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Source Coding with
Side Information at the Decoder and

Uncertain Knowledge of the Correlation
Elsa Dupraz, Aline Roumy, and Michel Kieffer

Abstract—This paper considers the problem of lossless source
coding with side information at the decoder, when the correlation
model between the source and the side information is uncertain.
Four parametrized models representing the correlation between
the source and the side information are introduced. The uncer-
tainty on the correlation appears through the lack of knowledge
on the value of the parameters.

For each model, we propose a practical coding scheme based
on non-binary Low Density Parity Check Codes and able to deal
with the parameter uncertainty. At the encoder, the choice of the
coding rate results from an information theoretical analysis. Then
we propose decoding algorithms that jointly estimate the source
vector and the parameters. As the proposed decoder is based on
the Expectation-Maximization algorithm, which is very sensitive
to initialization, we also propose a method to produce first a
coarse estimate of the parameters.

Index Terms—Source coding with side information, non-binary
LDPC codes, Expectation-Maximization algorithm.

I. INTRODUCTION

THE problem of lossless source coding with side informa-
tion at the decoder has been well investigated when the

correlation model between the source X and the side infor-
mation (SI) Y is perfectly known. Slepian and Wolf showed
that this case induces no loss in performance compared to the
conditional setup, i.e., the setup where the side information
is also known at the encoder [43]. Following this principle,
several works, see, e.g., [38], [45], [54], propose practical
coding schemes for the Slepian-Wolf (SW) problem. Most of
them are based on channel codes [46], and particularly Low
Density Parity Check (LDPC) codes [32], [34]. This approach
allows to leverage on many results on LDPC codes for the
code construction and optimization [30], [40] even if there is
a need to adapt the developed algorithms to the case of SW
coding [7].

Nonetheless, most of these works assume perfect knowledge
of the joint distribution P (X,Y ). In [28], it is shown that
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the performance of the SW coding scheme remains the same
if P (X) is unknown. Here we consider the case where
the characteristics of the correlation channel P (Y |X) are
uncertain because they are in general more difficult to obtain in
practical situations. In this way, [42] considers the case where
P (Y |X) is given to the decoder but not perfectly known at the
encoder. Here we assume that P (Y |X) is uncertain at both
the encoder and the decoder. A usual solution to address this
problem is to use a feedback channel [1], [17], [51], or to
allow interactions between the encoder and the decoder [55].
The advantage of the feedback channel is that the rate is
adapted to the true characteristics of the source. However,
a feedback channel can be difficult to implement in many
practical situations such as sensor networks. Moreover, the
feedback channel is in general used by the decoder to ask for
additional packets to the encoder or to stop the transmission.
Each time a new packet is received, the decoder processes
again all the received packets to try to reconstruct the source.
This can result in huge decoding delays.

When no feedback is allowed, several practical solutions
based on LDPC codes and proposed for channel coding
may be adapted to the SW problem. When hard decoding
is performed, as proposed in [31], [39] for channel coding,
only symbol values are used, at the price of an important
loss in performance. An alternative solution is the min-sum
decoding algorithm proposed in [6], [41] for channel coding,
respectively for binary and non-binary sources. The min-sum
algorithm uses soft information for decoding, but does not
require the knowledge of the correlation channel. However, in
SW coding, if the source X is not distributed uniformly, the
min-sum equations cannot be derived.

In many applications, it is possible to restrict the correlation
channel model to a given class (e.g., binary symmetric, Gaus-
sian, etc.) due to the nature of the problem. Consequently, in
this paper, we introduce four correlation channel models. Each
model assumes that the correlation channel belongs to a given
class and is parametrized by some unknown parameter vector.
For two of the models, the correlation channel between source
symbols (Xn, Yn) is parametrized by an unknown parameter
vector πn, varying from symbol to symbol. One of these
two models assumes the knowledge of a prior distribution
PΠ(πn) for πn. The case where no prior on πn is known
corresponds to arbitrarily varying sources [2], [4]. For the
two other models, the correlation channel is parametrized
by an unknown parameter vector θ, fixed for the sequence
{(Xn, Yn)}+∞

n=1 but allowed to vary from sequence to se-
quence. This corresponds to universal source coding [21]. The
distinction between the two models is also in the knowledge
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of a prior for θ. The distinction between varying parameters
πn and a fixed parameter θ has been proposed earlier in [37]
in the case of channel coding.

The coding scheme we propose is based on non-binary
LDPC codes and assumes additive correlation channel. Hard
and min-sum LDPC decoding are not able to exploit the
knowledge of the structure of the class. Therefore, the sum-
product LDPC decoding algorithm is considered. From an
analysis of the performance bounds, we explain for each model
how to choose the coding rate and the LDPC coding matrix.
Then, we show that the classical sum-product LDPC decoding
algorithm can be used for only one model. For the three other
models, we propose a decoding algorithm that jointly estimates
the source vector and the parameters. As the method is based
on the EM (Expectation Maximization) algorithm [25], which
is very sensitive to initialization, we also propose a method to
obtain first coarse estimates of the values of the parameters.

The paper is organized as follows. Section II presents the
related works. In Section III, the four signal models we
consider are described formally. Section IV explains how
to choose the coding rates and to design the LDPC coding
matrices. Section V proposes a decoding method adapted to
each model. Finally, Section VI presents simulation results.

II. RELATED WORKS

In Slepian-Wolf coding, the issue of estimating jointly the
correlation parameters and the LDPC encoded source vector
was addressed in [8], [10], [18], [49], [48], [50], [56]. All
the papers consider the case of a Binary Symmetric Channel
(BSC) which is an additive model. In [48], [49], the probability
transition of the BSC is known, but the source distribution
is unknown. On the contrary, in [8], [10], [50], [56], the
source distribution is known but the probability transition is
unknown. Some of these works, e.g., [50], [56], assume that
the probability transition is fixed for the whole source vector.
In this case, the joint estimation is performed with an EM
algorithm. The other works [8], [10], [18], allow the parameter
to vary by blocs of fixed length inside the source vector.
The parameter estimation can then be realized with Particle
Filtering [8], Expected Propagation [10], or Sliding-Window
Belief Propagation [18]. However, as pointed out in [10],
Particle Filtering is an MCMC based method and induces an
important decoding complexity. On the other hand, the two
other methods are less complex but require the knowledge
of a prior distribution for the parameters. Furthermore, this
prior distribution is required to be conjugate exponential for
computational reasons.

The parameter estimation was also discussed in the area of
Distributed Video Coding (DVC) [5], [27], [35], [44], [52],
[53]. Indeed, in DVC, the lossless part of the transmission is
realized with a SW chain based on binary LDPC codes. The
correlation channel is assumed to be additive, with Gaussian
noise [44], or Laplacian noise [5], [35], [52], [53], for more
accuracy. In both cases, the unknown parameter is the noise
variance. Due to the particular Gaussian or Laplacian additive
model, it is possible to realize the parameter estimation
from the side information only [5], [27], [35]. Otherwise,
for more accuracy, the estimation can be done with an EM
algorithm [52], or with particle filtering [44], [53], with the
same remarks as for SW coding. Moreover, in DVC the non-
binary source symbols (the pixels or the DCT coefficients)

are transformed into bits and transmitted independently by bit
planes with binary LDPC codes. Consequently, the decoding
algorithm has to take the dependencies between bit planes
into account, as proposed in [44], [52], [53], at the price of a
complexity increase.

In this paper, we focus on the SW coding aspects for
discrete source and side information symbols. The correla-
tion model is assumed to be additive. However, unlike the
previously mentioned works, we consider non-binary source
symbols and non-binary LDPC codes. From arguments given
in introduction, the source distribution P (X) does not depend
on the unknown parameters. The choice of the parameters can
be either deterministic or random, with respect to any kind of
prior distribution. For the two models with fixed parameters,
the EM algorithm is considered, as previously suggested. We
derive the EM equations for our case, and propose a method
to initialize the EM algorithm properly. On the other hand, we
consider the case where the parameters may vary from symbol
to symbol. We explain how to perform the decoding despite
this possible important variability.

III. SIGNAL MODEL

The source X to be compressed and the SI Y available
at the decoder produce sequences of symbols {Xn}+∞

n=1 and
{Yn}+∞

n=1, respectively. X and Y denote the source and SI
discrete alphabets. Bold upper case letters, e.g., XN

1 =
{Xn}Nn=1, denote random vectors, whereas bold lower case
letters, xN

1 = {xn}Nn=1, represent their realizations. When it
is clear from the context that the distribution of a random
variable Xn does not depend on n, the index n is omitted.

The goal of this section is to model the uncertainty on
the correlation channel P (Y |X). Each of the four proposed
models consists of a family of parametric distributions1. In
every case, the source distribution P (X) is assumed perfectly
known and does not depend on the uncertain parameters. The
first two models allow parameter variations from symbol to
symbol.

Definition 1. (DP-Source). A Dynamic with Prior source
(X,Y ), or DP-Source, produces a sequence of independent
symbols {(Xn, Yn)}+∞

n=1 drawn ∀n from P (Xn, Yn) that be-
longs to a family of distributions {P (X,Y |Π = π) =
P (X)P (Y |X,Π = π)}π∈PD parametrized by a random
vector Πn. The {Πn}+∞

n=1 are i.i.d. with distribution P (Π)
and take their values in a discrete set PD. The source symbols
Xn and Yn take their values in the discrete sets X and Y ,
respectively.

The DP-Source, completely determined by PD, P (Π), and
{P (X,Y |Π = π)}π∈PD , is stationary and ergodic, see [20,
Section 3.5].

Definition 2. (DwP-Source). A Dynamic without Prior source
(X,Y ), or DwP-Source, produces a sequence of indepen-
dent symbols {(Xn, Yn)}+∞

n=1 drawn ∀n from P (Xn, Yn)
that belongs to a family of distributions {P (X,Y |π) =
P (X)P (Y |X,π)}π∈PD parametrized by a vector πn. Each

1The four models defined in this section were also introduced with different
names in two papers [12], [15], of the same authors. M-Source was for DP-
Source, WPM-Source for DwP-Source, P-Source for SP-Source, WP-Source
for SwP-Source. The names were changed for the sake of clarity.
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πn takes its values in a discrete set PD. The source symbols
Xn and Yn take their values in the discrete sets X and Y ,
respectively.

The DwP-Source, determined by PD and
{P (X,Y |π)}π∈PD , is non-stationary and non-ergodic [20,
Section 3.5]. The only difference between the DP- and
DwP-Sources lies in the definition of the parameters πn. In
the DwP-Source, no distribution for πn is specified, either
because its distribution is not known or because πn is not
modeled as a random variable.

The following models consider a time-invariant parameter
vector.

Definition 3. (SP-Source) A Static with Prior source (X,Y )
(SP-Source) produces a sequence of independent symbols
{(Xn, Yn)}+∞

n=1 drawn from a distribution belonging to a
family {P (X,Y |Θ = θ) = P (X)P (Y |X,Θ = θ)}θ∈PS

parametrized by a random vector Θ. The random vector Θ,
with distribution PΘ(θ), takes its value in a set PS that is
either discrete or continuous. The source symbols X and Y
take their values in the discrete sets X and Y , respectively.
Moreover, the realization of the parameter θ is fixed for the
sequence {(Xn, Yn)}+∞

n=1.

The SP-source, determined by PS, PΘ(θ), and
{P (X,Y |Θ = θ)}θ∈PS , is stationary but non-ergodic
[20, Section 3.5].

Definition 4. (SwP-Source). A Static without Prior source
(X,Y ) (SwP-Source) produces a sequence of independent
symbols {(Xn, Yn)}+∞

n=1 drawn from a distribution belong-
ing to a family {P (X,Y |θ) = P (X)P (Y |X, θ)}θ∈PS

parametrized by a vector θ. The vector θ takes its value in
a set PS that is either discrete or continuous. The source
symbols X and Y take their values in the discrete sets X and
Y , respectively. Moreover, the parameter θ is fixed for the
sequence {(Xn, Yn)}+∞

n=1.

The SwP-source, completely determined by PS and
{P (X,Y |θ)}θ∈PS , is stationary but non-ergodic [20, Section
3.5]. The only difference between the SP- and SwP-Sources
lies in the definition of θ (no distribution for θ is specified in
the SwP-Model). Note that both the encoder and the decoder
are aware of the model characteristics given in Definitions 1
to 4.

In the SW setup, the infimum of achievable rates for our
models are given by

1) for the DP-Source [43],

R = H(X |Y ) (1)

where H(X |Y ) is calculated from P (X = x|Y = y) =∑
π∈PD

P (π)P (X = x|, Y = y, π).
2) for the DwP-Source [2],

R = sup
P (X,Y )∈Conv({P (X,Y |π)}π∈PD)

H(X |Y ) (2)

where Conv({P (X,Y |π)}π∈PD) is the convex hull of
the elements of {P (X,Y |π)}π∈PD ,

3) for the SP-Source [24, Theorem 7.3.4],

R = PΘ-ess. supH(X |Y,Θ = θ), (3)

where PΘ-ess. sup is the essential sup (the sup on the
support of the distribution) with respect to the prior
distribution PΘ,

4) for the SwP-Source [9],

R = sup
θ∈PS

H(X |Y, θ) . (4)

We see that for the DwP-Model, the SP-Model, and the SwP-
Model, the infimum of achievable rates are given by worst
cases defined on the set of values the parameters may take
(SP- and SwP-Models), or on the convex hull of this set of
values (DwP-Model).

The sets PS and PD may contain some elements inducing an
important rate. In this case, one should think of allowing some
outage event, i.e., the decoder may be authorized to fail for
a given proportion γ of the parameters. From this condition,
the failure set should be chosen carefully. In this case, the
infimum of achievable rates is simply the worst case rate over
the set of conserved parameters. Such an issue was discussed
in [14] (achievable rates) and in [12] (design of binary LDPC
codes) for the construction of sets of parameters satisfying the
outage condition. Here, however, we implicitly assume that
the sets PS and PD were already carefully designed, possibly
considering an outage constraint.

IV. ENCODING

The coding schemes we propose are based on LDPC codes
for SW coding. As suggested by [32], [34], LDPC codes
initially introduced for channel coding can also be used for
SW coding, after adaptation of the coding process and the
decoding algorithm. In channel coding, LDPC codes were
proposed for binary-input channels [19] and generalized to
non-binary input channels in [11]. The adaptation to the SW
setup is described in [32] for the binary case. In this paper, we
propose a generalization of this adaptation to the non-binary
case. This section describes the encoding part and introduces
the involved notations. Note that the encoding part is as in
the binary case, except that, now, the encoding operations
are performed in GF(q). There are more differences in the
decoding part.

We assume that the source symbols X are discrete and
belong to GF(q). The SW coding of a source vector x of length
N is performed by producing a vector s = HTx of length
M < N . The matrix H is sparse, with non-zero coefficients
uniformly distributed in GF(q)\{0}. In the following, ⊕, �,
⊗, � are the addition, subtraction, multiplication and division
operators in GF(q), see [33, Chapter 4]. In the bipartite
graph representing the dependencies between the random
variables of X and S, the entries of X are represented by
Variable Nodes (VN) and the entries of S are represented
by Check Nodes (CN). The set of CN connected to a VN
n is denoted N (n) and the set of VN connected to a CN
m is denoted N (m). The sparsity of H is determined by
the VN degree distribution λ(x) =

∑
i≥2 λix

i−1 and the CN
degree distribution ρ(x) =

∑
i≥2 ρix

i−1 with
∑

i≥2 λi = 1
and

∑
i≥2 ρi = 1. In SW coding, the rate r(λ, ρ) of a code is

given by r(λ, ρ) = M
N =

∑
i≥2 ρi/i

∑
i≥2 λi/i

.

In order to perform the encoding of a source vector X,
one needs to choose properly the coding rate and to design
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the LDPC coding matrix, i.e., to impose good degree dis-
tributions (λ(x), ρ(x)) [30], [39]. The performance analysis
of Section III suggests the following approach. For the DP-
Source, the LDPC coding matrix is designed for the known
distribution P (X |Y ). For the three other models, the LDPC
coding matrix is designed for the worst cases defined by (2)-
(4).

V. DECODING ALGORITHM

This section introduces LDPC-based decoding algorithms
capable of dealing with the uncertainty on the value of the
parameters of the models. For the DP-Source, the decoding
algorithm is the sum-product LDPC decoder adapted to SW
coding. For the other sources, the LDPC decoding algorithm
cannot be used directly because of the lack of knowledge
on the parameters. We thus propose to jointly estimate the
encoded source sequence XN

1 and the unknown parameters.
This joint estimation is performed with an EM algorithm [25].
A method producing a first coarse estimate of the parameters
is also presented to properly initialize the EM algorithm.

A. DP-Source: Standard LDPC decoding

In [32] the standard sum-product LDPC decoding algorithm
has been adapted to SW coding of binary sources with perfect
correlation channel knowledge. This section generalizes the
adaptation of the decoding algorithm to non-binary SW cod-
ing. Indeed, in the SW case, one needs to take into account
both the probability distribution of X and of the received
codeword s. For the DP-Source, the conditional distribution
is perfectly determined as

P (Xn = k|Yn = yn) =
∑
π∈PD

P (π)P (Xn = k|Yn = yn,π) .

(5)
The sum-product decoder performs an approximate Maxi-

mum A Posteriori (MAP) estimation of x from the received
codeword s and the observed side information y. The mes-
sages exchanged in the dependency graph are vectors of
length q. The initial messages for each VN n are denoted
m(0)(n, yn), with components

m
(0)
k (n, yn) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
, k = 0 . . . q − 1 .

(6)
The messages from CN to VN are computed with the help of a
particular Fourier Transform (FT), denoted F(m). Denoting r
the unit root associated to GF(q), the i-th component of the FT
is given by [30] as Fi(m) =

∑q−1
j=0 r

i⊗je−mj/
∑q−1

j=0 e
−mj .

At iteration �, the message m(�)(m,n, sm) from CN m to
VN n is

m(�)(m,n, sm) = A[sm]F−1

( ∏
n′∈N (m)\n

F
(
W

[
Hn′m

]
m(�−1)(n′,m, yn′)

))
(7)

where s̄m = �sm � Hn,m, Hn′m = �Hn′,m � Hn,m and
W [a] is the q × q matrix such that W [a]k,n = δ(a ⊗ n �
k), 0�k, n�q − 1, where δ(x) = 1 if x = 0, δ(x) = 0
otherwise. A[k] is a q×q matrix that maps a vector message m
into a vector message l = A[k]m with lj = mj⊕k−mk. Note

that A[k] does not appear in the channel coding version of the
algorithm and is specific to SW coding. The derivation of (7) is
shown in the appendix. At a VN n, a message m(�)(n,m, yi)
is sent to the CN m and an a posteriori message m̃(�)(n, yn)
is computed. They both satisfy

m(�)(n,m, yn) =
∑

m′∈N (n)\m
m(�)(m′, n, sm′) (8)

+m(0)(n, yn) ,

m̃(�)(n, yn) =
∑

m′∈N (n)

m(�)(m′, n, sm′) (9)

+m(0)(n, yn) .

From (9), each VN n produces an estimate x̂
(�)
n =

argmaxk m̃
(�)
k (n, yn) of xn. The algorithm ends if s =

HTx̂(�) or if � = Lmax, the maximum number of iterations.
When the conditional distribution P (Y |X) is uncertain, the

previously described decoding algorithm cannot be applied
directly, because the initial messages (6) cannot be evaluated
accurately.

B. SwP-Source: EM algorithm

We first consider the SwP-Source and then extend the pro-
posed algorithm to the cases of the DwP- and SP-Sources. For
the SwP-Source, one needs the actual value of the parameter
vector θ because the sum-product LDPC decoder requires the
knowledge of the conditional distribution P (X |Y ). The EM
algorithm is thus used to estimate jointly the source sequence
X and the parameter θ. A method to produce coarse estimates
of the parameters is also described.

1) Joint estimation of θ and x: The joint estimation of the
source vector x and of the parameter θ from the observed
vectors y and s is performed via the EM algorithm [25].
Knowing some estimate θ(�) obtained at iteration �, the EM
algorithm maximizes, with respect to θ,

Q(θ, θ(�)) = EX|y,s,θ(�) [logP (y|X, s, θ)] (10)

=
∑

x∈GF(q)n

P (x|y, s, θ(�)) logP (y|x, s, θ) (11)

=

N∑
n=1

q−1∑
k=0

P (Xn = k|yn, s, θ(�)) (12)

logP (yn|Xn = k, θ) .

Solving this maximization problem gives the update equations
detailed in Lemma 1. For simplicity, the correlation model
between X and Y is assumed to be additive, i.e., there
exists a random variable Z such that Y = X ⊕ Z and θ
parametrizes the distribution of Z . The Binary Symmetric
correlation Channel (BSC) of unknown transition probability
θ = P (Y = 1|X = 0) = P (Y = 0|X = 1) is a special case,
where Z is a binary random variable such that P (Z = 1) = θ.

Lemma 1. Let (X,Y ) be a binary SwP-Source. Let the
correlation channel be a Binary Symmetric channel (BSC)
with parameter θ = P (Y = 0|X = 1) = P (Y = 1|X = 0),
θ ∈ [0, 1]. The update equation for the EM algorithm is [50]

θ(�+1) =
1

N

N∑
n=1

|yn − p(�)n | (13)
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where p
(�)
n = P (Xn = 1|yn, s, θ(�)).

Let (X,Y ) be a SwP-Source that generates symbols in GF(q).
Let the correlation channel be such that Y = X ⊕ Z , where
Z is a random variable in GF(q), and P (Z = k) = θk. The
update equations for the EM algorithm are

∀k ∈ GF(q), θ
(�+1)
k =

∑N
n=1 P

(�)
yn�k,n∑N

n=1

∑q−1
k′=0 P

(�)
yn�k′,n

(14)

where P
(�)
k,n = P (Xn = k|yn, s, θ(�)).

Proof: The binary case is provided by [50]. In the non-
binary case, the updated estimate is obtained by maximiz-
ing (10) taking into account the constraints 0 ≤ θk ≤ 1 and∑q−1

k=0 θk = 1.
Note that P

(�)
k,n = P (Xn = k|yn, s, θ(�)) in (14) can be

estimated with a sum-product algorithm that assumes that the
true parameter is θ(�).

2) Initialization of the EM algorithm: We now propose an
efficient initialization of the EM algorithm valid for irregular
codes and for sources X and Y taking values in GF(q). This
generalizes the method proposed in [50] for regular and binary
codes. The rationale is to derive a Maximum Likelihood (ML)
estimate of θ from a function u = HTx⊕HTy of the observed
data HTx and y.

a) The BSC with irregular codes: In this case, each
binary random variable Um is the sum of random variables of
Z. Although each Zn appears in several sums, the following
assumption is made in this section.

Assumption 1. Each Um is obtained from i.i.d. random
variables Z

(m)
j .

The validity of this assumption depends on the choice of
the matrix H and is not true in general. Although it produces
an approximate solution, this choice may lead to a reasonable
initialization for the EM algorithm. Furthermore, the number
of terms in the sum for Um depends on the degree of the
CN m. The maximum possible CN degree is denoted dc.
One can use the CN degree distribution ρ(x) as a probability
distribution for the degrees, or decide to take into account the
knowledge of the CN degrees. Both cases lead to a probability
model for the Um and enable to obtain an ML estimate for
θ, as described in the two following lemmas. Note that the
lemmas of this section describe the parameter estimation for
generic random variables U and Z following Assumption 1.

Lemma 2. Let U be a binary random vector of length M .
Each Um is the sum of Jm identically distributed binary
random variables Z

(m)
j , i.e., Um =

∑Jm

j=1 Z
(m)
j , where the

Z
(m)
j are independent ∀j,m. {Jm}Mm=1 are i.i.d. random vari-

ables taking their values in {2, . . . , dc} with known probability
P (J = j) = ρj . Denote θ = P (Z = 1), α = P (U = 1) and
assume that θ and α are unknown. Then their ML estimates
θ̂ and α̂ from an observed vector u satisfy α̂ = 1

M

∑M
m=1 um

and θ̂ = f−1(α̂), where f is the invertible function f(θ) =
1
2 − 1

2

∑dc

j=2 ρj(1− 2θ)j , ∀θ ∈ [0, 12 ].

Proof: The random variables Um are independent (sums
of independent variables). They are identically distributed
because the Jm and the Z

(m)
j are identically distributed.

α = P (U = 1) =
∑dc

j=2 ρjP (U = 1|J = j). Then,

from [50], P (U = 1|J = j) =
∑j

i=1,i odd

(
j
i

)
θi(1− θ)j−i and

from [19, Section 3.8], P (U = 1|J = j) = 1
2 − 1

2 (1 − 2θ)j .
Thus α = f(θ). The ML estimate α̂ of α given u is
α̂ = 1

M

∑M
m=1 um. Finally, as f is invertible for θ ∈ [

0, 1
2

]
,

then from [29, Theorem 7.2], the ML estimate of θ is given
by θ̂ = f−1(α̂).

Lemma 3. Let U be a binary random vector of length M .
Each Um is the sum of jm identically distributed binary
random variables Z

(m)
j , i.e., Um =

∑jm
j=1 Z

(m)
j , where Z

(m)
j

are independent ∀j,m. The values of jm are known and
belong to {2, . . . , dc}. Denote θ = P (Z = 1) and assume
that θ is unknown. Then the entries of U are independent and
the ML estimate θ̂ from an observed vector u is the argument
of the maximum of

L(θ) =

dc∑
j=2

N1,j(u) log

(
1

2
− 1

2
(1− 2θ)j

)
(15)

+

dc∑
j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)

where N1,j(u) and N0,j(u) are the number of symbols in u
obtained from the sum of j elements and respectively equal to
1 and 0.

Proof: The random variables Um are independent (sums
of independent variables). Therefore, the likelihood function
satisfy L(θ) = logP (u|θ) =

∑M
m=1 logP (um|jm, θ). Then,

as in the proof of Lemma 2, we obtain (15).
The method of Lemma 2 is simpler to implement than the

one of Lemma 3 but does not take into account the actual
matrix H , at the price of a small loss in performance.

b) The non-binary discrete case: Only the case of regular
codes is presented here, but the method can be generalized to
irregular codes (see the previous section). Assumption 1 also
holds in this case. Now, the probability mass function of Z
is given by θ = [θ0 . . . θq−1] with θk = P (Z = k) ∀k ∈
GF(q). Now, each Um is the sum of symbols of Z, weighted
by the coefficients contained in H . A first solution does not
exploit the knowledge of these coefficients, but uses the fact
that the non-zero coefficients of H are distributed uniformly in
GF(q)\{0} (Lemma 4). A second solution takes into account
the knowledge of the coefficients (Lemma 5).

Lemma 4. Let U be a length M random vector with entries in
GF(q) such that each Um is the sum of dc i.i.d. products of ran-
dom variables, i.e., Um =

∑dc

j=1 H
(m)
j Z

(m)
j . The Z

(m)
j and

H
(m)
j are identically distributed random variables, mutually

and individually independent ∀j,m. The H
(m)
j are uniformly

distributed in GF(q)\{0}. The Z(m)
j take their values in GF(q).

Denote θk = P (Z = k), αk = P (U = k) and assume
that θ = [θ0 . . . θq−1] and α = [α0 . . . αq−1] are unknown.
Then the random variables of U are independent and the
parameters satisfy α = f(θ), with

f(θ) =
∑

n1,...,nq−1

(
dc

n1, . . . , nq−1

)(
1

q − 1

)dc

(16)

F−1

⎛
⎝q−1∏

j=0

(F (W [j]θ)))
nj

⎞
⎠
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where the sum is over all the possible combinations of integers
n1, . . . , nq−1 such that 0 ≤ nk ≤ dc and

∑q−1
k=1 nk = dc and(

dc

n1,...,nq−1

)
is a multinomial coefficient.

Denote θ̂ and α̂ the ML estimates of θ and α, obtained from
an observed vector u, with α̂k = Nk(u)

M where Nk(u) is the
number of occurrences of k in the vector u. Then, if f is
invertible, θ̂ = f−1(α̂).

Proof: The random variables Um are independent (sums
of independent variables). Then, αk = P (U = k) =∑

{hj}dc
j=1

P ({hj}dc

j=1)P (U = k|{hj}dc

j=1) in which the sum

is on all the possible combinations of coefficients {hj}dc

j=1.
This can be simplified as αk =

∑
n1,...,nq−1

P (N1 =

n1, . . . , Nq−1 = nq−1)P (U = k|n1, . . . , nq−1) where nk

is the number of occurrences of k in {hj}dc

j=1. One has

P (N1 = n1, . . . , Nq−1 = nq−1) =
(

dc

n1,...,nq−1

) (
1

q−1

)dc

.
Then, the vector denoted

PU|n1,...,nq−1
=[P (U = 0|n1, . . . , nq−1), . . . , (17)

P (U = q − 1|n1, . . . , nq−1)]

can be expressed as PU|n1,...,nq−1
=

F−1
(∏q−1

j=1 (F (W [j]θ)))
nj

)
. Therefore,

α = [α0, . . . , αq−1] (18)

=
∑

n1,...,nq−1

(
dc

n1, . . . , nq−1

)(
1

q − 1

)dc

F−1

⎛
⎝q−1∏

j=1

(F (W [j]θ)))
nj

⎞
⎠ .

The ML estimates α̂k of αk are α̂k = Nk(u)
M . Finally, if f is

invertible, then from [29, Theorem 7.2], the ML estimate of
θ is given by θ̂ = f−1(α̂).

Lemma 5. Let U be a length M random vector with entries in
GF(q) such that each Um is the sum of dc i.i.d. random vari-
ables, i.e., Um =

∑dc

j=1 h
(m)
j Z

(m)
j . The Z

(m)
j are independent

∀j,m, and identically distributed random variables taking
their values in GF(q). The values of the coefficients h

(m)
j are

known and belong to GF(q)\{0}. Denote θk = P (Z = k),
αk = P (U = k) and assume that θ = [θ0, . . . , θq−1] and
α = [α0, . . . , αq−1] are unknown. Then the random variables
of U are independent and the ML estimate θ̂ from an observed
vector u maximizes

L(θ) =

M∑
m=1

logF−1
um

⎛
⎝ dc∏

j=1

F(W [h
(m)
j ]θ)

⎞
⎠ (19)

under the constraints 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.

Proof: The random variables Um are independent (sums
of independent variables). The ML estimate θ̂ is the value that
maximizes the likelihood function given by

L(θ) = logP (u|θ, {h(m)
j }dc,M

j=1,m=1) (20)

=

M∑
m=1

logP (um|θ, {h(m)
j }dc

j=1) (21)

under the constraint that 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1. The
second equality (21) comes from the independence assump-
tion. Following the steps of Lemma 4, we show that (21)
becomes L(θ) =

∑M
m=1 logF−1

um

(∏dc

j=1 F(W [h
(m)
j ]θ)

)
.

C. DwP-Source

The DwP-Source is non-stationary. Consequently, if one
assumes a stationary model such that

P (Xn = k|Yn = m) = αk,m (22)

and tries to produce an estimate α̂
(n)
k,m from observed se-

quences (x,y) of length n, then the sequence of estimates
α̂
(n)
k,m does not necessarily converge as n goes to infinity.

However, such an estimate is well defined for a fixed length
n. Thus, we apply the procedure defined for the SwP-Source
to get α̂(n)

k,m from y and u.

D. SP-Source: MAP with EM

For the SP-Source, the distribution PΘ(θ) is available and
one can perform the MAP estimation of Θ. Then, the EM
equation (10) for the MAP estimation becomes [3]

Q(θ, θ(�)) = EX|y,s,θ(�) [logP (X|y, s, θ)] + logPΘ(θ) .
(23)

Knowing some estimate θ(�) of θ at iteration �, one has to
maximize (23) with respect to θ to obtain θ(�+1). As for
the SwP-Source, the LDPC decoding algorithm initialized
with θ(l) provides an approximate version of P (X|y, s, θ(�)),
required to perform the MAP estimation of θ(l+1).

A coarse estimation of θ can be obtained from u = HTx+
HTy as

θ(0) = argmax
θ∈PS

logPΘ(θ) + logP (u|H, θ) (24)

in order to initialize the EM algorithm. In the binary case
and from the assumptions of Lemma 3 this corresponds to
maximizing

LMAP(θ) = logPΘ(θ) +

dc∑
j=2

N1,j(u) log

(
1

2
− 1

2
(1− 2θ)j

)
(25)

+

dc∑
j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)

with respect to θ. In the non-binary case and from the
assumptions of Lemma 5 this corresponds to maximizing

LMAP(θ) = logPΘ(θ) +
M∑

m=1

logF−1
um

(
dc∏
j=1

F(W [hszm,j ]θ)

)

(26)
under the constraints 0 ≤ θk ≤ 1 and

∑q−1
k=0 θk = 1.

However, this approach does not fully exploit the density
over θ but only its mode, because a hard value of θ is
estimated at each iteration and used for the following iter-
ations. To deal with this problem, one could think of using
Variational Bayesian Expectation Maximization (VBEM) [3].
Unfortunately, the VBEM equations are intractable for most of
the distributions, particularly in the discrete case. The discrete
additive model considered here is not a conjugate exponential
model, for which a tractable implementation exists.
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Fig. 1. MSE of the estimators for the binary case (SwP-Source).
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Fig. 2. MSE of the estimators for the non-binary case (SwP-Source).

VI. SIMULATIONS

The performance of the initialization techniques obtained
in Lemmas 2 to 5 are first compared. Then, we evaluate the
joint estimation methods proposed for the various models in-
troduced in Section III. In the following, the random variables
are either binary or non-binary with values in GF(4). The
correlation model is such that there exists a random variable
Z with Y = X ⊕ Z , and X is distributed uniformly.

A. Performance of the initialization techniques (SwP-Model)

The binary case is considered first. X is distributed uni-
formly and Z is such that P (Z = 1) = θ, θ ∈ PS = [0, 0.18].
The worst case θ gives H(X |Y, θ) = 0.68 bit/symbol. We
choose a code of rate R = 0.75 bit/symbol and of edge-
perspective degree distributions λ(x) = x2 and ρ(x) =
0.4823x2 + 0.2701x3 + 0.0057x4 + 0.0718x5 + 0.0602x16 +
0.0732x17 + 0.0075x35 + 0.0292x36, designed for the worst
possible parameter θ = 0.18 and obtained from a code
optimization based on density evolution and realized with a
differential evolution algorithm [47]. Here, as X is assumed
uniformly distributed, density evolution for channel coding
can be directly used by the optimization algorithm. If the
source is not distributed uniformly, density evolution has to
be performed on an equivalent channel, as described in [7].
The initialization methods of Lemmas 2 and 3 are evaluated

and compared through two experiments. Indeed, the models
defined in the formulations of the lemmas are supposed to
represent the behavior of the LDPC encoding using Assump-
tion 1. In this section, we want to determine whether this
assumption is meaningful.

First, we wish to evaluate the performance of the estimation
methods on simulated codewords, i.e., generated at random
from the models as they are defined in the formulations of the
lemmas. For that purpose, 10000 vectors U of length M are
generated according to the models introduced in Lemmas 2
and 3, for θ = 0.12. Assumption 1 is taken into account and
the symbols Um are drawn as sums of independent random
variables. Then, the two proposed estimation methods are
applied and the Mean Squared Error (MSE) E

[
(θ − θ̂)2

]
is

evaluated as a function of N = M
R . The estimated parameters

are obtained numerically from a gradient descent initialized at
random in PS. This gives the two superposed lower curves of
Figure 1, showing that the methods of the two lemmas provide
similar performance.

Second, as the models introduced in the lemmas are sup-
posed to represent the effects of the LDPC encoding, we also
evaluate the performance of the estimators on actual code-
words, i.e., obtained from LDPC coding. Consequently, 10000
vectors z of length N are generated considering θ = 0.12.
Note that the estimation method requires the knowledge of
u = HTy � HTx = HTz and thus vectors z are generated
directly. The vectors u are then obtained by multiplying z by a
matrix H of the considered code. The two proposed estimation
methods are then applied to each realization to evaluate the
MSE. This gives the two superposed upper curves of Figure 1.
As before the two methods give the same performance.
However, we observe a loss of a factor 10 in MSE compared
to the ideal case, due to the fact that the entries of U are not
independent. Nevertheless, the performance seems sufficient
for the initialization of the EM algorithm.

For the non-binary case, X is distributed uniformly and
the probability distribution of Z is given by θ = [θ0, . . . , θ3]
where P (Z = k) = θk. The set PS is such that ∀θ ∈ PS,
θ0 ≥ θ and θ is fixed. We choose a code with edge
perspective degree distributions λ(x) = x2 and ρ(x) =
0.5038x2+0.2383x3+0.0035x4+0.00354x5+0.0033x10+
0.1252x11+0.0256x12+0.0089x18+0.0260x19+0.0301x20,
giving R = 1.5 bit/symbol. In this case, the code was tuned
for the worst case θ = [θ, (1 − θ)/3, (1 − θ)/3, (1 − θ)/3]
where we consider the particular case θ = 0.7 giving entropy
H(X |Y, θ) = 1.36 bit/symbol. As the source symbols are
distributed uniformly, the code optimization is realized from
a channel coding density evolution technique realized with
MCMC simulations as described in [22]. If the source symbols
were not distributed uniformly, one could not simply apply the
channel coding density evolution to the correlation channel
P (Y |X). In fact, in channel coding, the inputs of the channel
are distributed uniformly. However, density evolution could
be applied on a particular transformed channel with the same
performance as for P (Y |X). This transformed channel is
determined in [7] for the binary case, and in [16] for the
non-binary case. The code has then been constructed with an
LDPC PEG (Progressive Edge Growth) algorithm [26]. Note
that although the density evolution exhibits good performance
for the selected degree distribution, the code construction at



276 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 1, JANUARY 2014

finite length introduces a loss in performance because of the
cycles appearing in the decoding graph [36].

The experiments described in the binary case are repeated
for the methods proposed in Lemmas 4 and 5. The parameter
estimates are now obtained from a projected gradient descent.
Figure 2 shows the MSE of the two cases obtained by
averaging over 10000 vectors of different length N , generated
from θ = [0.79 0.07 0.07 0.07]. The conclusions of the binary
case hold also in this setup and in the following, the method
of Lemma 4 is used since it is less complex.

Note that other cases may be considered. For example, we
could assume that ∀θ ∈ PS, θi ≥ θ, for some i 
= 0. We could
also assume a combination of cases, such as θ0 > θ or θ1 > θ.
Indeed, all these cases give the same achievable rate in (2). The
propose decoding method was shown to perform good as well
for these cases (after a slight adaptation), see [13]. Otherwise,
in this case, the set of channels is not degraded anymore,
and thus it becomes more difficult to design good degree
distributions. Indeed, it is shown that for a set of degraded
channels, if a code of given degree distributions is good for
the worst channel (i.e. sufficiently low error probability), it is
also good for any channel in the set. On the opposite, if the
set of possible channels is not degraded, one has to ensure
that the code performs good for any individual channel in the
set.

B. Complete coding scheme for the SwP- and SP-Sources

The performance of the complete scheme is now evaluated,
in the non-binary case.

As for the initialization technique, X is distributed uni-
formly and the probability distribution of Z is given by θ =
[θ0, θ1, θ2, θ3]. The case of the SwP-Source is treated first, and
four setups are compared. In each setup, 1000 source vectors
of length 10000 are generated. The evaluation procedure is
as follows. We choose three codes of different rates, ob-
tained from the previously mentioned code optimization. The
codes have the following edge-perspective degree distributions
λ(x) = x2 and ρ(x) = 0.5038x2 + 0.2383x3 + 0.0035x4 +
0.00354x5+0.0033x10+0.1252x11+0.0256x12+0.0089x18+
0.0260x19 + 0.0301x20, giving R = 1.5 bit/symbol. (1.5
bit/symbol). For each realization, θ is generated randomly
from the set PS such that θ0 > p, where p is fixed. For
every described setup, p varies from 0.67 (entropy of 1.42
bit/symbol) to 0.71 (entropy of 1.33 bit/symbol). We set 20
iterations for the LDPC decoder and 3 iterations for the EM
algorithm (when required). The results are represented in
Figure 3.

In the deterministic setup, θ is fixed and equal to [1−p, (1−
p)/3, (1 − p)/3, (1 − p)/3]. The distribution is given to the
decoder. This gives the error floor of the chosen code. Note
that the error is high compared to the other setups, because in
the other setups, θ is generated at random and more favorable
cases appear. For the genie-aided setup, θ is given to the
decoder. In the third setup, the EM algorithm is initialized at
random. The fourth setup corresponds to the method presented
in the paper. Coarse estimate of θ obtained from Lemma 4
initializes the EM algorithm. We see that the EM initialized
at random gives better result. Furthermore, the mean decoding
time increases by a factor 1.5 when θ is initialized at random.
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Fig. 3. Error rate with respect to p for the SwP-Source.
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Fig. 4. Error rate with respect to p for the SP-Source.

We see that this method increases the decoding time and
produces poor performance.

For the SP-Source, the same model, codes and procedure
are considered. The prior distribution on θ0 is a triangle
distribution centered on θ+1/2(1−θ). The other components
are distributed uniformly according to the probability distribu-
tion constraints. The three setups: genie-aided, EM initialized
at random, method described in the paper, are tested again
over 1000 source vectors of length 10000. The results are
represented in Figure 4.

C. Comparison to a solution with feedback

In this section we compare our no-feedback coding ap-
proach with a 1-bit feedback transmission for a source gener-
ated from the SwP-Model of Section VI-B. The 1-bit feedback
is sent by the receiver to the encoder to ask for additional
packets or stop the transmission. The goal is to save rate by
avoiding sending data at the worst rate as in the no-feedback
method. However, it results in multiple decoding trials and
thus potentially large delays. It is therefore of interest to study
the rate/decoding delay tradeoff.

Only an evaluation of the achievable rate and estimated
mean-time decoding are provided. They are sufficient to
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determine the advantages and the drawbacks of the solution
with feedback. In the solution with feedback, when the de-
coder cannot decode with the received codeword, it requests
more check equations via the feedback channel. Each time it
receives new equations, the decoder tries to reconstruct the
source vector with the use of a sum-product LDPC decoder.

Denote N the length of the source vector and assume that
θ is of the form θ = [1 − 3θ, θ, θ, θ] where θ ≤ θ = 0.08.
Consider K rate levels R1, . . . , RK associated to K intervals
I1 = [0, θ/K] . . . IK = [θ(K − 1)/K, θ]. The coding system
processes as follows. The encoder first sends nR1 symbols to
the decoder. The decoder tries to reconstruct the source, as-
suming the true parameter is θ/K . If it fails, it sends a request
via the feedback channel and the encoder sends N(R2 −R1)
new symbols. The decoder then tries to reconstruct the source
from the nR2 received symbols, assuming the true parameter
is 2 × θ/K . The process continues until the source vector
has been decoded. Note that here, it is assumed that the Ik
intervals are small enough to allow the decoder to perform
well with a parameter that is not exactly the true one.

Five setups are compared, in terms or achievable rate (R)
and of estimated mean decoding time (T ). The results are
shown in Figure 5. Denote t the decoding time of one LDPC
decoder iteration and Nit the required number of iterations. In
the following, we set K = 8, Nit = 20 and choose t = 4s
from the previous experiments. Ddenote h(θ) = H(X |Y, θ).
In each case, we assume that a code or a sequence of codes
reaching the entropy can be constructed.

For the solution with feedback, assume that we can con-
struct a sequence of codes such that R1 = h(θ/K), . . . RK ,=
h(θ) and achieving small probability of error respectively for
θ ∈ I1, . . . , θ ∈ IK . Thus, θ ∈ Ik, Rk = h(kθ/K). We also
assume that the delay induced by the feedback is negligible
compared to the decoding time. Then, for θ ∈ Ik the mean
decoding time is estimated as Tk = t×Nit × k. In the curve
of Figure 5, the circles represent the various (Rk, Tk).

For the genie-aided setup, the rate is dimensioned for the
worst case, i.e., R = h(θ) and an approximation of the mean
decoding time is calculated as T = Nit × t. For the setup with
learning sequence, assuming a sequence length representing a
fraction 1/5 of the total length, R = 4/5h(θ)+1/5H(X) and

T = Nit × t. For the coding scheme described in the paper,
R = h(θ) and we approximate T = 2 × Nit × t, assuming
that 2 iterations of the EM algorithm are required. For the
coding scheme with EM initialized at random, R = h(θ) and
we approximate T = 4 × Nit × t, assuming that 4 iterations
of the EM algorithm are required.

When the parameter θ is small, the solution with feedback
induces a significant rate gain. However, when θ increases, the
price to pay for adapted rate is a very large decoding delay.
The choice of the parameter K is important: if K decreases,
the size of the intervals Ik increases which reduces the mean
decoding time. On the other hand, as for θ ∈ Ik , the effective
coding rate is Rk, the rate needed to decode for θ can increase.

D. DwP-Source

The solution proposed for the DwP-Source is now evaluated
in the non-binary case. The distribution of Z is given by
π = [π, (1 − π)/3, (1 − π)/3, (1 − π)/3]. Two setups are
considered. In setup 1, π can take the values {0.67, 0.7, 0.73}.
In setup 2, π can take the values {0.7, 0.73, 0.76} We now
consider source vectors of length 10000 and fix a block length
m. For each block of length m in a vector, a probability
distribution for the states is generated uniformly at random.
The values m = 1, 100, 500 and 1000 are tested. The method
proposed for the SwP-Source is then applied with the same
code over 1000 realizations for each m. The complete decod-
ing technique described for the SwP-Source is used: coarse
estimate of the parameter from Lemma 4 followed by EM
algorithm. The results are presented in Table I. Compared
to a case where θ is fixed, we see that there is a loss in
performance.

VII. CONCLUSION

This paper introduced four signal models modeling the
uncertainty on the correlation channel between the source
and the SI. Practical coding schemes based on non-binary
LDPC codes were proposed for the SW setup and for the four
models. Simulation results exhibit good performance in terms
of probability of error, rate, or decoding delay, compared to
the solution with a learning sequence or the solution with an
EM algorithm initialized at random.

Here, only the additive case was considered. In fact, if the
correlation channel is not additive, it may be described by
an unknown (or partly unknown) probability transition matrix
P with Pi,j = P (Y = j|X = i). The EM equations of
Lemma 1 can be restated in this case but the problem is on the
initialization of the EM algorithm. Indeed, the defined matrix
P can cover a wide range of situations. For example, the set
PS may be such that Pi,1 > 0.7 ∀i, or such that Pi,i > 0.7,
a combination of these cases or anything else. If the EM
algorithm is not initialized with the proper form of P , it will
not be able to converge. Unfortunately, as pointed out in [13],
the initialization method proposed here does not enable to
produce a reasonable initial estimate of P , because it cannot
make a distinction between the possible matrix structures.

Future works will be on the design of good degree dis-
tributions for our models with non-binary symbols, and on
the extension to the lossy case. We will also investigate
correlation model selection, i.e., the choice of one of the four
source correlation models and of the structure of the family
distribution for the model.
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TABLE I
SETUP COMPARISON FOR THE DWP-SOURCE

m 1 100 500 1000
Err (setup 1) 1.91× 10−3 0.242 × 10−2 0.247× 10−2 0.32× 10−2

Err (setup 2) 4.31× 10−5 5.22× 10−5 5.23× 10−5 5.3× 10−5
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APPENDIX

In this appendix, we detail the derivation of the update rule
(7) at a CN for the SW problem, when the LDPC code is non
binary and the decoder is the sum-product algorithm. This
update rule derives from the parity check equation at CN m,
given by

∑
n′∈N (m)Hm,n′ ⊗ xn′ = sm, that can be restated

as

xn = sm �Hm,n �
∑

n′∈N (m)\n
(Hm,n′ �Hm,n)⊗ xn′ . (27)

The update rule at a CN, and for the sum-product algo-
rithm, consists in computing the reliability information on
the variable xn as a function of the reliability information
on the variables xn′ , denoted m(�−1)(n′,m, yn′). Thus, the
k-th component of the CN message m to VN n (7) is

log
P
(
Xn = 0|sm, {m(�−1)(n′,m, yn′)}n′∈N (m)\n

)
P
(
Xn = k|sm, {m(�−1)(n′,m, yn′)}n′∈N (m)\n

) (28)

We first detail the impact of the operator ⊗ on a mes-
sage, to study the term �(Hm,n′ � Hm,n) ⊗ xn′ in (27).
Given a random variable Z taking its values in GF(q), and
with a probability vector p = [P (Z = 0), . . . , P (Z =
q − 1)]T, the probability vector of a ⊗ Z satisfies q =
[P (a ⊗ Z = 0), . . . , P (a ⊗ Z = q − 1)]T = W [a]p,
where the matrix W [a] has been defined just after (7). Sim-

ilarly, l =
[
log P (a⊗Z=0)

P (a⊗Z=0) , . . . , log
P (a⊗Z=0)

P (a⊗Z=q−1)

]
is obtained

from m =
[
log P (Z=0)

P (Z=0) , . . . , log
P (Z=0)

P (Z=q−1)

]
as l = W [a]m.

Therefore, in (28), we need W
[
Hn′m

]
m(�−1)(n′,m, yn′),

∀n′ ∈ N (m)\n, where Hn′m = �Hn′,m �Hn,m.
We now detail the impact of the operator �∑

on a
message to deal with �∑

n′∈N (m)\n(Hm,n′ �Hm,n)⊗ xn′ .
The probabilities of a sum of random variables in GF(q)
can be evaluated with the help of a particular Fourier trans-
form [23]. From [30], the the i-th component of the Fourier
transform applied on a message vector m is Fi(m) =∑q−1

j=0 r
i⊗je−mj/

∑q−1
j=0 e

−mj and the k-th component of its

inverse is F−1
k (f) = log

(∑q−1
i=0 fi/

∑q−1
i=0 r−i⊗kfi

)
.

Finally, the term sm � Hm,n, specific to SW coding, is
taken into account. Denote Γ a random variable taking its
values in GF(q) and m =

[
log P (Γ=0)

P (Γ=0) , . . . , log
P (Γ=0)

P (Γ=q−1)

]
.

The message vector l =
[
log P (a⊕Γ=0)

P (a⊕Γ=0) , . . . , log
P (a⊕Γ=0)

P (a⊕Γ=q−1)

]
corresponding to a ⊕ Γ is obtained as l = A[a]m. Setting
a = sn�Hm,n gives the final message vector m(�)(n,m, yn).
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