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Abstract—In the zero-error Slepian-Wolf source coding prob-
lem, the optimal rate is given by the complementary graph
entropy H of the characteristic graph. It has no single-letter
formula, except for perfect graphs, for the pentagon graph
with uniform distribution G5, and for their disjoint union. We
consider two particular instances, where the characteristic graphs
respectively write as an AND product ∧, and as a disjoint union
⊔. We derive a structural result that equates H(∧ ·) and H(⊔ ·)
up to a multiplicative constant, which has two consequences.
First, we prove that the cases where H(∧ ·) and H(⊔ ·) can be
linearized coincide. Second, we determine H in cases where it
was unknown: products of perfect graphs; and G5 ∧G when G
is a perfect graph, using Tuncel et al.’s result for H(G5 ⊔ G).
The graphs in these cases are not perfect in general.

I. INTRODUCTION

We study the zero-error variant of Slepian and Wolf source
coding problem depicted in Figure 1, where the estimate X̂n

must be equal to Xn with probability one. This problem is also
called “restricted inputs” in Alon and Orlitsky’s work [1].

A. Characteristic graphs and optimal rate H
An adequate probabilistic graph G (i.e. a graph with an

underlying probability distribution on its vertices) can be
associated to a given instance of zero-error source coding
problem in Figure 1, as in Witsenhausen’s work [2]. This
graph is called “characteristic graph” of the problem, as it
encompasses the problem data in its structure: the vertices are
the source alphabet, with the source probability distribution
PX on these vertices, and two source symbols xx′ are adjacent
if they are “confusable”, i.e. PX,Y (x, y)PX,Y (x

′, y) > 0 for
some side information symbol y. By construction, the encoder
must map adjacent symbols in G to different codewords in
order to prevent any decoding error: the colorings of the graph
G directly correspond to zero-error encoding mappings.

The best rate that can be achieved in the problem of Figure
1 with n = 1 is the minimal entropy of the colorings of G, as
shown in [1]. This quantity is called chromatic entropy and is
denoted by

Hχ(G)
.
= inf{H(c(V )) | c is a coloring of G}. (1)

The asymptotic optimal rate in the problem of Figure 1 is
characterized by

H(G) = lim
n→∞

1

n
Hχ(G

∧n), (2)
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Fig. 1. Zero-error Slepian-Wolf source coding problem.

where G∧n is the n-iterated AND product of the characteristic
graph G, see [1]. As shown in [3], it is equal to the comple-
mentary graph entropy defined in [4].

A single-letter formula for H is not known, except for
perfect graphs [5]; and for G5 ⊔ G and its complement, for
all perfect graph G [6], where G5 is the pentagon graph with
uniform distribution.

B. Characteristic graph structure in particular instances

Since determining H is difficult, let us consider particular
instances of the problem in Figure 1, depicted in Figure
2. Both settings have a characteristic graph with a specific
structure. Thanks to the side information at the encoder in
Figure 2.a, the characteristic graph is the disjoint union (⊔)
of a family of auxiliary probabilistic graphs (Gz)z∈Z ; and
in Figure 2.b the characteristic graph is the AND product
(∧) of the (Gz)z∈Z . Both ⊔ and ∧ are binary operators on
probabilistic graphs that play a central role in this study. A
natural question arises in the context of Figure 2: can we
determine the optimal rates if we only know H(Gz) for all
z ∈ Z? With the subadditivity results in [6, Theorem 2],
we know that H

(⊔Pg(Y )

z∈Z Gz

)
≤
∑

z∈Z Pg(Y )H(Gz) and
H
(∧

z∈Z Gz

)
≤
∑

z∈Z H(Gz) holds in general, however
characterizing the cases where equality holds is an open
problem.

C. Related work

If the decoder wants to recover a function f(X,Y ) instead
of X , the setting of Figure 1 becomes the zero-error variant
of the “coding for computing” problem [7]. Charpenay et al.
study in [8] the variant with side information at the encoder,
i.e. the setting from Figure 2.a with f(X,Y ) requested by the
decoder. In [9], Ravi and Dey study a setting with a bidirec-
tional relay. In [10], Malak introduces a fractional version of
chromatic entropy in a lossless coding for computing scenario.
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Fig. 2. Two particular instances of zero-error Slepian-Wolf source coding
problem, where g : Y → Z is deterministic, (X′n

z , Y ′n
z ) ∼ Pn

X,Y |g(Y )=z

for all z ∈ Z , and the pairs ((X′n
z , Y ′n

z ))z∈Z are mutually independent. For
all z ∈ Z , the auxiliary graph Gz is Witsenhausen’s characteristic graph for
the pair (X′

z , Y
′
z ).

Another important problem is the Shannon capacity Θ of a
graph [11], which characterizes the optimal rate in the zero-
error channel coding scenario. Marton has shown in [12] that
H(G) + C(G,P ) = H(P ), where P is the underlying prob-
ability distribution of G, and C(G,P ) is the graph capacity
relative to P . The same questions on linearization arise for
Θ: for which G,G′ do we have Θ(G ∧ G′) = Θ(G)Θ(G′)?
A counterexample is shown by Haemers in [13], using an
upper-bound on Θ based on the rank of the adjacency matrix.
Refinements of Haemers bound are developed in [14] by
Bukh and Cox, and in [15] by Gao et al. Recently in [16],
Schrijver shows that Θ(G ∧ G′) = Θ(G)Θ(G′) is equivalent
to Θ(G ⊔ G′) = Θ(G) + Θ(G′). The computability of Θ
is investigated in [17] by Boche and Deppe. An asymptotic
expression for Θ using semiring homomorphisms is given
by Zuiddam et al. in [18]. In [19], Gu and Shayevitz study
the two-way channel case. An extension of Θ for secure
communication is developed in [20] by Wiese et al.

D. Contributions

In this paper we link the complementary graph entropies
of a disjoint union of probabilistic graphs with that of their
product, i.e. H(⊔ · ) and H(∧ · ). First, we show a structural
result on the complementary graph entropy of a disjoint union
w.r.t. a type PA, that makes use of ∧ instead of ⊔. This enables
us to equate H(⊔·) and H(∧·) up to a multiplicative constant.
This formula has several consequences.

Firstly, we can derive with it a single-letter formula H
of products of perfect graphs. This case was unsolved as a
product of perfect graphs is not perfect in general. However,
a disjoint union of perfect graphs is perfect, this is why
studying disjoint unions is the key. Finally, it enables us
to show that the linearizations of H(⊔ · ) and H(∧ · ) are
equivalent; i.e. if equality holds for either equation in Tuncel
et al.’s subadditivity results [6, Theorem 2], then equality also
holds for the other one. We use this result to determine the
complementary graph entropy of the non-perfect probabilistic
graph G5 ∧G when G is perfect.

In Section II, we define the graph-theoretic concepts we
need to formulate our main theorems in Section III, and their
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consequences in Section IV. An example of application for
these theorems is given in Section V, and the main proofs are
developed in Section VI, Section VII and Section VIII.

II. NOTATIONS AND DEFINITIONS

We denote sequences by xn = (x1, ..., xn).
The set of probability distributions over X is denoted by

∆(X ); PX ∈ ∆(X ) is the distribution of a random variable X .
The uniform distribution is denoted by Unif. The conditional
distribution of X knowing Y is denoted by PX|Y .

A probabilistic graph G is a tuple (V, E , PV ), where (V, E)
is a graph and PV ∈ ∆(V). A subset S ⊆ V is independent
in G if for all x, x′ ∈ S, xx′ /∈ E . A mapping c : V → C is
a coloring if c−1(i) is independent for all i ∈ C. The cycle,
complete, and empty graphs with n vertices are respectively
denoted by Cn, Kn, Nn.

Definition II.1 (AND product ∧) The AND product of G1 =
(V1, E1, PV1

) and G2 = (V2, E2, PV2
) is a probabilistic graph

denoted by G1 ∧G2 with:
- V1 × V2 as set of vertices,
- PV1PV2 as probability distribution on the vertices,
- (v1v2), (v

′
1v

′
2) are adjacent if v1v′1 ∈ E1 AND v2v

′
2 ∈ E2;

with the convention of self-adjacency for all vertices.
We denote by G∧n

1 the n-th AND power: G∧n
1

.
= G1∧ ...∧G1.

Definition II.2 (Disjoint union ⊔ of probabilistic graphs)
Let A be a finite set, and let PA ∈ ∆(A). For all a ∈ A, let
Ga = (Va, Ea, PVa) be a probabilistic graph, their disjoint
union w.r.t. PA is a probabilistic graph (V, E , PV ) denoted
by
⊔PA

a∈AGa and defined by:
- V =

⊔
a∈A Va is the disjoint union of the sets (Va)a∈A;

- For all v, v′ ∈ V , vv′ ∈ E iff they both belong to the
same Va and vv′ ∈ Ea;

- PV =
∑

a∈A PA(a)PVa
; note that the (PVa

)a∈A have
disjoint support in V .

Remark II.3 The disjoint union ⊔ that we consider here is
also called “sum of graphs” by Tuncel et al. in [6]. Note that
⊔ is the disjoint union over the vertices: it differs in nature
from the union over the edges ∪ that is already studied in the
literature, in particular in [21], [5] and [12].

An example of AND product and disjoint union is given in
Figure 3.



III. MAIN RESULT

In this section, A is a finite set, PA is a distribution from
∆(A) and (Ga)a∈A is a family of probabilistic graphs.

In Theorem III.2 we give an expression for the comple-
mentary graph entropy of a disjoint union w.r.t. a type; the
proof is given in Section III-A. With Corollary III.3 we equate
H(⊔ · ) and H(∧ · ) up to a multiplicative constant when
PA = Unif(A).

Definition III.1 (Type of a sequence) Let ak ∈ Ak, its type
Tak is its empirical distribution. The set of types of sequences
from Ak is denoted by ∆k(A) ⊂ ∆(A).

Theorem III.2 If PA ∈ ∆k(A) for some k ∈ N⋆ then

H

(
PA⊔
a∈A

Ga

)
=

1

k
H

(∧
a∈A

G∧kPA(a)
a

)
. (3)

Corollary III.3 H
(⊔Unif(A)

a∈A Ga

)
= 1

|A|H
(∧

a∈AGa

)
.

A. Proof of Theorem III.2

In order to complete the proof, we need Lemma 1, it is the
cornerstone of the connection between H(⊔ · ) and H(∧ · ).
The main reasons why ∧ appears in (4) are the AND powers
used in H , and the distributivity of ∧ w.r.t. ⊔ (see Lemma 2).
The proof of Lemma 1 is developed in Section VI.

Lemma 1 Let (an)n∈N⋆ ∈ AN⋆

be any sequence such that
Tan → PA when n→ ∞. Then we have

H

(
PA⊔
a∈A

Ga

)
= lim

n→∞

1

n
Hχ

(∧
a∈A

G∧nTan (a)
a

)
. (4)

Now let us prove Theorem III.2. Let (an)n∈N⋆ be a k-
periodic sequence such that Tak = PA, then Tank = Tak

for all n ∈ N⋆, and Tan →
n→∞

PA. We can use Lemma 1 and
consider every k-th term in the limit:

H
(⊔PA

a∈AGa

)
= lim

n→∞

1

kn
Hχ

(∧
a∈AG

∧knT
akn (a)

a

)
= lim

n→∞

1

kn
Hχ

((∧
a∈AG

∧kT
ak (a)

a

)∧n)
=

1

k
H
(∧

a∈AG
∧kPA(a)
a

)
.

IV. CONSEQUENCES

A. Single-letter formula of H for products of perfect graphs

With the exceptions of G5 = (C5,Unif({1, ..., 5})) and
G5 ⊔ G and its complement when H(G) is known, the only
cases where H is known are perfect graphs with any under-
lying distribution: it is given by the Körner graph entropy,
defined below. We extend the known cases with Theorem IV.6,
which gives a single-letter expression for H for AND products
of perfect graphs. This case was not solved before, as a product
of perfect graphs is not perfect in general (see Figure 4 for a
counterexample). The proof of Theorem IV.6 is developed in
Section VIII.

Definition IV.1 (Induced subgraph) The subgraph induced
in a graph G by a subset of vertices S is the graph ob-
tained from G by keeping only the vertices in S and the
edges between them, and is denoted by G[S]. When G is
a probabilistic graph, we give it the underlying probability
distribution PV /PV (S).

Definition IV.2 (Perfect graph) A graph G = (V, E) is per-
fect if ∀S ⊂ V, χ(G[S]) = ω(G[S]); where ω is the size of the
largest clique (i.e. complete induced subgraph); and χ(G[S])
is the smallest |C| such that there exists a coloring c : S → C
of G[S]. By extension, we call perfect a probabilistic graph
(V, E , PV ) if (V, E) is perfect.

Definition IV.3 (Körner graph entropy Hκ) For all G =
(V, E , PV ), let Γ(G) be the collection of independent sets of
vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V ∈W∈Γ(G)

I(W ;V ), (5)

where the minimum is taken over all distributions PW |V ∈
∆(W)V , with W = Γ(G) and with the constraint that the
random vertex V belongs to the random independent set W
with probability one, i.e. V ∈W ∈ Γ(G) in (5).

Theorem IV.4 (Strong perfect graph theorem, from [22])
A graph G is perfect if and only if neither G nor its
complement have an induced odd cycle of length at least 5.

Theorem IV.5 (from [5]) Let G be a perfect probabilistic
graph, then H(G) = Hκ(G).

Theorem IV.6 When (Ga)a∈A is a family of perfect prob-
abilistic graphs, the following single-letter characterizations
hold:

H

(∧
a∈A

Ga

)
=
∑
a∈A

H(Ga) =
∑
a∈A

Hκ(Ga), (6)
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Fig. 4. This is the AND product of two perfect graphs C6 and C8. The thick
edges represent an induced subgraph C7, which makes C6 ∧C8 non perfect
by the strong perfect graph Theorem (see Theorem IV.4).



H

(
PA⊔
a∈A

Ga

)
=
∑
a∈A

PA(a)H(Ga) =
∑
a∈A

PA(a)Hκ(Ga).

(7)

B. Linearization of the complementary graph entropy
In their subadditivity result [6, Theorem 2], Tuncel et al.

show that for all probabilistic graphs G1, G2 and α ∈ (0, 1),

H(G1

(α,1−α)
⊔ G2) ≤ αH(G1) + (1− α)H(G2), (8)

H(G1 ∧G2) ≤ H(G1) +H(G2). (9)

We show in Theorem IV.7 that the cases where equality holds
in (8) and (9) coincide.

Theorem IV.7 For all probabilistic graphs G1, G2, for all
α ∈ (0, 1), we have:

H(G1

(α,1−α)
⊔ G2) = αH(G1) + (1− α)H(G2) (10)

⇐⇒H(G1 ∧G2) = H(G1) +H(G2). (11)

We prove and use the more general formula stated in
Theorem IV.8. The proof is given in Section VII.

Theorem IV.8 Let PA ∈ ∆(A) with full-support, then the
following equivalence holds

H

(
PA⊔
a∈A

Ga

)
=
∑
a∈A

PA(a)H(Ga) (12)

⇐⇒ H

(∧
a∈A

Ga

)
=
∑
a∈A

H(Ga). (13)

A case where equality holds in (12) is developed by Tuncel
et al. in [6, Lemma 3]: G5

.
= (C5,Unif({1, ..., 5})) along

with any perfect graph. We provide a single-letter formula for
H(G5 ∧ G) when G is perfect; while G5 ∧ G is not perfect
as G5 ∧G contains an induced C5 (see Theorem IV.4).

Corollary IV.9 For all perfect probabilistic graph G,

H
(
G ∧G5) = H(G) +H(G5) = Hκ(G) +

1
2 log 5. (14)

V. EXAMPLE

In this section, for all i ∈ N⋆, Gi denotes the cy-
cle graph with i vertices uniform distribution, i.e. Gi =(
Ci,Unif({0, ..., i−1})

)
. Both G6 and G8 are perfect, and as

shown in Figure 4, G6 ∧G8 is not a perfect graph. We have:

Hκ(G6) = H(V6)− max
V6∈W6∈Γ(G6)

H(V6|W6) (15)

= 1 + log 3− log 3 = 1 (16)

as H(V6|W6) in (15) is maximized by taking W6 = {0, 2, 4}
when V6 ∈ {0, 2, 4}, and W6 = {1, 3, 5} otherwise.

Similarly, Hκ(G8) = 1.
We can use Theorem IV.5 to find H(G6 ∧G8):

H(G6 ∧G8) = Hκ(G6) +Hκ(G8) = 2. (17)

We can build an optimal coloring of G6 ∧ G8, c∗ :
(v6, v8) 7→ (1v6 is even,1v8 is even).

VI. PROOF OF LEMMA 1

A. Preliminary results

Lemma 2 establishes the distributivity of ∧ w.r.t. ⊔ for
probabilistic graphs, similarly as in [18] for graphs without
underlying distribution. Lemma 3 states that H can be com-
puted with subgraphs induced by sets that have an asymptotic
probability one, in particular we will use it with typical sets
of vertices.

Lemma 2 Let A,B be finite sets, let PA ∈ ∆(A) and PB ∈
∆(B). For all a ∈ A and b ∈ B, let Ga = (Va, Ea, PVa

) and
Gb = (Vb, Eb, PVb

) be probabilistic graphs. Then(
PA⊔
a∈A

Ga

)
∧

(
PB⊔
b∈B

Gb

)
=

PAPB⊔
(a,b)∈A×B

Ga ∧Gb. (18)

Lemma 3 Let G = (V, E , PV ), and (Sn)n∈N⋆ be a sequence
of sets such that for all n ∈ N⋆, Sn ⊂ Vn, and Pn

V (Sn) → 1
when n→ ∞. Then H(G) = limn→∞

1
nHχ

(
G∧n[Sn]

)
.

Definition VI.1 (Isomorphic probabilistic graphs) Let
G1 = (V1, E1, PV1

) and G2 = (V2, E2, PV2
). We say that G1

is isomorphic to G2 if there exists an isomorphism between
them, i.e. a bijection ψ : V1 → V2 such that:

- For all v1, v′1 ∈ V1, v1v′1 ∈ E1 ⇐⇒ ψ(v1)ψ(v
′
1) ∈ E2,

- For all v1 ∈ V1, PV1
(v1) = PV2

(
ψ(v1)

)
.

Lemma 4 (from [8]) Let B be a finite set, let PB ∈ ∆(B)
and let (Gb)b∈B be a family of isomorphic probabilistic
graphs, then Hχ

(⊔PB

b′∈BGb′
)
= Hχ(Gb) for all b ∈ B.

B. Main proof of Lemma 1

For all a ∈ A, let Ga = (Va, Ea, PVA
), and let G =⊔PA

a∈AGa. Let PA ∈ ∆(A), and let (an)n∈N⋆ ∈ AN⋆

be a
sequence such that Tan → PA when n→ ∞.

Let ϵ > 0, and for all n ∈ N⋆ let

T n
ϵ (PA)

.
=
{
an ∈ An

∣∣ ∥Tan − PA∥∞ ≤ ϵ
}
, (19)

P ′n .
=

Pn
A

Pn
A(T n

ϵ (PA))
, Sn

ϵ
.
=

⊔
an∈T n

ϵ (PA)

∏
t≤n

Vat
.

By Lemma 3 we have

H(G) = lim
n→∞

1

n
Hχ

(
G∧n[Sn

ϵ ]
)
, (20)

as Pn
V (Sn

ϵ ) → 1 when n → ∞. Let us study the limit in
(20). For all n large enough, an ∈ T n

ϵ (PA) as Tan → PA.
Therefore, for all an ∈ T n

ϵ (PA) and a′ ∈ A,∣∣Tan(a′)− Tan(a′)
∣∣ ≤ 2ϵ. (21)

We have on one hand

Hχ

((⊔PA

a∈AGa

)∧n
[Sn

ϵ ]
)

= Hχ

((⊔Pn
A

an∈An

∧
t≤nGat

)
[Sn

ϵ ]
)

(22)

= Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
t≤nGat

)
(23)



= Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
a′∈AG

∧nTan (a′)
a′

)
(24)

≤ Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
a′∈AG

∧nTan (a′)+⌈2nϵ⌉
a′

)
(25)

= Hχ

(∧
a′∈AG

∧nTan (a′)+⌈2nϵ⌉
a′

)
(26)

≤ Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
+Hχ

(∧
a′∈AG

∧⌈2nϵ⌉
a′

)
(27)

≤ Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
+ ⌈2nϵ⌉|A| log |V|; (28)

where (22) comes from Lemma 2; (23) comes from the defini-
tion of Sn

ϵ and P ′n in (19); (24) is a rearrangement of the terms
inside the product; (25) comes from (21); (26) follows from
Lemma 4, the graphs

(∧
a′∈AG

∧nTan (a′)+⌈2nϵ⌉
a′

)
an∈T n

ϵ (PA)

are isomorphic as they do not depend on an; (27) follows
from the subadditivity of Hχ; and (28) is the upper bound on
Hχ given by the highest entropy of a coloring.

On the other hand, we obtain with similar arguments

Hχ

((⊔PA

a∈AGa

)∧n
[Sn

ϵ ]
)

≥Hχ

(∧
a′∈AG

∧nTan (a′)−⌈2nϵ⌉
a′

)
(29)

≥Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
−Hχ

(∧
a′∈AG

∧⌈2nϵ⌉
a′

)
, (30)

≥Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
− ⌈2nϵ⌉|A| log |V|. (31)

Note that (30) also comes from the subadditivity of Hχ :
Hχ(G2) ≥ Hχ(G1 ∧G2)−Hχ(G1) for all G1, G2.

By combining (28) and (31) we obtain∣∣∣∣∣ limn→∞

1

n
Hχ(G

∧n[Sn
ϵ ])− lim

n→∞

1

n
Hχ

( ∧
a′∈A

G
∧nTan (a′)
a′

)∣∣∣∣∣
≤ 2ϵ|A| log |V|. (32)

As this holds for all ϵ > 0, combining (20) and (32) yields
the desired result.

VII. PROOF OF THEOREM IV.8

A. Preliminary results

In Lemma 5 we give regularity properties of PA 7→
H
(⊔PA

a∈AGa

)
. Lemma 6 states that if a convex function γ

of ∆(A) meets the linear interpolation of the (γ(1a))a∈A
at an interior point, then γ is linear. We use it for proving
the equivalence in Theorem IV.8, by considering γ = PA 7→
H
(⊔PA

a∈AGa

)
.

Lemma 5 The function PA 7→ H
(⊔PA

a∈AGa

)
is convex and

(logmaxa |Va|)-Lipschitz.

Lemma 6 Let A be a finite set, and γ : ∆(A) → R be a
convex function. Then the following holds:

∃PA ∈ int(∆(A)), γ(PA) =
∑

a∈A PA(a)γ(1a) (33)
⇐⇒ ∀PA ∈ ∆(A), γ(PA) =

∑
a∈A PA(a)γ(1a) (34)

where int(∆(A)) is the interior of ∆(A) (i.e. the full-support
distributions on A).

B. Main proof of Theorem IV.8

(=⇒) Assume that H
(∧

a∈AGa

)
=
∑

a∈AH(Ga).
We can use Corollary III.3: H

(⊔Unif(A)
a∈A Ga

)
=∑

a∈A
1

|A|H(Ga). Thus, the function PA 7→ H
(⊔PA

a∈AGa

)
is convex by Lemma 5, and satisfies (33) with the interior
point PA = Unif(A): by Lemma 6 we have

∀PA ∈ ∆(A), H
(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)H(Ga). (35)

(⇐=) Conversely, assume (35), then PA 7→ H
(⊔PA

a∈AGa

)
is linear. We can use Corollary III.3, and we have
H
(∧

a∈AGa

)
= |A|H

(⊔Unif(A)
a∈A Ga

)
=
∑

a∈AH(Ga).

VIII. PROOF OF THEOREM IV.6

A. Preliminary results

Lemma 7 comes from [23, Corollary 3.4], and states that
the function PA 7→ Hκ

(⊔PA

a∈AGa

)
, defined analogously to

PA 7→ H
(⊔PA

a∈AGa

)
, is always linear.

Lemma 7 For all probabilistic graphs (Ga)a∈A and PA ∈
∆(A), we have Hκ

(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)Hκ(Ga).

Lemma 8 The probabilistic graph
⊔PA

a∈AGa is perfect if and
only if Ga is perfect for all a ∈ A.

B. Main proof of Theorem IV.6

For all a ∈ A, let Ga = (Va, Ea, PVa) be a perfect prob-
abilistic graph. By Lemma 8,

⊔PA

a∈AGa is also perfect; and
we have H

(⊔PA

a∈AGa

)
= Hκ

(⊔PA

a∈AGa

)
by Theorem IV.5.

We also have Hκ

(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)Hκ(Ga) =∑
a∈A PA(a)H(Ga) by Lemma 7 and Theorem IV.5 used on

the perfect graphs (Ga)a∈A.
Therefore (12) is satisfied by the graphs (Ga)a∈A and

PA: by Theorem IV.8, it follows that H
(∧

a∈AGa

)
=∑

a∈AH(Ga) =
∑

a∈AHκ(Ga), where the last equality
comes from Theorem IV.5.

IX. CONCLUSION

Theorem III.2 shows that H
(⊔PA

a∈AGa

)
=

1
kH
(∧

a∈AG
∧kPA(a)
a

)
holds for all PA ∈ ∆k(A). The

consequences of this result are stated in Theorem IV.6,
Theorem IV.8 and Corollary IV.9. We provide a single-letter
formula for H for a new class of graphs. By (2), this allows to
characterize optimal rates for the two source coding problems
depicted in Figure 2.

Proposition IX.1 The optimal rates in the settings from
Figure 2.a and Figure 2.b are respectively given by
H
(⊔Pg(Y )

z∈Z Gz

)
and H

(∧
z∈Z Gz

)
.
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