes and the check nodes, knowing the soft es-
timates of σl and θl. Let dxn be the degree of xn, and dsm be
the degree of sm (see Fig. 2).
•Messages from yn to xn: Computation of the intrinsic:
In = (1− 2yn) log

(
1−p
p

)
+ log

(
1−p̂X

p̂X

)
, with

p̂X = pl0 · Pθ(Σn = 0|y, sx) + pl1 · Pθ(Σn = 1|y, sx)
each In is mapped to the corresponding E(in)

n,k .
• Variable to check messages , ∀e ∈ [1, dxn]:

E
(out)
n,e = In +

dxn∑
k=1,k 6=e

E
(in)
n,k

each E(out)
n,e is mapped to the corresponding Q(in)

m,e .
• Check to variable messages, ∀e ∈ [1, dsm]:

Q
(out)
m,e = 2 tanh−1

[
(1− 2sn)

dsm∏
k=1,k 6=e

tanh Q(in)
m,e

2

]
each Q(out)

m,e is mapped to the corresponding E(in)
n,k .

•Messages to the state nodes. We note Pn = In+
dxn∑
k=1

E
(in)
n,k :

Pθ(Xn = 0|σn,y, sx) =
ePn

1 + ePn

Pθ(Xn = 1|σn,y, sx) = 1− Pθ(Xn = 0|σn,y, sx)

(5)

In this LDPC decoding, we have decided to propagate
LLRs, which implies their conversion to probabilities in (5),
for use at the maximization (3.2) and with the BCJR (3.3).

4. PERFORMANCE OF THE
ESTIMATION-DECODING ALGORITHM

We consider a GE source of lengthN = 1584 (same length as
the video bit planes) with parameters θ = (p0 = 0.07, p1 =
0.7, t10 = 0.03, t01 = 0.01). The LDPC code we use is

of rate 1
2 , created using the Progressive Edge Growth prin-

ciple. The syndrome, as well as the side-information, are
transmitted to two different decoders: (1) the standard de-
coder that views X as a uniform source, (2) the proposed
decoder knowing that X has memory. For the decoder ex-
ploiting the memory, the EM algorithm is initialized with
(p0 = 0.49, p1 = 0.51, t10 = 0.1, t01 = 0.1). The maxi-
mum iteration number is set to 100, which represents a good
compromise between complexity and efficiency. The BERs
of X and the estimated parameters are shown in Fig 3.

Fig. 3. Performances of the two decoders. The source has parameters
θ = (p0 = 0.07, p1 = 0.7, t10 = 0.03, t01 = 0.01). When exploiting
the memory, H(X|Y) = 0.5 occurs for H(p) = 0.88 (p = 0.299), instead
of H(p) = 0.5 (p = 0.11).

Fig. 3 shows that the estimation-decoding EM algorithm
manages to recover X better than the standard decoder, in
particular X is recovered error-free for H(p) = 0.5 which
corresponds to the SW bound for a uniform source. Besides
the parameters are well estimated if the correlation between
X and Y is high (H(p) < 0.65). When H(p) gets closer to
0.88, the decoding of X fails (BER(X) > 10−2 for H(p) >
0.65) and the parameter estimation fails as well.

5. DISTRIBUTED VIDEO CODING USING HMM
5.1. Review of the DISCOVER codec
The DISCOVER encoder [10] first separates the video frames
into two sets: key frames and WZ frames. Key frames are
conventionally encoded using an H264/AVC encoder in in-
tra mode. WZ frames are first transformed using Discrete
Cosine Transform (DCT), the resulting transform coefficients
are quantized and organized into bands, where each band con-
tains the coefficients associated to the same frequency in dif-
ferent blocks. The bits representing these coefficients are or-
dered bit plane per bit plane, and fed into an LDPC-based
SW encoder which computes their syndromes. The syndrome
bits are stored in a buffer, and progressively transmitted to the
decoder until the bit plane is correctly decoded. That incre-
mental rate-adaptive decoding prevents from re-encoding the
data at each request. The bit planes are usually considered
as independent uniformly distributed binary sources, but we



show in section 5.2 that they are better approximated by the
GE model.

5.2. Accuracy of the GE source modeling
To evaluate the accuracy of the model, we observe the bursts
lengths, i.e. the number of consecutive 1’s, in the sequence
of each bit plane. First, consider a source X without mem-
ory, it can be modeled as a Bernoulli process with parameter
pX = P(X = 1). In this case, the burst length distribution,
Pk, is defined as the probability of having a sequence with
k consecutive 1’s given that the sequence starts with a 0 (i.e.
0 1 . . . 1︸ ︷︷ ︸

k

0). For the Bernoulli process, Pk = (1 − pX)pk−1
X .

Therefore, for non memory binary sequences, the log-scale
burst distribution, log(Pk), is linear in the burst length.

We consider now the bit plane sequences obtained by the
DISCOVER codec. For those sequences, we plot the empir-
ical burst length distribution and the synthetic one obtained
with the GE parameters. More precisely, given the GE pa-
rameters estimated with the EM algorithm described in sec-
tion 3, the burst length distribution is generated: this is called
the synthetic distribution. Fig. 4 shows the comparison for
two different bit planes: one with memory (1) and the other
with almost no memory (3). Interestingly, the empirical and
the synthetic distributions match each other well.

Fig. 4. Distribution of the bursts of 1’s in two selected bit planes
of soccer. The estimated parameters are (p0 = 0.112, p1 =
0.974, t10 = 0.0621, t01 = 0.0435) for the bit plane with memory
and (p0 = 0.483, p1 = 0.484, t10 = 0.0942, t01 = 0.0937) for
the one without memory.

5.3. Our contribution for DVC and experimental results
We place the estimation-decoding EM module in lieu of the
SW decoder of DISCOVER. The results presented in Fig. 5
are obtain for all the frames of the 15Hz QCIF video se-
quences hall monitor, foreman, and soccer.

Fig. 5. The decoder that exploits the bit planes memory needs less rate to
render the videos at the same PSNR. The GOP size is 2.

As we do not improve the rate of the key frames, only the
results for the WZ frames are shown. While our model re-
mains relatively simple (only two states), the gain, in terms of
decreasing the rate allocated to the WZ frames, is significant.
The decrease of rate for hall monitor is 2.54kbps (−2.73%)
at the highest PSNR, while it is 8.76kbps (−4%) for foreman,
and 29.55kbps (−10.14%) for soccer. This proves that it is
worth taking into account the memory of the source.

6. CONCLUSION
We have proposed an asymmetric SW codec for two corre-
lated binary non-uniform memory sources, based on LDPC
codes. A hidden Markov model is taken for the source. We
showed that substantial gain comes, which reduces the BER
of the DSC system, when the iterative memory estimation is
carried out together with the LDPC decoding. The decoder
was finally incorporated into the DISCOVER codec, for prac-
tical DVC, using the memory on the WZ bit planes, and we
presented results that prove the efficiency of that modifica-
tion: the gain is up to 10.14% for the video sequence soccer.
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