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ABSTRACT
A new lossy compression scheme for distributed and
sparse sources under a low complexity encoding con-
straint is proposed. This architecture is able to exploit
both intra- and inter-signal correlations typical of sig-
nals monitored, for example, by a wireless sensor net-
work. In order to meet the low complexity constraint,
the encoding stage is performed by a lossy distributed
compressed sensing (CS) algorithm. The novelty of the
scheme consists in the combination of lossy distributed
source coding (DSC) and CS. More precisely, we pro-
pose a joint CS reconstruction filter, which exploits the
knowledge of the side information to improve the qual-
ity of both the dequantization and the CS reconstruction
steps. The joint use of CS and DSC allows to achieve
large bit-rate savings for the same quality with respect
to the non-distributed CS scheme, e.g. up to 1.2 bps
in the cases considered in this paper. Compared to the
DSC scheme (without CS), we observe a gain increasing
with the rate for the same mean square error.

1. INTRODUCTION

Lossy compression of sparse but distributed sources con-
sists in finding a cost constrained representation of in-
herently sparse sources by exploiting their inter- but also
intra-correlation, when the communication between the
sources is not possible. This problem naturally arises
in wireless sensor networks. Indeed, nodes of a sensor
network may acquire temperature readings over time.
The temperature may vary slowly over time, and hence
consecutive readings have similar values. However, they
also have inter-sensor correlation, as the sensors may be
in the same room, in which the temperature is rather
uniform. The question hence arises of how to exploit
intra- and inter-sensor correlations without communi-
cation between the sensors and with a low complexity
acquisition process in order to save energy consumption
at the sensor. Therefore, we consider continuous, corre-
lated, distributed and sparse (in some domain) sources
and perform lossy universal compression under a low
encoding complexity constraint.

Compressed sensing (CS) [1, 2] has recently emerged
as an efficient technique for sampling a signal with fewer
coefficients than classic Shannon/Nyquist theory. The
hypothesis underlying this approach is that the signal
to be sampled is sparse or at least “compressible”, i.e.,
it must have a sparse representation in a convenient ba-
sis. In CS, sampling is performed by taking a num-
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ber of projections of the signal onto pseudorandom se-
quences. Therefore, the acquisition presents appealing
properties such as: low encoding complexity, since the
basis in which the signal is sparse does not need to be
computed, and universality, since the sensing is blind to
the source distribution.

The universality1 property makes CS well suited for
the compression of distributed and correlated sources,
since the same measurement matrix can be used for all
sources and the inter-correlation is maintained. There-
fore, distributed CS (DCS) was proposed in [3]. In that
paper, it was shown that a distributed system based on
CS could save up to 30% of measurements with respect
to separate CS encoding/decoding of each source. How-
ever, CS [1, 2] and DCS [3] are mainly concerned with
the performance of perfect reconstruction, and do not
consider the representation/coding problem in a rate-
distortion framework, particularly regarding the rate
necessary to encode the measurements.

Recently, [4, 5] considered the cost of encoding the
random measurements for single sources. More pre-
cisely, rate distortion analysis was performed and it was
shown that adaptive encoding (that takes into account
the source distribution and is therefore complex) out-
performs scalar quantization of random measurements.
However, in the distributed context, adaptive encoding
may loose the inter-correlation between the sources since
it is adapted to the distribution of each single source
or even the realization of each source (KLT or Bur-
rows Wheeler Transform). Instead, DCS has the natural
property to maintain it.

For this reason, we propose to construct a quantized
distributed CS architecture. The design implies to op-
timize the joint reconstruction filter. The main idea is
to exploit the knowledge of Side Information (SI) not
only as a way to reduce the encoding rate, but also as
an instrument to improve the reconstruction quality. In
particular, we exploit knowledge of SI to improve the ac-
curacy of the dequantized signal, improving the method
in [6] through clipping of the reconstructed value within
the quantization interval. Moreover, we propose two
practical algorithms to estimate the common compo-
nent between the unknown source and the SI, in order
to help the CS reconstruction allowing the transmission
of fewer measurement samples.

The construction of optimal quantizers for sparse
sources has been addressed in [7] and the rate-distortion
behaviour of sparse memoryless sources was described in
[8]. In both papers, authors give hints about the appli-
cation of the methods they propose to a DCS scenario,

1We stress here that with the term universality we refer to the
fact that the transmitter is blind to the source distribution.



but they consider either the case where the sources are
observed in the domain where they are sparse or they
consider non sparse sources with sparse difference. In-
stead we consider here the more general case of a source
not observed in its sparsity basis, with non sparse dif-
ference.

On the other hand, the authors of [9] propose a
method to exploit the knowledge of a SI at the decoder
to recover sparse signals. In that case, the SI consists
in the (even approximate) knowledge of the position
of nonzero components. This information is used to
reduce the computational complexity of the Orthogonal
Matching Pursuit algorithm for the recovery of the
sparse signal. Instead, the SI we use is a sparse signal
correlated to the unknown source through a common
component. Therefore it contains information about
the position of nonzero components but also about the
coefficients and is used in the CS reconstruction step
(estimation of the common part between the unknown
source and the SI) and in the dequantizer.

2. BACKGROUND

2.1 Compressed sensing

In the standard CS framework, introduced in [2], a signal
x ∈ RN×1 which has a sparse representation in some
basis Ψ ∈ RN×N , i.e:

x = Ψθ, ‖θ‖`0 = K, K � N

can be recovered by a smaller vector y ∈ RM×1, K <
M < N , of linear measurements y = Φx, where Φ ∈
RM×N is the sensing matrix. The optimum solution,
requiring at least M = K + 1 measurements, would be

θ̂ = arg min
θ
‖θ‖`0 s.t. ΦΨθ = y .

Since the `0 norm minimization is a NP-hard problem,
one can resort to a linear programming reconstruction
by minimizing the `1 norm

θ̂ = arg min
θ
‖θ‖`1 s.t. ΦΨθ = y ,

provided that M is large enough (∼ K log(N/K)).
When the measurements are noisy, like in the case of

quantized data which are subject to quantization noise,
the `1 minimization with relaxed constraints is used for
reconstruction:

θ̂ = arg min
θ
‖θ‖`1 s.t. ‖ΦΨθ − y‖`2 < ε , (1)

where ε bounds the amount of noise in the data.
Extracting the elements of Φ at random from a
Rademacher distribution (i.e., ±1 with the same proba-
bility) allows a correct reconstruction with overwhelm-
ing probability.

2.2 Distributed source coding

Distributed source coding (DSC) refers to the problem
of compressing correlated sources without cooperation
at their encoders. In our scheme, DSC applies after
the CS module that spreads the intra-correlation of the
sources among measurement samples y. Therefore, we
assume that the sources compressed with DSC are i.i.d.

In the lossless case, Slepian and Wolf [10] showed
that the separate encoding of two i.i.d. sources, say Y1

and Y2, does not incur any loss relative to joint encod-
ing (in terms of compression sum rate R1+R2) provided
decoding is performed jointly. In the asymmetric setup,
one source (Y2 for instance) is compressed at its entropy
H(Y2) and is hence available at the decoder; the other
source (Y1) is compressed at its conditional entropy and
can be recovered exploiting Y2 as a “side-information”.
This problem is also referred to as source coding with
SI at the decoder. It has been shown that this problem
can be optimally solved by using channel codes matched
to the channel that models the correlation between the
source and the SI. This setup has been extended to lossy
compression of general sources by Wyner and Ziv (WZ)
[11], where it is shown that separate encoding incurs
a loss relative to joint encoding except for some distri-
butions (Gaussian sources, or more generally Gaussian
correlation noise); practical WZ solutions compress and
decompress the data relying on an inner SW codec and
an outer quantization plus reconstruction filter.

3. PROPOSED ALGORITHM

The problem we wish to solve is the following. In a WZ
setting, we want to encode continuous jointly sparse and
correlated sources, achieving the smallest distortion for
a given rate. We assume that the encoding stage must
have low complexity, hence either CS is used to take
advantage of intra-sensor correlations because of its low
complexity with respect to transform coding, or the sys-
tem employs a CS camera that directly outputs the lin-
ear measurements. In the latter case, measurements can
be quantized in order to meet a rate (or distortion) con-
straint. However, in the former case, a new degree of
freedom is introduced since the quantizer can be placed
either before or after the sensing module. This issue
is discussed in the following. The main ingredients of
the proposed solution are a CS stage to exploit spar-
sity, reducing the signal length from N to M , coupled
with a WZ stage to exploit inter-sensor correlation, i.e.
a scalar quantizer with joint reconstruction to set the
desired degree of distortion, a SW codebook to achieve
minimum rate, and a joint CS reconstruction stage.

3.1 Jointly sparse source model

Let source signals x1 and x2 be acquired by the system.
We assume that x1 and x2 follow the JSM-1 model [3].
According to this model, a set of J sparse correlated
signals xj ∈ RN×1, j = 1, . . . , J is modeled as the sum
xj = xC + xI,j of two sparse components: i) a common
component xC, which is shared by all signals, and ii) an
innovation component xI,j , which is unique to each sig-
nal xj . Both xC and xI,j are sparse in some domain rep-
resented by the orthonormal basis matrix Ψ ∈ RN×N ,
namely: xC = ΨθC and xI,j = ΨθI,j , with ‖θC‖`0 = KC,

‖θI,j‖`0 = Kj and KC,Kj � N . This model is a good
fit for signals acquired by a group of sensors monitor-
ing the same physical event in different points of space,
where local factors can affect the innovation component
of a more global behavior taken into account by the
common component. With respect to the original JSM-
1 scheme described before, we introduce a parameter
α to modulate the correlation between the sources, i.e.
x1 = xC + αxI,1 and x2 = xC + αxI,2.
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Figure 1: Block diagrams of M+Q and Q+M systems and of the Joint Reconstruction stage

3.2 Quantization and coding

When the data are first acquired through a conventional
process and then sensed through linear random mea-
surements, the quantizer can either be placed before or
after the sensing module. In the single source case, it is
known that CS is robust to quantization noise [4]. Here
we raise the problem of the optimal position of the quan-
tizer vs the CS module in the context of separate encod-
ing of distributed sources. To answer this question, we
define and compare two different schemes for encoding
jointly sparse and correlated sources. They are depicted
in fig. 1. In the first scheme (fig. 1(a)), denoted M+Q,
first linear measurements of the sources are taken with
a Gaussian Φ matrix such that (Φ)mn ∼ N

(
0, 1

M

)
to

obtain y1 and y2. Then, the measurements are quan-
tized with a scalar uniform quantizer and coded using
a SW coder. In the second scheme (fig. 1(b)), denoted
Q+M, the sources are first quantized with a scalar uni-
form quantizer having step size ∆. After quantization,
we take the linear measurements with a random i.i.d.
integer Φ matrix with Rademacher distributed entries
(Pr ((Φ)mn = ±1) = 0.5), yielding a measurements vec-
tors yq,1,yq,2 composed by integer elements, which are
encoded in a lossless way by the SW encoder. It should
be noted that, since x1 and x2 are correlated sample by
sample, their linear measurements are still correlated if
we use the same sensing matrix Φ for either sources,
justifying the use of a SW coder.

3.3 Slepian-Wolf coding

In both systems, after the quantization/measurement
stage, a SW zero-error co/decoding stage follows. Let
yb,1 and yb,2 denote the Nb-long binary versions of yq,1
and yq,2 respectively. Let H be the parity-check ma-
trix representing a Kb/Nb rate channel code, of size
(Nb −Kb)×Nb. yb,1 is compressed by sending its syn-
drome s1 = H·yb,1, of size (Nb−Kb), to the decoder; the
side-information yb,2 is exploited at the decoder using

the modified Belief Propagation algorithm presented in
[12] to find the best estimate ŷb,1, as the closest sequence
to yb,2 with syndrome s1. Here, we use rate-adaptive ac-
cumulated LDPC codes that have been proved to per-
form close to the SW bound [13], and allow to achieve
zero-error coding through rate adaptation.

3.4 Reconstruction

Finally, reconstruction is performed in order to obtain
an estimate of the unknown source x̂1. The performance
of the reconstruction stage can be improved exploiting
knowledge of the SI at the decoder, for both dequantiza-
tion and CS reconstruction. In this section, for simplic-
ity we will refer to the scenario of “coding with SI”, or
“asymmetric” coding, in which x1 has to be communi-
cated, and x2 is known at the receiver. We describe the
implementation for the M+Q scheme, but the extension
to Q+M is straightforward.

3.4.1 Joint Dequantization

The first improvement is given by joint signal dequan-
tization. Under the classical Gaussian additive correla-
tion noise model, i.e. y1 and y2 are Gaussian, and their
difference is independent from y2, we derive the optimal
joint dequantizer

ŷ1 = y2 +

√
2

π
σ

e
(a−y2)2

2σ2 − e
(b−y2)2

2σ2

erf
(
b−y2√

2σ

)
− erf

(
a−y2√

2σ

) , (2)

where y1 is an element of y1 and y2 is the corresponding
element in y2. σ is the variance of y1−y2, a = ŷq,1−∆/2
and b = ŷq,1 + ∆/2.

However, in the JSM-1 model y1 − y2 is not inde-
pendent from either y1 or y2. Since (2) is not optimal
under JSM-1, we resort to a suboptimal more robust
estimator. In [6], the output of the inverse quantizer is

obtained as ŷ1 =
σ2
q

σ2
q+σ

2 y2 + σ2

σ2
q+σ

2 ŷq,1. The scheme we

use is an improved version in which ŷ1 is clipped within
the interval [a, b] when it happens to lie outside of it.



3.4.2 Joint Reconstruction

The second improvement regards CS reconstruction. In
particular, the idea is to estimate the sparsity support

of the common component θC, i.e. the set Θ̂C of the
positions of its nonzero coefficients. This estimation al-
lows us to improve CS reconstruction, since we further
sparsify the vector to be reconstructed, and hence re-
quire less measurements to successfully reconstruct the
signal (or, equivalently, improve the quality of the re-
construction given the same number of measurements).
In particular, we subtract from yq,1 the “measurements
common component” yC = ΦxC; the resulting measure-
ments vector only contains the innovation component of
the source xI,1, which is sparser than x1 and requires
fewer measurements to be recovered. After recovering
the unique component, we re-add the estimated common
component to obtain the final estimate of x1. The entire
process is depicted in the block diagram of fig. 1(c).

We propose two algorithms to estimate Θ̂C. Both
take as inputs the set of nonzero elements of θ2 = ΨTx2,
and initially perform non-joint reconstruction to obtain
an initial estimate x̂1 using (1). This is used to compute

θ̂1 = ΨTx̂1. The output is the set Θ̂C of positions of the
nonzero elements of θC. In short, Algorithm 1 estimates
the intersection of the positions of the significant com-
ponents of both sources; algorithm 2 sorts by decreasing
magnitude the nonzero elements of the estimated source,
and then compares them to the SI coefficients.

Algorithm 1 Intersect algorithm

Require: ΘNZ,2 = {i|(θ2)i 6= 0}, θ̂1, t

Ensure: Θ̂C = {i|(θC)i 6= 0}
1: Θ̂NZ,1 ← {i|

∣∣∣(θ̂1)i

∣∣∣ > t}

2: Θ̂C ← Θ̂NZ,1 ∩ΘNZ,2

3: return Θ̂C

Algorithm 2 Sorting algorithm

Require: ΘNZ,2 = {i|(θ2)i 6= 0}, θ̂1, KC

Ensure: Θ̂C = {i|(θC)i 6= 0}
1: Θ̂C ← ∅
2: for i = maxi

∣∣∣(θ̂1)i

∣∣∣ to mini

∣∣∣(θ̂1)i

∣∣∣ do

3: if i ∈ ΘNZ,2 then

4: Θ̂C ← Θ̂C ∪ i
5: if

∣∣∣Θ̂C

∣∣∣ = KC then

6: break
7: end if
8: end if
9: end for

10: return Θ̂C

4. NUMERICAL RESULTS

In this section, we assess the rate-distortion perfor-
mance of the proposed scheme. The rate is measured
in bits per original source symbol, as output by the
zero-error SW encoder. Sources x1 and x2 are gen-
erated according to JSM-1 model described in sec-
tion 3.1. They have N = 512 samples, and we take

α = {100, 10−1, 10−2, 10−3} and KC,K1,K2 = 8. Ψ is
the DCT matrix of length N . The quantization step
for Q+M is ∆ = {0.1, 0.01, 0.001}, and for M+Q it is

∆ =
√

N
M {0.1, 0.01, 0.001}, in order to obtain compara-

ble rates. The measurement vector has M = 64, 128, 256
entries. For the SW code, L = 66, Nb = 1584, and Kb

varies from 24 to 1584.

4.1 Comparison between Q+M and M+Q

Fig. 2 shows the rate-distortion performance of the
Q+M and M+Q systems, for α = 10−2. It can be no-
ticed that the best performance is achieved by the M+Q
system with M = 128, while for M = 64 the decoder
has not enough measurements to properly reconstruct
the signal. The Q+M system with M = 128 shows a
penalty of 0.85 bit per source symbol. This can be in-
terpreted by the fact that: i) in the scheme Q+M the
quantized signal may not be sparse (not sparse at all
or not sparse in the same basis as the original signal).
Therefore, this scheme performs poorly. ii) the scheme
M+Q performs good which shows that even in the dis-
tributed context, CS is robust to quantization noise.

4.2 Penalty of practical vs. optimal Slepian-
Wolf encoder

Moreover, fig. 2 shows the penalty of the Slepian-Wolf
encoder previously described with respect to the con-
ditional entropy H(yq,1|yq,2), which bounds its perfor-
mance. The penalty is about 0.15 bit per source symbol,
which is pretty close to the performance of the code
shown in [14], although this latter is not a zero-error
coder.

4.3 Gain of proposed DCS scheme vs. DSC (no
CS) and non-distributed CS

In addition, we can read from fig. 2 the gain we obtain
singularly by the CS and DSC blocks. Without CS, the
rate-distortion curve would be the one depicted in the
curve labeled as “No CS”, with a penalty increasing with
the rate. On the other hand, to evaluate the advantage
obtained using DSC, we compare the entropy H(yq,1)
with the conditional entropy H(yq,1|yq,2) and see that
joint encoding yields a gain of 1.18 bit per source sample.

4.4 Conjecture about the optimal number of
measurements
Finally, we conjecture that the best RD performance is
independent of the number of measurement. The op-
timal number of measurements would be the one guar-
anteeing (close-to-)perfect reconstruction. More than
this, additional measurements would not yield any im-
provement. Less than this, the reconstruction distor-
tion would likely dominate over the quantizer distortion.
Hence, all the distortion can be optimally tuned at the
quantizer only and this should yield a predictable degree
of reconstruction distortion.

4.5 Joint Reconstruction

Fig. 3 shows the rate-distortion performance of the
reconstruction algorithms proposed in section 3.4 for
M = 64, 128 for the M+Q scheme. Curves labeled
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with IDR refer to independent dequantization and re-
construction, i.e., the curves in Fig. 2 . JD labels curves
referring to joint dequantization. JD+JR refers to joint
dequantization and joint reconstruction. Both the pro-
posed Joint Reconstrution algorithms are tested. Ideal
refers to the performance of a joint reconstruction know-
ing in advance the positions of the nonzero components
of θC.

It can be noticed that the joint reconstruction pro-
vides the most significant gain. With M = 64, it is now
possible to reconstruct the source, significantly outper-
forming M = 128. Moreover, the proposed algorithms
for the estimation of the common component perform
very close to each other and show a slight penalty with
respect to the ideal case.

5. DISCUSSION AND CONCLUSIONS
In this paper, we have proposed a system for lossy com-
pression of intra- and inter-correlated sources in appli-
cation scenarios such as sensor networks. It is based on
the joint use of CS to capture memory of a signal, and
DSC to take advantage of inter-sensor correlations. The
proposed system has satisfactory rate-distortion perfor-
mance in comparison with a system that does not em-

ploy CS but only DSC, showing that linear measure-
ments represent a viable, universal2 and low-complexity
signal representation.

First, we showed that the resilience of CS to quanti-
zation error also holds in the distributed setup. More-
over, the optimal number of measurements can be cho-
sen as the one guaranteeing (close-to-)perfect recon-
struction. In addition, using joint decoding, dequan-
tization and reconstruction techniques allows to boost
performance even further, making the proposed scheme
an attractive choice for environments such as sensor net-
works, in which the devices performing acquisition and
processing are severely constrained in terms of energy
and computations.
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