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Abstract—This paper addresses the problem of designing a
global tone mapping operator for rate distortion optimized
backward compatible compression of HDR images. We address
the problem of tone mapping design for two different use
cases leading to two different minimization problems. The first
problem considered is the minimization of the distortion on
the reconstructed HDR signal under a rate constraint on the
SDR layer. The second problem remains the same minimization
with an additional constraint to preserve a good quality for the
SDR signal. Both the distortion and the rate are expressed as a
function of the spatial gradient in the HDR images. Experiments
show that the proposed rate and distortion models based on
the HDR image gradient accurately predict the real image rate
and distortion measures. Experimental results show that for the
first minimization, the optimal rate-distortion performances are
achieved, and that the second optimization yields the best trade-
off between rate-distortion performance and quality preservation
of the SDR signal.

Index Terms—High dynamic range (HDR), Compression,
Tone-Mapping (TMO), Backward-Compatible, HEVC, Intra-
Frame R-D model, Gradient

I. INTRODUCTION

W ITH pupil’s adaptation, the human eye can see 14
orders of luminance magnitude (going from 10−6

to 108 cd/m2 or nits [1]) and without pupil’s adaptation
the human eye can instantaneously see around 5 orders of
luminance magnitude [2]. While Standard Dynamic Range
(SDR) displays only reproduce 3 orders of magnitude, ranging
from 0.1 to 150 cd/m2, High Dynamic Range (HDR) aims
at capturing and reproducing all visible luminance values. To
do so, the real1 physical measures are first sensed, leading
to a 32 bit representation per RGB component (See Fig-1).
Then, for efficient storage and manipulation, several formats
have been proposed such as RGBE [3] and OpenEXR [4]
formats. They consist in first reducing the range, only for
OpenEXR (65.103 cd/m2), by applying a linear map and then
reducing the storage by applying a quantizer. This leads to
a 32 bit per pixel representation for RGBE (8 bits for each
RGB component and 8 bits for a shared exponent) and a 48
bit per pixel representation for OpenEXR (16 bits for each
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1real in the mathematical meaning

component). In the following, we refer to this representation
as Linear Light (LL) HDR (See Fig-1).

Legacy video codecs are not well adapted to these LL
HDR content. Indeed, they process integer values and not
half-floating point representations. Moreover, legacy video
codecs usually optimize the compression based on a mean
square error (MSE) criterion. Therefore, the codec needs to be
supplied with uniformly quantifiable data such that a one bit
quantization error has the same perceptual effect in the bright
and dark areas. This is done through Perceptual Quantizer
Transfer Functions (PQTFs). Several solutions exist like [5]
where the logluv PQTF [6] is used to convert the OpenEXR
files into 14 bits for the luma representation. In the MPEG
call for evidence (CFE) [7], the SMPTE-2084 [8] is used to
transform the LL HDR content into 10 bits before the encoding
process using HEVC codec. As a response to the CFE, many
other PQTFs were proposed among which the ARIB STD-67
(HLG) [9], [10] has also been retained and is studied in the
HEVC standard [11]. In Fig-1, we refer to this representation
as PQTF-HDR. However, in the remainder of this paper,
we will only consider PQTF-HDR. Therefore, without loss
of clarity, we refer now to PQTF-HDR as HDR content.
Note that, in general, quantizing an image before encoding
decreases the rate-distortion performances [12]. However, it is
shown in [8] that, in the case where the image is quantized
with at least 12 bits, this prior quantization has no perceptual
impact.

Fig. 1. HDR representation scheme

This HDR content can then be compressed with a legacy
video codec [13], [14]. However, one should not only consider
the problem of efficiently compressing HDR content, but also
tackle the problem of backward compatibility. Indeed, most
consumers are equipped with SDR displays, that cannot handle
HDR content, and they will slowly renew their display to an
HDR one. It is therefore of great importance to deliver an HDR
signal that can be decoded by both SDR and HDR displays.
A first solution is to send both SDR and HDR representations
(simulcast), but this is known to be suboptimal in terms of
transmission cost [15]. Instead, a scalable video codec encodes
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an HDR content into a single bitstream that can be decoded
by both SDR and HDR displays. In a scalable scheme, the
HDR input is first tone mapped with a global tone mapping
operator (TMO) into an 8 bit SDR version which is encoded
with a legacy codec such as HEVC or H.264 and sent along
with metadata [11], [16]. Then, the decoded SDR content is
inverse tone mapped to yield the HDR reconstructed content.
One can also send an enhancement layer containing the HDR
residue to improve the reconstruction.

Thus, the TMO is an essential component for backward
compatibility and can be designed for different purposes. First,
it can be designed to preserve the HDR artistic intent in the
tone mapped SDR content. Many TMOs have been developed
for this purpose. Some examples that consistently perform
well [17], [18] are the photographic tone reproducer (PTR)
[19] and the display adaptive tone mapping (DATM) [20].
Secondly, in the context of compression, the tone mapping
can be designed to optimize the compression performances
[21], [22], [23]. In [21] a TMO is designed to minimize
the distortion of the decoded HDR content. However, this
distortion model assumes that (i) the quantization error is
independent of the signal and that (ii) the variance of this
quantization error does not depend on the statistics of the
signal. Instead, we propose a new distortion model based on
the image gradient and that better reflects the rate-distortion
performance of actual encoders compared with state of the art
models. Closed form expressions are derived for this model
which relies on the statistics of the HDR image and on the
applied TMO. Since the approach in [21] does not consider the
rate cost of the SDR content, the designed TMO may lead to
SDR data with increased spatial complexity, hence with high
rate cost. The authors in [22] and [23] cope with this limitation
by minimizing the HDR distortion under the constraint of the
SDR data rate. In [22], the SDR rate is modelized as a function
of the total variation of the SDR signal and in [23] the SDR
rate is modelized as a function of the SDR entropy.

In this paper, we also address this minimization problem.
However, we propose a new rate model based on the image
gradient. The gradient model is shown to provide the highest
correlation with the actual SDR rate. These two new gradient-
based models hold when an image is first transformed with an
invertible piecewise affine function and then compressed with
a predictive encoder such as the intra mode of HEVC.

Optimizing the TMO for compression purposes as in [21],
where the authors minimize only the distortion on the inverse
tone mapped HDR, may yield SDR content which does not
preserve the artistic intent of the HDR. Thus the approach of
[21] is extended in [24], [25], [26], [27] by adding a new
constraint on the SDR perceptual quality. It consists in a
MSE between the tone mapped signal and a reference SDR
version. However this constraint is computed with a coarse
assumption. Instead, we propose a new model for the SDR
quality constraint using a weaker assumption. As opposed to
the proposed solution, the influence of the rate is neglected
in [26], [27]. It results in a suboptimal solution. In [24],
[25], the authors simplified the constrained problem into an
unconstrained one, where the value of the multiplier is fixed.
This leads to choosing an operating point, which may not

be the optimal one. Therefore, all these simplifications affect
the SDR perceptual quality. In our case, we keep and solved
the constrained problem which allows to obtain the optimal
solution.

In this paper, we address two use cases. We search for a
new TMO, using new gradient-based models for the HDR
distortion and SDR rate, that optimizes the compression per-
formances of the HDR backward compatible scheme. In a
second time, we propose a new problem that optimizes the
HDR distortion under a SDR rate constraint and under a SDR
perceptual quality constraint. In a previous work [28], we
demonstrated that the optimal tone mapping does not depend
on the enhancement layer, therefore in this work we consider
a single layer scheme.

Finally, the two tone mapping optimizations lead us to two
different conclusions: (i) with the first tone mapping optimiza-
tion we demonstrate that the proposed solution achieves the
optimal rate distortion performance; (ii) we demonstrate that
the second tone mapping optimization always provides the best
trade-off between the overall rate distortion performance and
the quality of the SDR content.

The remainder of this paper is organized as follows. Section
II presents the compression scheme for the two use cases and
the corresponding optimization problems. The models for the
rate, distortion and SDR quality constraint are developed in
section III as well as the corresponding tone mapping min-
imizations. Finally, Section IV presents the results obtained
with the two TMOs.

II. PROBLEM STATEMENT AND TMO PARAMETERS

A. Problem statement

In this section, two different optimization problems are
introduced for backward compatible HDR compression using
a single layer with metadata. The first problem is the min-
imization of the distortion on the reconstructed HDR signal
under a rate constraint. The second minimization involves the
same aspects with an additional quality constraint for the SDR
signal. In both cases, the compression scheme is given in Fig-
2.

To perform the R-D optimization, we model the HDR
image as a random process denoted X . X generates sequences
of random variable, where each random variable models a
pixel value. X is tone mapped to generate an SDR image
Y encoded at a given rate RSDR such that the decoded
SDR image Ỹ is compatible with legacy SDR displays. EY
is the error between Y and Ỹ . The MSE between Y and
Ỹ is the distortion introduced on Y by the encoder at a
given rate RSDR. To reconstruct the HDR image X̃ , from the
decoded SDR image Ỹ , an inverse tone mapping is performed.
Since no enhancement layer is considered, the HDR distortion
DHDR, generated by the encoding process, is now computed
between X and X̃ . This image X̃ is compatible with new
HDR displays.

The HDR image X is considered to be in a uniformly
perceptual integer representation. So in practice,

X = bTF (XLL, nb)e (1)
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Fig. 2. Backward-compatible HDR compression scheme.

with XLL the linear-light HDR signal, nb the number of bits
to represent X and TF the chosen transfer function. In this
paper, XLL is quantized on 12 bits with the SMPTE-2084
[8], the MPEG recommended function transfer [7]. As X is
considered as a uniformly perceptual representation, the Mean
Square Error (MSE) is a relevant metric to estimate HDR
signals quality [21], [27] . Therefore:

DHDR = E
[
(X̃ −X)2

]
(2)

B. Rate-Distortion Optimization of the HDR

The goal is to find the tone mapping that minimizes DHDR

for a given rate budget R0. Therefore the minimization prob-
lem is

min
TMO

DHDR (3)

s.t. RSDR = R0

We use an equality constraint instead of an inequality con-
straint since the R-D function is decreasing [29, Ex10.5] with
the rate R, therefore the minimum distortion is obtained when
the rate is maximal i.e. when RSDR = R0.

Problem (3) aims at minimizing the HDR distortion only.
Therefore, there is no guarantee that the SDR content will
have a good perceptual quality.

C. Rate-Distortion Optimization of the HDR under a SDR
quality constraint

To improve the SDR perceptual quality, in the second
optimization problem, the TMO is designed to minimize the
HDR distortion under a rate constraint but also under a quality
constraint for the SDR signal. This constraint DSDRREF is
modeled as in [25] and [26]. It is a distortion between Y and
an SDR image that preserves the perception and artistic intent
of the HDR image. This SDR reference image is noted G(X)
since it is related to the HDR image by a tone mapping curve
G that has been specially designed to preserve the perception
of the HDR content. Therefore,

DSDRREF = E
[
(G(X)− Y )2

]
(4)

With this new constraint, the problem (3) becomes

min
TMO

DHDR (5)

s.t.
{
RSDR ≤ R0

DSDRREF ≤ D0

The contributions of the paper are twofold. First, we propose
novel rate and distortion models based on the gradient of the
HDR image. We show in the following that these models
lead to a good approximation of the rate and of the distortion
measured with a predictive codec such as HEVC [30]. Second,
we derive the optimal solution of the global optimization
problems (3) and (5).

D. Piecewise Linear Tone Mapping

To solve the optimization problems (3) and (5), the TMO
is approximated by a piecewise affine function (6), as in
[21], [25], [26]. Let x denote a realisation of X . Then
∀x ∈ [xk, xk+1[

F (x) = y = (x− xk)sk + yk (6)

where k ∈ [0, n − 1[ and where n is the number of chosen
linear pieces. To ease the optimization, we aim at reducing the
number of unknowns. For this reason, the interval between xk
and xk+1 is always the same and is noted δ, as originally
proposed in [21]. The values x0, xn are chosen to adaptively
cover the entire range from the minimum to the maximum
values of the dynamic range of the input image. Knowing x0
and xn, δ is therefore fully determined with n the number of
linear pieces. The minimum and maximum values of y are
chosen to span the whole range of the SDR output. Therefore,
y ∈ [0, 2nb−1] (with nb the number of SDR bits) and finally,
∀x ∈ [(x0 + δ.k), (x0 + δ.(k + 1))[ the tone mapping (6) is

F (x) =
(
x− (x0 + δ.k)

)
.sk + δ

k−1∑
j=0

sj (7)

In this new representation (7), the only unknowns are the
slopes {sk}k=1...n. Moreover, we seek for a global invertible
TMO. The parameterization in (7) leads to a continuous func-
tion. To add the invertibility constraint, it is further assume that
the slopes sk are strictly positive. Therefore, the optimization
will be performed under the constraint that sk > 0. Finally,
the tone mapping curve can be assumed to be rather smooth.
Therefore, the piecewise linear approximation is very accurate,
even with a small number of slopes.

In the following section, only the luminance compression
is considered but it could be extended to color by computing
in a similar manner a TMO for the U and V components or
separately for each RGB color channel.

III. GRADIENT-BASED MODELS AND PROPOSED
SOLUTION

A. Gradient-Based SDR Bit-Rate Model

Different studies for Rate Control compare the H.264/ AVC
Intra-Frame rate to different estimators based on either the
gradient, the entropy, the variance and other measures of the
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HDR image [31], [32]. In these studies, the gradient is shown
to be the most reliable estimator. Similarly, in [33] it is shown
that the HEVC Intra-Frame rate and the spatial gradient of the
SDR image are highly correlated. For these reasons, we choose
to model the SDR rate as a function of the SDR gradient ∇Y
as

RSDR = f
(
E[∇Y ]

)
(8)

In the sequel, we consider the following estimation for the spa-
tial gradient of the image which are then shown to accurately
predict the actual rate.

∇Y =
(
|Y − Y ′H |+ |Y − Y ′V |

)
(9)

∇Y = min
(
|Y − Y ′H |, |Y − Y ′V |

)
(10)

where Y ′H and Y ′V are the shifted versions of the image Y in
the horizontal and vertical directions respectively. In (9), the
sum of the horizontal and vertical gradient absolute values is
computed. In (10) instead, the minimum between the vertical
and horizontal gradients is computed.

To solve the optimization problems (3) and (5), we now
need to express the SDR gradient (8) as a function of the
parameters of the TMO. Since the TMO is related to the
SDR luminance values Y , we first introduce Y in the gradient
expression.

E[∇Y ] =
ymax∑
y=0

P(Y = y) · E[∇Y |Y = y]

E[∇Y ] =
ymax∑
y=0

P(Y = y) ·
∇ymax∑
∇y=0

∇y · P(∇Y = ∇y|Y = y)

E[∇Y ] =
ymax∑
y=0

∇ymax∑
∇y=0

∇y(y) · P(∇Y = ∇y, Y = y) (11)

where ∇Y stands for the random variable and ∇y its realiza-
tion. ∇y(y) stands for the gradient value ∇y at a given y SDR
luminance value. Let us assume that a pixel value X and its
neighbor X ′ have similar values. Therefore, the same slope
sk is used to tone map these two values and

∇Y = Y − Y ′ = X.sk −X ′.sk = ∇X .sk (12)

Therefore, ∀y ∈ [yk, yk+1[ , ∀x ∈ [xk, xk+1[

∇ymax∑
∇y=0

∇y(y) · P(∇Y = ∇y, Y = y) (13)

=

∇xmax∑
∇x=0

∇x(x) · sk · P(∇X = ∇x, X = x)

The approximation (13) holds when two neighboring pixels
belong to the same bin (i.e same slope), this is in general
true except for highly textured image region. In addition, it
is interesting to note that the number of slopes used for the
approximation of the TMO has little influence on the accuracy
of the gradient computation (13). Indeed, reducing the number
of slopes, will increase the chances that neighboring pixels are
transformed with the same slope. Thus, it reduces the number
of occurrence of approximation errors, but the value of these
errors is potentially larger. On the other hand, increasing the
number of slopes reduces the chances that neighboring pixels
are transformed by the same slope but the neighboring slopes

values are increasingly closer, hence the approximation errors
have a small amplitude.
From (11) and (13), the SDR gradient is now approximated
by

E[∇Y ] =
n−1∑
k=0

sk

xk+1∑
x=xk

∇xmax∑
∇x=0

∇x(x) · P(∇X = ∇x, X = x)

︸ ︷︷ ︸
gk

(14)

where gk only depends on the pdf of the HDR image and
its gradient. This model is written for a generic formulation
of the gradient and it is valid for different expressions of the
gradient, as (9) and (10). More generally, the model is valid
as long as the gradient is a sum of differences (as in (9)) or a
minimum of differences (as in (10)).

To validate the model (14), we compare its value to the SDR
gradient directly computed on the SDR image. This test has
been carried out with 26 different HDR images and 3 different
TMOs F (s0..sk), where the slopes in F (s0..sk) are randomly
drawn to yield a strictly increasing TMO that maps the whole
range of the input HDR image. Each point is computed with
a pair (image, TMO). The HDR images used for this test
are very diverse [34]. They have different resolutions, up to
4K, different dynamic ranges, and issued from various sets
(natural/animations, high/low spatial complexity). Fig-3(a), (b)

Fig. 3. Relation between SDR gradient measured on the SDR image
and the values given by the proposed SDR gradient estimator (14)
and the estimator used in [25] (a)-sum of the vertical and horizontal
gradients (9) for 10 slopes (b)-for 20 slopes (c)-for 50 slopes (d)-min
of the vertical and horizontal gradients (10) for 20 slopes

and (c) show the estimated gradient with two estimators (the
proposed gradient estimator given in (9) and (14) and the one
proposed in [25] against the actual gradient values per pixel.
The proposed model is more reliable whatever the number of
slopes. As mentioned by the authors of [25], their estimator
becomes worse when the number of slopes decreases. This
aspect can be seen in Fig-3. Indeed, the estimator in [25] used
a totally different model and is based on the assumption that,
inside a given bin, the values of all the pixels are the same
as the one of the centers of the bins. This approximation is
only valid if the bin size is sufficiently small i.e. if the number
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of slopes/bins is high. Therefore, their model is only accurate
when using more than 50 slopes for the TMO. Fig-3(d) further
shows the gradient estimated as the minimum of the horizontal
and vertical gradient (10) as a function of the true gradient.

By comparing Fig-3(a-c) and Fig-3(d), we conclude that
both models (9) and (10) provide a very accurate estimation
of the SDR bitrate. Here, we decide to use model (10) as it
mimics the selection of an intra prediction mode in a predictive
coding scheme (as in HEVC-Intra). Indeed, in Intra coding,
the selection of a prediction mode consists in computing the
difference between the current block and a shifted version
of the causal neighborhood. This looks very similar to the
gradient (with only two directions: horizontal and vertical).
Then, the selected mode is the one with minimum average
difference value.

The scatter plots in Fig-4 compare the Intra-Frame HEVC
rate of the SDR content and its estimate. The SDR rate
estimate is based on the gradient (14) in Fig-4(a) and on the
entropy of the SDR signal [23] in Fig-4(b). We use the same
test set used in Fig-3 (26 images x 3 TMO) with 20 slopes
for the TMOs. Similar results were obtained with different
numbers of slopes. Each point represents a pair (image, TMO).

Fig. 4. Experimental validation of the proposed rate model (a)-
Correlation between Gradient-based estimator and rate for QP = [10,
20, 30, 40] (b)-Correlation between Entropy-based estimator and rate
for QP = [10, 20, 30, 40]

Fig-4(a) shows less dispersion than the scatter plots in
Fig-4(b). Therefore, the HDR image gradient in Fig-4(a)
provides a more accurate estimate of the actual rate, for all QP
(Quantization parameter in HEVC), than the entropy in Fig-
4(b). Moreover, an affine function seems sufficient to model
the relationship between the HDR image gradient and the rate
of any images. The SDR rate function (8) can be rewritten as:

RSDR = a · E[∇Y ] + b (15)

= a ·
n−1∑
k=0

(
sk · gk

)
+ b (16)

Fig-5 represents the most appropriate a and b values for (16) to
approximate the cloud points in Fig-4(a). Using these values
allows us to find the SDR rate of any image, knowing the

Fig. 5. Values of coefficients ’a’ and ’b’ versus QP and related models

HDR image gradient gk and the applied TMO sk. Moreover,
a relationship between the QPs and the coefficients ’a’ and
’b’ have been obtained through nonlinear least squares fitting
(Trust-Region algorithm [35]).

â = 0, 7567 · e
−
(
QP−6,337

18,72

)2

(17)

b̂ = 5, 161 · e−0,228.QP −0, 044 (18)

The model (16) and these coefficients allow to estimate the
rate of any HDR image using only its gradient and the chosen
TMO.

B. Classical HDR Distortion Model

Considering the MSE in the chosen transfer domain, the
HDR distortion in [21], [23], [25], [26], [28] is

DHDR = E
[
(X̃ −X)2

]
(19)

In [21], [25], [26], using the parameterization (6), the HDR
distortion becomes

DHDR =

n−1∑
k=0

xk+1∑
x=xk

ỹk+1∑
ỹ=ỹk

(
x̃(ỹ, sk)− x

)2
· (20)

P
(
EY =

(
ỹ − y

)
, X = x

)
[21], [23], [25], [26], [28] assume that the quantization error

on the SDR signal EY = Ỹ − Y is independent of the
SDR image Y (called independence assumption). Under this
assumption, the HDR distortion becomes

DHDR = σ2
EY · E

[
F ′(X)−2

]
(21)

where ′ stands for the first derivative and where σ2
EY

is the
variance of the SDR signal error EY . Using the parameteriza-
tion (6) of [21], [25], [26], the HDR distortion (21) becomes

DHDR = σ2
EY ·

∑
∀k

s−2k · P(xk ≤ X < xk+1) (22)

(22) leads to an accurate estimation as shown in Fig-6. Indeed,
the scatter plots shows a high correlation between the true
HDR distortion and the estimated one (22). This experimental
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Fig. 6. Experimental validation of the estimated distortion (22) (a)-At
very-high rate (QP1) and high rate (QP10) (b)-At medium-low rate
(QP30)

validation use the same test set as in Fig-3 (26 images, 3
TMOs).

However, (22) is intractable in practice since to evaluate
the variance σ2

EY
, one needs to compress the data and get

Ỹ : it’s a vicious circle. In order to overcome this difficulty,
[23], [25], [26] assume that σ2

EY
depends on the QP factor

only but does not depend on the statistics of the SDR image
(called invariance assumption). In [21], they assume that σ2

EY
is multiplicative constant and neglect it. Thus, in both cases,
DHDR is rewritten as:

DHDR ∝
∑
∀k

s−2k .P(xk ≤ X < xk+1) (23)

To test the validity of the independence and the statistics
invariance assumptions, we compute the estimated distortion
expressed in (23) and compare it to the corresponding HDR
distortion at different QPs, as in Fig-6. Fig-7 shows that the

Fig. 7. Experimental validation of the estimated distortion (23) (a)-At
very-high rate (QP1) and high rate (QP10) (b)-At medium-low rate
(QP30)

distortion DHDR scales linearly with the estimated DHDR

(23) at low QP only. At QP=10, the correlation coefficient is
much lower and it decreases as QP increases. At QP=30, there
is little correlation between the measured and estimated values.
Fig-7 shows the distortion when the TMO use 20 slopes but,
as in Fig-3, the results were the same with 50 slopes. These
observations are mainly due to the assumed independence
between the SDR image Y and its compression error EY ,
which is not valid as shown in Fig-8. Indeed, the error EY
still contains details of the original image Y , especially for
high QP.

C. Proposed Gradient-Based HDR Distortion Model

As in [21], [23], [25], [26], [28] the proposed HDR distor-
tion model is a MSE in the chosen transfer domain. Therefore,

using the parameterization (6), we use the expression (20) for
the HDR distortion. Here we neither use the independence nor
the invariance assumption, instead, the proposed formulation
takes into account the joint distribution of the HDR image X
and the compression error EY .

Considering that the luminance value of the original and
reconstructed SDR image (y and ỹ respectively) belong to the
same bin [xk, xk+1[ and therefore the same slope sk, the HDR
distortion (20) becomes:

DHDR =

n−1∑
k=0

xk+1∑
x=xk

ỹk+1∑
ỹ=ỹk

(
ỹ − y(x, sk)

)2
s2k

· (24)

P
(
EY =

(
ỹ − y

)
, X = x

)

DHDR =

n−1∑
k=0

1

s2k
·
xk+1∑
x=xk

ỹk+1∑
ỹ=ỹk

E2
y

(
ỹ, x, sk

)
· (25)

P
(
EY =

(
ỹ − y

)
, X = x

)
where Ey(.) stands for the function that computes the SDR
error from the HDR content x, the reconstructed SDR ỹ and
the TMO slope sk.

Fig-8 shows that the compression error EY depends on the
gradient of the SDR signal and that this dependence increases
with the QP value. We propose to model E2

Y as an affine
function of (∇Y )γ , where the coefficients of the affine function
and γ depend on the QP value only. This leads to a new model
for DHDR where (25) becomes

DHDR ∝
n−1∑
k=0

1

s2k
·
xk+1∑
x=xk

∇ymax∑
∇y=0

(
∇y
(
y(x, sk)

))γ
· (26)

P
(
∇Y = ∇y, X = x

)
Following the same assumption as in (12) and (13), we obtain

DHDR ∝
n−1∑
k=0

gk(γ)

s2−γk

(27)

where

gk(γ) =

xk+1∑
x=xk

∇xmax∑
∇x=0

(
∇x(x)

)γ
· P
(
∇X = ∇x, X = x

)
(28)

Note that the gk(γ) values depend on the HDR image and γ
only.

To complete the HDR distortion model, we need to estimate
the relationship between γ, the affine coefficients and QP. We
first consider the estimation of γ. With sufficient image tests
(same test set as in Fig-3), we compare the estimated distortion
(27), computed with different γ values, to the corresponding
HDR distortion at a given QP. For each QP value, we retain the
γ value which maximizes the correlation coefficient between
the distortion and its estimation. The best γ values are plotted
in Fig-9(a). In the worst case, the correlation coefficient is
0.945 at QP16.

We now establish a relationship between the affine coeffi-
cients c and d of the HDR distortion model (29) and QP.

DHDR = c ·
n−1∑
k=0

(
gk(γ)

s2−γk

)
+ d (29)
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Fig. 8. Error EY between SDR source and reconstructed SDR compared to SDR source gradient ∇Y (a)-error at QP=10 (b)-error at QP=20
(c)-error at QP=30 (d)-error at QP=40 (e)-Gradient – For display and print purposes, the displayed images are modified as follows:
(E2

Y )
1/8 and (∇Y )1/8

Fig. 9. (a)- γ values versus QP (b)- values of coefficient c versus QP and related model (c)- values of coefficient d versus QP and related
model

As shown in Fig-9(b) and (c), the relationship between c, d
and the QP can be modeled using a nonlinear least squares
fitting (Trust-Region algorithm [35]) as:

ĉ = ( 8.939.10−7) ·QP 4.722 + 0.124 (30)

d̂ = (−2, 223.10−8) ·QP 5,677 + 0.034 (31)

Finally, the parameters of the functions (30-31) and a table
for γ (one value per QP is stored leading to 51 entries) are
stored at the encoder to perform the TMO. Since these values
are used at the encoder only, there is no need to send them.

As we made this learning process with different numbers
of slopes and that the resulting values were the same, we
conclude that γ, c and d relations are valid for any number
of slopes. Fig-10 shows that the proposed distortion estimator
(27) is better than the classical model (23) represented in Fig-
7. Based on the well correlated offline models for c, d and γ
parameters, the proposed estimator (29) has the advantage to
estimate the distortion for any input HDR image; while in the
classical estimator (22) σ2

EY
remains unknown and dependent

of the image.
Note that, although the proposed distortion model is here

applied in the context of HDR encoding, it could be used to
predict the encoder distortion at a given rate using only the
SDR image and its gradient.

Fig. 10. Experimental validation of the distortion estimated with the
proposed model (a)-At very-high rate (QP1) and high rate (QP10)
(b)-At medium-low rate (QP30)

D. Rate-Distortion Optimization

We now aim at solving the optimization problem (3). As
explained in Section-II-D, the TMO is chosen to span the
whole range of the SDR output. Therefore, we need to add
a new constraint to the minimization problem to obtain an
image in the specified SDR range. Moreover, the model for
RSDR (16) and DHDR (29) introduce the hidden parameter
QP . Therefore, (3) requires an additional optimization over
this hidden parameter QP .

min
QP

min
s1...sn

c ·
n−1∑
k=0

(gk(γ)
s2−γk

)
+ d (32a)
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s.t.



n−1∑
k=0

sk · gk(1) =
R0 − b
a

(32b)

n−1∑
k=0

sk =
2nb−1

δ
(32c)

where gk(γ) is defined in (28), a and b in (17-18), c and d
in (30-31), nb and δ in Section-II-D.

The optimization over the QP parameter is either solved
exhaustively or by learning a relationship between QP and
the rate constraint R0, see Section IV-A for details. We
now solve the second minimization problem over the TMO
parameters {sk} and assume that the QP parameter is fixed.
The Karush-Kuhn-Tucker necessary conditions for optimality
[36, Chap5.5.3] on the Lagrangian expression of (32) lead to:

−(2− γ)gj(γ).c
s
(3−γ)
j

+ λ.gj(1) + µ = 0 ∀j ∈ [0, n] (33a)

n−1∑
k=0

(
sk.gk(1)

)
− R0 − b

a
= 0 (33b)

n−1∑
k=0

(
sk
)
− 2nb−1

δ
= 0 (33c)

Fortunately, (33a) depends on one sj value only. Therefore,
the optimal solution of (32) is

sk =

(
(2− γ).gk(γ).c
µ+ λ.gk(1)

) 1
3−γ

(34)

where µ and λ are the solutions of:

n−1∑
k=0

(
(2− γ).gk(γ).c
µ+ λ.gk(1)

) 1
3−γ
· gk(1) =

R0 − b
a

(35a)

n−1∑
k=0

(
(2− γ).gk(γ).c
µ+ λ.gk(1)

) 1
3−γ

=
2nb−1

δ
(35b)

where gk(γ) is defined in (28), a and b in (17-18), c and d in
(30-31), nb and δ in Section-II-D. The system (35) is solved
numerically. The results of this minimization are discussed in
Section-IV

Note that, one can find a suboptimal but analytical solution
to (32) by omitting the rate constraint (32b), we only minimize
the distortion and find the following analytical solution:

s◦k =
2nb−1 · gk(γ)

1
3−γ

δ ·
∑n−1
k=0 gk(γ)

1
3−γ

(36)

On the other hand, if we remove the spanning constraint (32c),
we obtain:

s†k = α.
gk(γ)

1
3−γ

gk(1)
1

3−γ ·
∑n−1
k=0

(
gk(1)

2−γ
3−γ · gk(γ)

1
3−γ

) (37)

where α is adjusted to respect the removed spanning con-
straint. The derivation of these two TMOs is detailed in the
supplementary documents [34].

Remark. Experimentally, we observe that the TMO curve
defined by {sk} is always between the TMO curves defined
by {s†k} and {s◦k} respectively. This observation also holds
when the TMO curves defined by {s†k} and {s◦k} intersect.

Note that the solution proposed in [21] is a particular case
of equation (36). More precisely, the TMO in [21] is the same

as our high rate regime TMO, computed for γ = 0 (and thus
∇γx = 1, gk(0) =

∑xk+1

x=xk
P(X = x)).

E. R-D Optimization with SDR quality constraint

We now consider the use of an additional SDR quality
constraint, i.e, the optimization problem given by (5). The
models for DHDR and RSDR have been expressed in the
previous section, however we also need to model the SDR
constraint quality DSDRREF .

As in [25], [26], the SDR quality compared with a reference
tone-mapped SDR is computed as:

DSDRREF = E
[
(G(X)− Y )2

]
(38)

DSDRREF =

n−1∑
k=0

xk+1∑
x=xk

(
G(x)− F (x)

)2
· P(X = x) (39)

with G a global TMO optimized for the SDR perceptual
quality and F the TMO defined in (6). In [25], [26], a coarse
assumption is made:

∀x ∈ [xk, xk+1[, x =
xk+1 − xk

2
(40)

which yields a correct result if the function to integrate(
G(x) − F (x)

)2
is linear in x and if the distribution is

uniform on [xk, xk+1[. This leads to a piecewise constant
distortion measure. Instead, we propose to keep only the
uniform distribution assumption (41).

∀x ∈ [xk,xk+1[, P(X = x) =
P(xk ≤ X < xk+1)

δ
(41)

Then (39) becomes:

DSDRREF =

n−1∑
k=0

pk
δ
·
xk+1∑
x=xk

(
G(x)− F (x)

)2
(42)

where pk = P(xk ≤ X < xk+1).
If we parameterize the function G, ∀x ∈ [xk, xk+1[, with

G(x) =
(
(x− xk).tk + zk

)
(43)

The expression (42) becomes

DSDRREF =

n−1∑
k=0

pk·h
(
t0...tk, s0...sk, δ

)
(44)

with

h
(
t0..tk, s0..sk, δ

)
=

(
δ.tk + zk − δ.sk − yk

)3
−
(
zk − yk

)3
δ · 3 · (tk − sk)

(45)

The derivation of (44) is detailed in the supplementary
documents [34].

To test the validity of the assumption (41), we compare the
MSE described in (39) and the estimated distortion expressed
in (44) in Fig-11. This test has been carried out with 26
different images and 3 different TMOs F (s0..sk) (same test
set as in Fig-3), where the slopes in F (s0..sk) are randomly
drawn to yield a strictly increasing TMO that maps the whole
range of the input HDR image. In this test, the reference TMO
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Fig. 11. Experimental validation of the estimated SDR quality
constraint with (44)

G(t0..tk) is always the same global TM0 [19] approximated
with n slopes. The correlation between the estimated and real
values (39) is very high, demonstrating that the assumption
made is very acceptable. Fig-11 shows the distortion when we
use 20 slopes for both TMOs. As in Fig-3, the results were
the same with 50 slopes. This test is also performed with the
SDR quality constraint proposed in [25], the results are the
same. One possible explanation of the close results obtained
for both DSDRREF expression is the use of very different tone
mapping curves for the comparison. We suppose that with the
use of closer tone mapping curves, expression in [25] leads to
approximation errors for DSDRREF .

With the developed models for RSDR (16), DHDR (29),
DSDRREF (44) and with the spanning constraint, the mini-
mization problem (5) becomes

min
QP

min
s1...sn

c ·
n−1∑
k=0

(
gk(γ)

s2−γk

)
+ d (46)

s.t.


∑n−1
k=0 sk · gk(1) ≤

R0−b
a∑n−1

k=0 sk = 2nb−1

δ∑n−1
k=0 pk · h

(
t0...tk, s0...sk, δ

)
≤ D0

This problem can be solved numerically with the interior-
point optimization method. The results of this minimization
are discussed in Section-IV

IV. EXPERIMENTAL RESULTS

A. R-D Optimization

In this section, we show the RD performances achieved
with the backward compatible HDR compression scheme of
Figure 2 with the TMO curve obtained in Section III-D. As
in the previous experiments, the TMOs are computed with 20
slopes. Tests were made with 20 and 50 slopes and the RD
performances were the same.

The proposed TMO design considers one TMO per frame
hence assumes the TMO parameters to be sent for each frame.
This cost has been counted in the rate cost. However, the rate

cost for transmitting the TMO parameters is negligible. Using
16 bits for each of our 20 slopes leads to an extra rate of 0.0002
bits/pixel for a 1920x1080 image ( 16∗20

1920∗1080 ). This cost can be
further reduced by considering entropy coding of the slopes.

The original HDR image is first perceptually transformed
using the SMPTE-2084 PQTF to follow the contrast sensitivity
function of the human eye, and uniformly quantized to 12 bits.
This provides the HDR content denoted X . X is then tone
mapped using the TMO that minimizes (32) and the resulting
SDR content is encoded with the HEVC reference software
(HM 16.2). First, the optimal TMO is derived. Rather than
solving Problem (32), where an exhaustive search over the
QP parameter for a given rate constraint R0, we solve an
equivalent problem, where an exhaustive search over the rate
constraint R0 is performed for a given QP parameter.

Algorithm 1 RD simulation: convex hull
Require: HDR image X

for all QP do
Compute ∇X , then p(X,∇X)
Compute a, b, c, d, γ and gk(γ) from (17), (18), (30),
(31), Fig-9(a) and (28) respectively.
Compute the two TMO bounds {s†k} (36) and {s◦k} (37)
For each bound, compute the necessary rate: R†SDR and
R◦SDR from (16)
Quantize the interval [R†SDR, R

◦
SDR] to get 20 values.

for all R0 ∈ [R†SDR, R
◦
SDR] do

Solve numerically (35) to get λ, µ
Compute {sk} with (34)
Apply the TMO (defined by sk) to X → SDR image
Encode the SDR image → RSDR
Inv. Tone Mapped the decoded SDR image
Compute DHDR

end for
end for
Choose the best RSDR −DHDR point

Note that in Algorithm 1, the search over the optimal R0

is performed in a reduced interval [R†SDR, R
◦
SDR]. This is

possible because the TMO curves (36) and (37) are obtained
without the spanning and rate constraints respectively and
therefore lead to lower and upper bounds on the required
encoding rate.

Fig-12 shows the RD performance obtained with Algorithm
1. For each QP value, a RD curve parameterized by R0 shows
the RD performance obtained with the optimized TMO. Note
that the left-most and right-most points of each curve at QP
fixed correspond to the rates R†SDR and R◦SDR. Then the
convex hull of all these curves is drawn. The optimal rate
constraints R0 correspond to the case, where each individual
curve (QP fixed) is tangent to the convex hull.

The exhaustive search in Algorithm-1 is rather complex
as it requires encoding the SDR image for each R0 value.
However, the loop over R0 can be avoided by learning a
correspondence between this rate constraint R0 and the QP
parameter. To learn such a relation, an exhaustive search is
performed for multiple images such that we obtain the optimal
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Fig. 12. RD optimization without SDR quality constraint Algorithm-1. Given a QP value, different R0 values are tested. The best RD
performance is given by the convex envelop of all the points.

Fig. 13. Distortion between the original HDR image X and the reconstructed image X̃ vs SDR rate - (a) Results for image AtriumNight at
low and high rates (b) Results for image Balloon at low and high rates (c) Results for image FireEater at low and high rates

R0 values for each QP. Then, a law is fitted to these optimal
R0 points. Given a QP value, at run time, this law allows us
to have directly the optimal R0 value. Deducing the optimal
TMO then becomes feasible in real-time. Fig-13 shows the
RD performances obtained with this straightforward method,
in comparison with several existing TMOs: a simple linear
TMO, a TMO that minimizes the distortion only [21] and a
TMO optimized according to a RD criterion, but with a RD
model valid in the high rate regime only [23]. The experiment
is done with images from the MPEG test set and the one

proposed in [37], [38]. Fig-14 shows different tested images.
More images are tested in the supplementary materials [34].
The upper charts show the PSNR of the reconstructed HDR
image versus the SDR image bitrate for high QPs (0 to 1
bit/pixel) while the lower ones show the same results for lower
QPs.

First, we notice that, as expected, the proposed algorithm,
performing a RD optimization, allows to outperform the linear
and [21] TMOs at any rate. More precisely, the Bjontegaard
rate gains between the proposed and the linear TMOs are 3.0%
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Fig. 14. Test HDR images. For display purposes, the HDR images
are tone-mapped with [19] : a) AtriumNight b) Balloon c) FireEater

AtriumNight Balloon FireEater
RD Gain to [21] 15.5% 7.5% 26.9%

RD Gain to Linear 3.0% 1.4% 11.4%
Dynamic Range 4.109 9.107 7.106

Spatial Activity 76 82 38

Fig. 15. RD Gains, Dynamic Range and Spatial Activity of the tested
images as defined in [39]

for AtriumNight, 11.4% for FireEater and 1.4% for Balloon.
The Bjontegaard rate gains between the proposed TMO and
[21] are 15.5% for AtriumNight, 26.9% for FireEater and
7.5% for Balloon. At high rates, the TMO always seems to
converge towards the same R-D performances as [21] and
towards the same R-D performances as the linear TMO at low
rates. For each image, the R-D performances are different but
the behavior seems to be the same regardless of the dynamic
range or spatial activity (defined in [39]), as one can see in
Fig-15.

Regarding [23], the performances are very close to the
proposed method for all the tested images. This result is
surprising since we demonstrated the better accuracy of the
proposed model for the rate and distortion in Section-III-A and
Section-III-C. However, [23] learns the Lagrangian multiplier
in the RD optimization. This learning compensates for the
independence and invariance assumptions (see Section-III-C)
made in their distortion model and leads to a corrected RD
model, which is as accurate as our. This shows indeed how
important the accuracy of the RD model is.

B. R-D Optimization with SDR quality constraint

We now analyze the RD performance obtained with the
TMO solution of (46) with a new constraint on the SDR
perceptual quality. The problem is solved with the interior
point algorithm (optimization toolbox from Matlab). The
resulting TMO depends on two parameters: the DSDRREF

constraint D0 and the rate constraint R0. D0 is adjusted to
34.2dB (MSE=25) to insure sufficient similarity with the SDR
reference image.

The rate constraint R0 needs to be higher than in the
previous Section IV-A since adding a new constraint will
necessarily increase the required rate. Second, the rate con-
straint will depend on the reference Tone-Mapping chosen.
For instance, Figure-16 plots the bounding TMOs described in
section-IV-A and the chosen reference Tone-Mapping [19], the
PTR (Photographic tone reproductor). For AtriumNight and
Ballon images, the PTR is close to the two bounding TMOs,
whereas the PTR is quite far from these bounds for FireEater
and this will significantly increase the rate (since we observed
that the optimal TMO with best RD trade off lies in between
the two bounds). Therefore, to find the optimal TMO for a
given QP parameter, a first rate constraint Rmax is computed
as the maximum between the rate needed with the PTR TMO
and the rate needed for {s†k}k=0..n (36), i.e. the upper bound
on the rate constraint computed in the previous Section IV-A.
Rmax ensure to find a solution to (46). Using the previously
learnt relationship between R0 and the QP parameter for the
RD optimization without SDR constraint (section IV-A), we
can compute the optimal rate constraint R0. If the optimal R0

does not satisfy the SDR quality constraint when solving (46),
R0 is increased until we reach Rmax. The loop stops when we
find the smallest R0 value that satisfies the SDR constraint.
The complexity of this solution is fast: under 1 sec with the
Matlab optimization toolbox.

The R-D performance of this TMO is compared with two
state of the art TMO designed for R-D performances under a
quality constraint for the SDR image [25], [26] and with the
unconstrained one defined in the previous section. With this
test, the R-D losses induced by the SDR quality constraint can
be measured. Experimental test conditions are identical to the
previous section. The results are shown on Fig-17.

The left and center charts plot the PSNR of the reconstructed
HDR image versus the SDR image bitrate at low and high
rate respectively. The right charts plot the PSNR of the
SDR constraint quality DSDRREF versus the SDR bitrate.
The proposed tone mapping saves 11.78% 39.17% and 2%
of bitrate for the image AtriumNight, FireEater and Ballon
compared to [26] and 5.44%, 1.95% and 2.66% compared to
[25] for the same or even better SDR quality constraint. This
can be explained by the fact that our proposed RD model
is more accurate than those in [25] and [26]. Moreover, as
expected from Fig-16, the SDR quality constraint has a much
bigger impact on the image FireEater.

V. CONCLUSION

This paper presented two new TMOs for HDR backward
compatible compression. Using the HDR image gradient, we
provided new statistical models for estimating DHDR, RSDR
and DSDRREF and showed their accuracy to the real data.
The first TMO minimizes the distortion of the HDR image
under a rate constraint on the SDR layer. The second TMO
remains the same minimization with an additional constraint
to preserve the SDR perceptual quality.
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Fig. 16. Different tone mapping curves for images a. AtriumNight, b. Ballon and c. Fireater. The (36) bound by the slopes s◦k, the (37) bound
is defined by the slopes s†k and the SDR perceptual reference TMO is [19]

Fig. 17. Results for the images AtriumNight Ballon and FireEater. Distortion between the original HDR image X and the reconstructed
image X̃ vs SDR rate - (a) at low rates (b) at high rates (c) SDR quality constraint vs SDR rate

Experimental results show that the first TMO achieves
the optimal rate-distortion performances with a global tone
mapping and can be computed in real-time. As expected,

the second TMO leads to the best trade-off between rate-
distortion performances and quality preservation of the SDR
signal, in comparison to state of the art methods that solve
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approximations of the original optimization problem. Besides,
we showed that spatial gradient is an accurate estimator of
both rate and distortion.

In future works, we will consider the extension to video
compression addressing in particular issues of temporal con-
sistency.
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