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ABSTRACT
We introduce a novel correlation model, called predictive

Binary Symmetric Channel (BSC), for Distributed Source
Coding (DSC). We then consider non-uniform binary sources
and show that, for the predictive BSC model, the non-
uniformity does not reduce the compression rate in asym-
metric DSC. We assess the minimum achievable rate loss
induced by a mismatch between the assumed and the true
correlation models. We also propose an LDPC-based de-
coder adapted to both the classical (additive) BSC and the
new (predictive) BSC correlation models. Finally, for Dis-
tributed Video Coding (DVC) application, we propose a cri-
terion that allows us to switch between the two correlation
models.

1. INTRODUCTION
Distributed Source Coding (DSC) refers to the problem of
separate encoding and joint decoding of correlated sources.
Slepian and Wolf (SW) have established in 1973 [1] that, for
two dependent binary sources X and Y , the lossless compres-
sion rate bound H(X ,Y ) could be approached when encod-
ing the two sources separately provided that they are decoded
jointly. The lossy equivalent of the SW theorem for two cor-
related continuous-valued sources has been formulated by
Wyner and Ziv (WZ) [2]. Most Slepian-Wolf and Wyner-Ziv
coding systems are based on channel codes (e.g., convolu-
tional codes [3], turbo codes [4] or Low Density Parity Check
(LDPC) codes [5]). The statistical dependence between two
correlated sources X and Y is modeled as a virtual correlation
channel analogous to Binary Symmetric Channels (BSC) or
additive white Gaussian noise (AWGN) channels. In the se-
quel we consider asymmetric DSC in which the source Y
(called the side information) is usually regarded as a noisy
version of X . Using error correcting codes, the compression
of X is achieved by transmitting only parity or syndrome bits
which are decoded given the side information Y .

Video compression has been recast into a distributed
source coding framework leading to Distributed Video Cod-
ing (DVC) systems. The video sequence is structured into
Groups Of Pictures (GOP), in which key frames (KF) are
intra-coded and intermediate frames are WZ-coded. Each
WZ frame is encoded independently of the other frames. In
this paper, we consider the DVC codec described in [6] de-
veloped by the European IST-DISCOVER project and which
will be referred to as the DISCOVER codec in the sequel.
The WZ data is transformed and then quantized, and the
quantized coefficients are binarized. Each resulting bit plane
is then encoded with a channel coder. We will use an LDPC
coder in the experiments reported in this paper. The decoder
constructs the side information via motion-compensated in-
terpolation of previously decoded key frames. The encoder
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first sends per bit plane a subset of the syndrome bits coded
by the LDPC encoder. If the decoder cannot properly decode
the current bit plane, more syndrome bits are requested from
the encoder via a feedback channel.

All DVC codec implementations often assume the binary
distribution of the bit planes to be uniform, which is actually
far from being the case (as we will see in the experiments
section). The correlation model between the WZ (X) and the
SI (Y ) bit planes is also assumed to be additive symmetric
(Y = X ⊕Z). In this additive channel model, the correlation
noise Z is assumed to be independent of X but not of Y . In
this paper, we show that, in DVC systems, the correlation
noise Z is on contrary, most of the time, independent of the
SI Y . This has led us to introduce another correlation model
which we called the predictive channel model (X = Y ⊕Z).
We show that, if the two sources X and Y are uniformly dis-
tributed, then the two models (additive and predictive) are
equivalent. But, this is not the case if the two sources are non-
uniformly distributed. The minimum achievable rate loss in-
duced by a mismatch between the assumed and true model is
computed.

This paper also describes a modified LDPC decoder
which accounts for the non-uniformity of the sources and
adapts to the correlation model. The source distribution is
iteratively estimated along with the symbol bits, and the re-
liability of this estimation is assessed. Experimental results
show that the channel modeling the correlation between the
WZ and SI bit planes in a DVC codec is actually a mixture
of the additive and predictive channel models. The dynamic
decoder adaptation to the correlation model and to the non-
uniformity of the sources leads to a rate gain of about 5.7%.

This paper is structured as follows. Section 2 reviews
the theory of DSC for non-uniform sources, and presents the
rate bounds that can be achieved with the additive and the
predictive BSC. Section 3 describes the proposed LDPC de-
coder in order to take the source non-uniformity, as well as
the type of the BSC, into consideration; the performance for
the coding of synthetic sources is shown. Section 4 presents
the exploitation of the source non-uniformity for DVC. We
prove the accuracy of the non-uniform source modeling be-
sides the existence of both additive and predictive channels,
then our experimental results show that the PSNR versus rate
performance of the codec is improved.

2. DISTRIBUTED SOURCE CODING OF
NON-UNIFORM SOURCES

This section first revisits the principle of asymmetric DSC
with the classical binary symmetric correlation model, which
is referred to as additive BSC. A new model called predictive
BSC is then introduced. The rate bounds are derived for both
models in the case the sources are non-uniform.
2.1 Review of the asymmetric DSC
Let X ∼ B(pX ) denote a binary variable, Bernoulli dis-
tributed with parameter pX = P(X = 1). In DSC, a second



source Y , with realization y, is correlated to X and avail-
able at the decoder. The correlation is modeled as a virtual
(X ,Y, p) BSC as defined below.
Definition 1. An (X ,Y, p) additive BSC is a channel with
binary input X, binary output Y . The noise Z ∼ B(p) is in-
dependent of the channel input, and the channel output is
obtained by Y = X⊕Z.

Note that our additive BSC is the classical BSC. In the
remainder of this paper, “X” denotes the source that has to
be decoded from its syndrome “SX ” and the side-information
is “Y ”. This setup is commonly called “asymmetric DSC”.
In [7], Wyner showed that binary linear codes can reach the
SW bounds with the syndrome approach. More precisely,
consider an (N,K) channel code C defined by its (N−K)×N
parity check matrix H = (hmn). This code defines a partition
of the N-long sequences into cosets, where all the sequences
in a coset Cs share the same syndrome s: Cs = {x : Hx = s}.
To encode x, the encoder transmits its syndrome sx = Hx,
achieving a compression ratio of N : (N−K); y is sent at its
entropy H(Y ) and can therefore be retrieved. At the decoder,
the sequence x̂ is found as the closest sequence to y, having
syndrome sx. In the sequel, we use LDPC codes which have
been shown to perform closely to the SW bound [5], while
keeping their encoding and decoding complexity linear with
the code length.
2.2 Properties of the sources and correlation models
The achievable lower bounds depend not only on the corre-
lation between X and Y , but also on their respective distribu-
tions. Let X ∼ B(pX ) and Y ∼ B(pY ). Let Z be the noise,
modeled as a BSC. First, when the source X is uniform, i.e.
pX = 0.5, the source Y is also uniform, and
H(X) = H(Y ) = 1, and H(X |Y ) = H(Y |X) = H(Z) = H(p),
where H(p) =−p log(p)− (1− p) log(1− p).

Now, consider that X is non-uniform (pX 6= 0.5). Then
Y is also non-uniform. We claim the following results to
characterize the rate gain that is expected depending on the
type of BSC.

Claim 1. Let X ∼ B(pX ) and Y ∼ B(pY ) be two corre-
lated sources, where the correlation is modeled as a vir-
tual (X ,Y, p) additive BSC. We consider the asymmetric dis-
tributed problem, where Y is available at the decoder and
compressed at its entropy H(Y ) and X is compressed at its
conditional entropy H(X |Y ). If the source X is non-uniform,
the compression rate for X is reduced by H(Y )−H(X) ≥
0 compared to the compression rate achieved for uniform
sources.

Proof. Since the BSC is additive, ∃ Z independent of X
s.t. X ∼ B(pX ) and Y = X ⊕ Z. Then pY = pX (1− p) +
(1− pX )p. The concavity of H(·) implies H(Y ) ≥ H(X).
Moreover H(X |Y ) = H(Z)− [H(Y )−H(X)]. Since H(Y )−
H(X) ≥ 0 (with equality iff the source X is uniform), the
non-uniformity of X reduces the lower bound H(X |Y ), and
the rate gain is H(Y )−H(X).

Definition 2. An (X ,Y, p) predictive BSC is a channel with
binary input X, binary output Y . The noise Z ∼ B(p) is in-
dependent of the channel output s.t. X = Y ⊕Z.

This model corresponds to the case where Y represents a
prediction of X . Z is therefore an innovation noise indepen-
dent of Y . When the correlation between the sources X and
Y is a predictive channel, we get the following result:

Claim 2. Let X ∼ B(pX ) and Y ∼ B(pY ) be two corre-
lated sources, where the correlation is modeled as a virtual
(X ,Y, p) predictive BSC. We consider the asymmetric dis-
tributed problem, where Y is available at the decoder and
compressed at its entropy H(Y ) and X is compressed at its
conditional entropy H(X |Y ). The non-uniformity of X does
not reduce the compression rate for X.

Proof. Here H(X |Y ) = H(Z). Therefore, the compression
rate for X only depends on the noise statistics, and the non-
uniformity of X does not reduce its compression rate.

The introduction of the predictive channel is motivated
by the DVC application. In this context, X represents the
current image to be compressed and Y represents the predic-
tion of X based on previous and future images obtained at the
decoder side. Therefore, the noise Z is an innovation noise
and is more likely to be independent of Y than of X . Un-
fortunately, for a predictive channel the compression rate for
X does not reduce as the non-uniformity of X increases. In
the following, we show that a mismatch between the true and
the assumed correlation models always degrades the perfor-
mance of the decoder.
Claim 3. Let X ∼ B(pX ) and Y ∼ B(pY ) be two corre-
lated sources, where the correlation is modeled as a virtual
(X ,Y, p) (predictive or additive) BSC. We consider the asym-
metric distributed problem, where Y is available at the de-
coder and compressed at its entropy H(Y ), and X is com-
pressed at its conditional entropy H(X |Y ). A mismatch be-
tween the true correlation model and the one assumed by the
codec implies a rate loss if the sources are non-uniform.

Proof. If the decoding if performed with a predictive channel
model, then the lower achievable rate will be H(Z). A rate
loss of H(Z)−H(X |Y ) will then result. Let us now assume
that the correlation channel model is predictive. The lower
rate bound is in this case H(X |Y ) = H(Z). If the decoding
is performed by considering the additive BSC model, then
the minimal achievable that can be achieved will be H(Z)−
[H(Y )−H(X)] with H(Y )−H(X)≤ 0.

Motivated by the expected rate gain when the source dis-
tribution is non-uniform and the correlation channel is ad-
ditive, we describe how to modify the existing syndrome-
based LDPC decoder to assess and exploit the source non-
uniformity as well as the nature of the BSC.

3. DISTRIBUTED CODING OF NON-UNIFORM
SOURCES USING LDPC CODES

LDPC codes can be represented either by a sparse parity-
check matrix (binary matrix of low proportion of 1) or by a
bipartite graph. For an LDPC code yielding a compression
rate N : (N −K), there are N variable nodes and (N −K)
check nodes in the graph. Here, we modify the standard
decoding proposed by Liveris et al. [5] to exploit the non-
uniformity of the sources and to deal with the type of BSC.
The encoder is not modified.

3.1 The proposed syndrome-based LDPC decoder
Consider the following notation and definition of the mes-
sages that are passed in the graph. Here, the correlation chan-
nel is assumed to be a BSC; if some other channel is used, the
intrinsic information only needs to be adapted correspond-
ingly. In particular, in section 4, the correlation between the
sources is modeled as a Laplacian channel.



• xn,n ∈ [1,N] are the source symbols, represented by the
variable nodes; its estimate is x̂n

• yn,n ∈ [1,N] are the side-information symbols, repre-
sented by the side-information nodes;

• sm,m∈ [1,(N−K)] are the syndrome symbols, represent-
ing the check nodes. xn is connected to sm if hmn = 1;

• dxn is the degree of xn;
• dsm is the degree of sm;
• In,n ∈ [1,N] are the intrinsic, passed from yn to xn;
• En,e,n ∈ [1,N],e ∈ [1,dxn] are the extrinsic information,

passed from xn on their e-th edge to the check nodes;
• Qm,e,m ∈ [1,(N − K)],e ∈ [1,dsm] are the messages

passed from sm on their e-th edge to the variable nodes;
• p̂X denotes the estimate of pX . It is updated throughout

the iterations, after each update of x̂.
All the messages are Log-Likelihood Ratio (LLR), they are
labeled (in) or (out) if they come to or from the nodes.
3.1.1 Intrinsic information computation
The intrinsic information depends on the type of BSC. It is
defined by In(pX ) = log

(
P(Xn=0|yn)
P(Xn=1|yn)

)
=

(1−2yn) log
(

1− p
p

)
, i f the BSC is predictive

(1−2yn) log
(

1− p
p

)
+ log

(
1− pX

pX

)
, i f additive

(1)

Since pX is not known, each In is initialized to In(p̂Y ) where
p̂Y is the probability of 1’s in Y , that is the best guess on pX

so far. Each E(in)
n,k is initialized to 0.

3.1.2 Messages from the variable nodes to the check nodes

E(out)
n,e = In(p̂X )+

dxn

∑
k=1,k 6=e

E(in)
n,k

where In(·) is defined in (1) and the estimate p̂X is explained
in 3.1.4. Each E(out)

n,e is mapped to the corresponding Q(in)
m,e

according to the connections in the graph.

3.1.3 Messages from the check nodes to the variable nodes

Q(out)
m,e = 2tanh−1

[
(1−2sn)

dsm

∏
k=1,k 6=e

tanh Q(in)
m,e
2

]
Each Q(out)

m,e is mapped to the corresponding E(in)
n,e .

3.1.4 Decision, and update of p̂X

We denote En = In(p̂X )+
dxn

∑
k=1

E(in)
n,k = log

(
1−Pn

Pn

)
where Pn is the best guess on P(Xn = 1|y,sx) so far. Then

Pn = eEn

1−eEn , and x̂n =
{

1, i f Pn ≥ 0.5
0, otherwise

p̂X is estimated as the probability of 1’s in x̂, expressed with
the soft values Pn. The updated value of p̂X is thus given by

p̂X = ∑
N
n=1 Pn

N

3.1.5 Stopping criteria: syndromes check, convergence test,
and maximum number of iterations

The decoding algorithm stops either if the estimated x̂ sat-
isfies the parity check equation (Hx̂ = sx) or if the maxi-
mal number of iterations has been reached (100 iterations is
a good compromise between performance and complexity).
Moreover if the syndrome test has failed, while no symbols

of x̂ have been updated during the current iteration, even if
we have not reached the maximal number of iterations yet,
we decide that the decoder has converged to a wrong word.

3.2 Simulation results
Non-uniformity and additive BSC

We test the proposed decoding algorithm using an LDPC
code of rate 1

2 created using the Progressive Edge Growth
(PEG) principle [8]. The non-uniform sources are drawn for
two values of pX = {0.15,0.2275}; and, for each pX , a range
of values of p is considered. The source sequences are of
length N = 1584 - the same length as the bit planes extracted
from the video frames (section 4). The syndrome sx, as well
as the side-information y, are transmitted to three different
decoders: (1) the standard decoder that views X as a uniform
source, (2) the proposed decoder that knows that X is non-
uniform and has to estimate p̂X , (3) a genie-aided decoder
that knows pX (in order to quantify the sub-optimality intro-
duced by the parallel estimation of p̂X ). When the BSC is
additive, Fig. 1 shows the performance of the decoding in
terms of its Bit Error Rate (BER) versus H(p).

Figure 1: Performance of the standard and the modified LDPC decoders,
for non-uniform sources with pX = {0.15,0.2275}, over an additive BSC.
When considering that X is uniform, (1), H(X |Y ) = 0.5 is achieved for
H(p) = 0.5 (p = 0.11) regardless of the source distribution. When ex-
ploiting the non-uniformity, (2, 3), H(X |Y ) = 0.5 occurs for H(p) = 0.622
(p = 0.155) when pX = 0.2275, and for H(p) = 0.79 (p = 0.239) when
pX = 0.15.

The standard decoder (1) has the same performance re-
gardless of the source distribution. Meanwhile, the de-
coders (2) and (3) exploiting the non-uniformity are able
to retrieve X from considerably greater H(p); the rate gain
increases with the non-uniformity. The estimation of the
source Bernoulli parameter, only induces a loss lower than
0.02bit when the BER is under 10−5, which is acceptable
regarding the rate gain with respect to the standard decoder.
Effect of a mismatch between the true correlation model
and the one assumed by the decoder

Now, we assess the impact of a wrong guess of the type
of BSC between the correlated sources. Let us first consider
the case where the true correlation model is additive while
the decoder assumes a predictive one. The curve (1) in Fig. 1
shows the performance of such a mismatched decoder while
curves (2) and (3) show the performance of the matched de-



coder. As expected in Claim 3, the mismatch induces a sig-
nificant rate loss. For the other case, we consider a predictive
model while the decoder assumes an additive one. To that
end, we generate Y ∼ B(pY ) and X = Y ⊕ Z, making sure
that pX is constant, and we plot the BER of that system on
Fig. 2.

Figure 2: Influence of a wrong guess on the channel (the BSC is assume
to be additive while it is predictive in reality), for non-uniform sources with
pX = {0.15,0.2275}.

As expected (see Claim 3) the mismatched decoder per-
forms worse than the correct decoder.
Parallel parameter estimation

Our decoder presented in section 3.1 estimates the distri-
bution parameter pX . Fig. 3 shows the estimated parameter
averaged over 5.103 realizations of the source.

Figure 3: Performance of the parameter estimation that is performed in
parallel, for non-uniform sources with pX = {0.15,0.2275}.

When the correlation level is such that the operating point
is far from the SW bound (H(p) < 0.52 for pX = 0.2275 and
H(p) < 0.62 for pX = 0.15), the decoding of X is successful
(BER< 10−2) and the parameter is well estimated (the gap to
the actual pX is lower than 10−3); but when the correlation is
lower, the decoding of X fails and the parameter estimation
fails as well.

4. DISTRIBUTED VIDEO CODING EXPLOITING
THE NON-UNIFORMITY OF THE BIT PLANES

4.1 Review of the DISCOVER codec
Fig. 4 shows the DISCOVER codec block diagram.
The encoder consists into the Blocks 1, 2, and 3. Block 1
splits the video frames into key frames (KF) and WZ frames.
The KF are conventionally encoded in Block 2 using an
H264/AVC encoder and transmitted to the decoder. The WZ
frames are encoded in Block 3: they first undergo a block-
based Discrete Cosine Transform (DCT, Block 3a), and the
obtained transform coefficients are quantized (Block 3b).
The quantized coefficients are organized into bands, where
every band contains the coefficients associated to the same
frequency in different blocks. Then, organized bit plane by
bit plane, the quantized coefficients bands are fed to a SW
encoder, which computes their syndromes. In this work, we
model those bit planes as non-uniform sources.
At the decoder, the KF are first decoded in Block 4 using
a conventional video decoder. Then a motion compensated
interpolation between every two closest KF is performed in
Block 5, in order to produce the SI for a given WZ frame.

The correlation between the WZ bit planes and SI is approx-
imated by a Laplacian channel, in Block 6. In Block 7, the
same transform used at the encoder is applied to the SI to ob-
tain an estimation of the WZ bit planes. Based on that infor-
mation, and thanks to the syndromes, Block 8 performs the
proper WZ decoding. More particularly, Block 8a performs
the rate-adaptive SW decoding [9], using feedback channels
between Blocks 3 f and 8b; that is to avoid re-encoding the
data. Once the bit planes are correctly decoded, Block 8d
makes an inversion of the transform applied by Block 3a,
and the decoded video frames are obtained by conveniently
multiplexing the decoded KF and the WZ frames.
4.2 Accuracy of the model proposed for the bit planes
We investigate on the distributions of the coded bit planes by
assessing off line their Bernoulli distributions. We show in
Fig. 5 the probability of 1’s in some WZ bit planes from the
three 15Hz QCIF video sequences Hall monitor, Foreman,
Soccer.

Figure 5: Probability of 1’s in the bit planes taken individually. The WZ
bit planes of the three video sequences are non-uniformly distributed, which
justifies the model adopted for their decoding.

The results on Fig. 5 confirm that the bit planes are non-
uniformly distributed, besides their distribution varies from
bit plane to bit plane. This justifies that the non-uniform
modeling is a better model than the uniform one, and that we
have to estimate the parameter of each bit plane separately.
Comforted by the huge non-uniformity of the bit planes, we
address the problem of adapting the SW decoder so as to take
into account their non-uniformity. The channel between the
correlated bit planes is modeled as Laplacian; we use the soft
information from Block 6 to initialize the intrinsic of the pro-
posed LDPC decoder (section 3.1.1).
4.3 Experimental results
We place the proposed LDPC decoder in Block 8a. The re-
sults presented in Fig. 6 and Fig. 7 are obtained for all the WZ
frames of the video sequences Hall monitor, Foreman, Soc-
cer, with a GOP length of 2. Key frames are encoded with
H.264/AVC Intra (main profile), and the quantization param-
eters for each point are chosen so that the average quality
(PSNR) of the WZ frames is similar to the quality of the KF.
All rate and distortion results refer only to the luminance.
The proposed SW decoder that uses the non-uniformity is
compared to the standard DISCOVER’s SW decoder.
The channel is assumed to be additive

First, we assume that the Laplacian channel is additive,
and we take into account the non-uniformity for the decoding
of all the bit planes. The results are presented in Fig. 6

The rate gain occurs only for the sequence Soccer at
the highest PSNR, it is 1.88kbps (−0.65%). This low rate
gain contrasts with the huge non-uniformity of the bit planes



Figure 4: The DISCOVER codec: a rate adaptive decoding is performed, using punctured accumulated LDPC codes.

Figure 6: Over an additive channel, the proposed decoder is sometimes
worse than the standard one to render the videos at the same PSNR.

(Fig. 5). In view of these results, we admit that the channel
modeling the correlation between the bit planes is not always
additive and has to be estimated by the decoder.
The channel is unknown and assessed by the decoder

As the correlation model between the WZ and SI frames
is sometimes predictive and sometimes additive, we first per-
form the decoding of each WZ bit plane with the predic-
tive assumption. If this decoding process fails (the criteria
used are presented in section 3.1.5), then we perform a new
decoding with the additive assumption to exploit the non-
uniformity. Our criterion to chose between the predictive and
the additive model is the decoding failure under the predic-
tive assumption, while the decoding under additive assump-
tion is successful. The results are shown in Fig. 7.

Figure 7: The proposed decoder that exploits the non-uniformity, while
assessing the type of channel, needs less rate than the standard one.

Our decoder improves the rate of the WZ frames in an
interesting amount; the decrease is 0.94kbps (−1%) for the
sequence Hall monitor at the highest PSNR; it is 5.88kbps
(−2.68%) for Foreman; and 16.57kbps (−5.7%) for Soc-
cer. That decrease proves that it is worth taking into account
the non-uniformity of the bit planes, as long as the channel
model is additive.

5. CONCLUSION
We have proposed a novel predictive channel for the model-
ing of the correlation between two distributed sources. We
have shown that the achievable compression rate increases
with the non-uniformity when the channel is additive; when
the channel is predictive, there is no rate gain exploiting
the non-uniformity. These theoretical results were verified
with synthetic sources. The predictive channel better de-
scribes the behavior of the noise that is observed between
the non-uniform WZ and SI bit planes produced by a dis-
tributed video codec. To handle the non-uniformity and the
two channel models, we have proposed an adapted asymmet-
ric SW decoder using LDPC codes. The Bernoulli parame-
ter of the source is estimated iteratively at the decoder, along
with the decoding. The decoder was finally incorporated into
the video codec, exploiting the non-uniformity of the WZ bit
planes and the correlation models. We presented results that
prove the efficiency of the proposed SW decoder, in terms of
improving its PSNR versus rate performance.
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