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Abstract — In this paper, we consider an iterative

receiver composed of a Maximum A Posteriori (MAP)

equalizer and a MAP decoder. During the iterations,

the equalizer and the decoder exchange extrinsic infor-

mation and use them as a priori in order to improve

their performance. We propose here to study analyti-

cally the impact of the a priori information provided by

the channel decoder on the equalizer performance. We

show that it is equivalent to a gain in terms of signal-

to-noise ratio (SNR) and we provide an analytical ex-

pression. Simulation results show that this expession

approximates quite well the SNR gain.

I. Introduction

An important source of degradation in high data rate com-
munication systems is the presence of intersymbol interference
(ISI) between consecutive data symbols which is due to the fre-
quency selectivity of mobile radio channels. In order to improve
the quality of the transmission, an error correction code is gen-
erally used on top of an equalizer. The optimal receiver for a
coded system performs joint equalization and decoding treat-
ing the concatenation of the encoder and the ISI channel as
one code. However, the complexity of this receiver is in gen-
eral prohibitive especially when an interleaver is used. A so-
lution achieving a good complexity/performance trade-off is to
use an iterative receiver constituted of a soft-input soft-output
(SISO) equalizer and a SISO decoder [1], following the idea of
turbo-codes [2]. The basic idea behind iterative processing is
to exchange extrinsic information among the equalizer and the
decoder in order to achieve successively refined performance.

The optimal SISO algorithm, in the sense of minimum bit
error rate (BER), to be used for equalization and decoding is
the symbol MAP algorithm [3]. Hence, the context of this paper
considers an iterative receiver composed of a MAP equalizer and
a MAP decoder. We propose to study analytically the impact of
the a priori information provided by the channel decoder on the
equalizer performance. To do that, we follow the approach of [4]
and [5] which studied the impact of channel estimation errors on
the equalizer performance. In [4], Gorokhov studied the impact
of channel estimation errors on the performance of the Viterbi
equalizer and showed that it is equivalent to a loss in SNR and
evaluated this loss. In [5], we have extended the study to a List-
type MAP equalizer prefiltered by the whitened matched filter,
in the case of multiple-input multiple-output (MIMO) systems.
In this paper, we will show that the use of the a priori infor-
mation by the equalizer is equivalent to a gain in SNR and we
will give an approximation of this gain.
This study is the first step in the convergence analysis of itera-
tive receivers that we will present in future works. Our aim is

to make the analysis in an analytical way on the contrary to the
analysis based on extrinsic information transfer (EXIT) charts
which uses simulations and becomes very difficult if it avoids
them, for trellises with more than two states [6].
The paper is organized as follows. In section 2, we describe the
system model. Section 3 recalls the principle of the iterative re-
ceiver based on MAP equalization and decoding. In section 4,
we study the impact of the a priori information on the equalizer
performance. In section 5, we give simulation results.

Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
(.)T denotes the transposition.

II. System model

We consider a coded data transmission system over a fre-
quency selective channel depicted in Figure 1. The input in-
formation bit sequence is first encoded with a convolutional en-
coder. The output of the encoder is interleaved, mapped to the
symbol alphabet A. For simplicity, we will consider only the
BPSK modulation (A = {+1,−1}). We assume that transmis-
sions are organized into bursts of T symbols. The channel is
supposed to be invariant during one burst. The received base-
band signal sampled at the symbol rate at time k is

xk =

L−1
X

l=0

hlsk−l + nk (1)

where L is the channel memory. In this expression, nk are
modeled as independent samples of a real white Gaussian noise
with normal probability density function (pdf) N (0, σ2) where
N (µ, σ2) denotes a Gaussian distribution with mean µ and vari-
ance σ2. The term hl is the lth tap gain of the channel, which
is assumed to be real valued. Let s = (sT−1, ..., s1−L)T be the
(L+T−1)-long vector of coded symbols and n = (nT−1, ..., n0)

T

be the T -long noise vector. The output of the channel is the T -
long vector x = (xT−1, ..., x0)

T defined as

x = τ (h)s + n (2)

where τ (h) is a T × (T + L − 1) Toeplitz matrix with its
first row equal to (h0, h1, ..., hL−1, 0, ..., 0) and its first column
(h0, 0, ..., 0)T .
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Figure 1: Transmitter structure

When the channel is known and no a priori information is
provided to the equalizer, the data estimate according to the



sequence MAP criterion (equivalently the maximum likelihood
(ML) criterion since there is no a priori) is given by

ŝMAP = arg min
u

“

‖x − τ (h)u‖ : u ∈ AT+L−1
”

. (3)

We now consider a particular error event characterized by its
length m [7]. Thus, we suppose that there exists an interval
of size m such that all the symbols of ŝ are different from the
corresponding symbols of s while the preceding symbol and the
following one are the same for s and ŝ. Define sm and ŝm to
be the vectors of symbols corresponding to this interval and the
vector of errors em = ŝm−sm. A subevent Em of the error event
is that ŝ is better than s in the sense of the ML metric

Em : ‖xm − τm(h)ŝm‖ ≤ ‖xm − τm(h)sm‖ (4)

where xm is the subvector of x and τm(h) is the block of τ (h)
corresponding to the error interval. The probability P (Em) of
Em is given by [7]:

P (Em) = Q

„

‖εm‖

2σ

«

(5)

where εm = τm(h)em and Q(α) = 1√
π

R∞
α

exp(−y2)dy. Let
Σm be the set of all possible error events of length m. Then,
the probability, P (Σm), that any error event is of length m is
bounded by the sum of the probabilities of the subevents Em

P (Σm) ≤
X

Em

P (Em). (6)

Let dmin be the channel minimum distance [7]. Because of the
exponential decrease of the Gaussian distribution function, the
overall probability of error P (Σ) ≤

P

m P (Σm) will be domi-
nated at high SNR by the term involving the minimum value
dmin of ‖εm‖ . Thus

P (Σ) ' Q

„

dmin

2σ

«

(7)

Our goal is to find an approximation of P (Σ) when the equalizer
is integrated into an iterative receiver. In this case, at each
iteration, a priori information are provided to the equalizer by
the channel decoder.

III. Iterative receiver
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Figure 2: Transmitter structure

As shown in Figure 2, the receiver consists of two soft-input
soft-output (SISO) processors, the equalizer and the decoder.
We consider only the MAP approach for both equalization and
decoding, using the BCJR algorithm [3]. The MAP equalizer
computes the a posteriori probabilities (APPs) on the coded
bits, P (sk = s|x), s ∈ A, 1 − L ≤ k ≤ T − 1, and outputs the
log-likelihood ratios (LLRs) [6]:

Le (sk) = L (sk|x) − L (sk)

= log
P (sk = +1|x)

P (sk = −1|x)
− log

P (sk = +1)

P (sk = −1)
(8)

which are the a posteriori LLRs L (sk|x) minus the a priori

LLRs L (sk) . These a priori LLRs are provided by the decoder.
At the first receiver iteration, L (sk) = 0 since no a priori infor-
mation are available. The LLRs Le (sk) are then deinterleaved
and provided to the decoder as input information, in order to
refine its calculations. The MAP decoder computes the APPs
P (sk = s|r), r = (Le (s1−L) , · · · , Le (sT−1))

T
, and outputs the

LLRs

Ld (sk) = log
P (sk = +1|r)

P (sk = −1|r)
− log

P (sk = +1)

P (sk = −1)
.

These LLRs are then interleaved and provided to the equalizer
as a priori, L (sk), at the next iteration. After some iterations,
hard decisions are taken on the information bits by the decoder.

IV. Performance analysis

Now, we want to evaluate the gain in performance due
to the use of a priori information by the MAP equalizer.
The study will be done here for the equalizer using the
sequence MAP criterion. It holds for the symbol MAP
equalizer using the BCJR algorithm [3] since the two equaliz-
ers have almost the same performance as shown in [8, page 814].

Proposition: Suppose we are given a frequency selective
channel with additive white gaussian noise (AWGN) and noise
variance σ2. Assume that the outputs of an AWGN channel
with noise variance σ2

a are also available as observations
(corresponding here to the a priori observations). Then, at
high SNR, the MAP equalizer using the a priori information is
equivalent to the MAP equalizer having no a priori information
but with an equivalent signal-to-noise ratio

ˆSNR = SNR(1 +
8µ2

d2
min

) (9)

where SNR is the true signal-to-noise ratio, µ = σ
σa

and dmin

is the channel minimum distance as defined in [7].

Remark: The representation of the a priori information
as the outputs of an AWGN channel is an accurate representa-
tion of the decoder outputs. Actually, it was shown in [9][10]
that it is equivalent to have at the equalizer input a set of
observations

zk = sk + wk (10)

where wk ∼ N (0, σ2
a). Thus, the LLRs L (sk) fed back from

the decoder can be modeled as independent and identically
distributed (i.i.d) samples from a random variable with the
conditional pdf N (± 2

σ2
a

, 4

σ2
a

) for some σ2
a [9], where the polarity

of the mean is equal to sk.

Proof:
The proof is divided into three parts. First, the probability
of an error subevent of length m, P (Em), is derived and then
upper bounded. Finally, the overall probability of error, P (Σ),
is calculated in order to find an approximation of the equivalent
SNR.



Proof-part1: P (Em)
Taking into account the a priori information, the a posteriori

probability of the sequence s is given by

p(s|x, z) ∝ exp

„

−
‖x − τ (h)s‖2

2σ2

«

exp

„

−
‖z − s‖2

2σ2
a

«

(11)

where z= (zT−1, ..., z1−L)T . The data estimate according to the
sequence MAP criterion is then given by

ŝMAP = arg min
u

„

‖x − τ (h)u‖2 +
σ2

σ2
a

‖z − u‖2 : u ∈ AT+L−1

«

.

A subevent Em of the error event of length m is that ŝm is better
than sm in the sense of the sequence MAP metric

Em : ‖xm − τm(h)ŝm‖2 +
σ2

σ2
a

‖zm − ŝm‖2 ≤

‖xm − τm(h)sm‖2 +
σ2

σ2
a

‖zm − sm‖2
. (12)

Let µ = σ
σa

, y= (xT−1, xT−2, · · · , x0, µzT−1, · · · , µz1−L)T ,

M =
“

(τ (h))T
, µIT+L−1

”T

a (L−1)× (2T +L−1) matrix and

nw = (nT−1, nT−2, · · · , n0, µwT−1, · · · , µw1−L)T . Using (1) and
(10), we can write

y = Ms + nw. (13)

The data estimate according to the sequence MAP criterion is
then given by

ŝMAP = arg min
u

“

‚

‚y − Mu
‚

‚

2
: u ∈ AT+L−1

”

.

Hence, (12) is equivalent to

Em :
‚

‚

‚y
m

− Mmŝm

‚

‚

‚

2

≤
‚

‚

‚y
m

− Mmsm

‚

‚

‚

2

(14)

where y
m

is the (2m + L − 1) × 1 subvector of y corresponding

to the error interval and Mm =
“

(τm(h))T
, µIm

”T

.

Since the components of the vector nw are independent sam-
ples of a real white Gaussian noise with pdf N (0, σ2) and using
the result given in (5), the probability of the error event P (Em)
is

P (Em) = Q

„

‖Em‖

2σ

«

(15)

where Em = Mm(ŝm − sm) = Mmem. Since the modulation
used is the BPSK and then (ŝm − sm) is a vector with m com-
ponents equal to ±2, we obtain,

‖Em‖ = ‖Mm(ŝm − sm)‖

=

‚

‚

‚

‚

“

(τm(h))T
, µIm

”T

(ŝm − sm)

‚

‚

‚

‚

=

q

‖εm‖2 + 4mµ2. (16)

Thus, we can write,

P (Em) = Q

0

@

q

‖εm‖2 + 4mµ2

2σ

1

A . (17)
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Figure 3: The error (19) made on the bound
(

d2

min
+ 8µ2

)

with respect to µ2.

Note that when no a priori information is available, µ = 0 and
then (5) is equal to (17).

Proof-part2: lower bound for
`

‖εm‖2 + 4mµ2
´

:
In order to find an approximation of P (Σ) , the overall
probability of error, we want now to find a lower bound for
the quantity

`

‖εm‖2 + 4mµ2
´

. Actually, at high SNR, this
term will dominate the sum of the probabilities of the error
events (because of the exponential decrease of the Gaussian
distribution function). By definition, ‖εm‖2 ≥ d2

min. Moreover,
we have m ≥ 2. Thus, a lower bound for the quantity
`

‖εm‖2 + 4mµ2
´

is given by

bound(µ2) =
`

d
2
min + 8µ

2
´

. (18)

This bound is reached generally for channels with memory L less
than 6, since for these channels the error sequence allowing to
attain the minimum distance is of length m = 2 (see examples
of channels in [11]). For channels with memory greater than 6,
this bound is still a tight bound. We propose to show this for
three channels given here by their impulse responses [11]:

• Channel7: (0.18; 0.32; 0.48; 0.53; 0.48; 0.32; 0.18)

• Channel8: (0.16; 0.24; 0.43; 0.49; 0.49; 0.43; 0.24; 0.16)

• Channel9: (0.11; 0.21; 0.35; 0.46; 0.48; 0.46; 0.35; 0.21; 0.11).

For these channels, the minimum distance error sequence is
of length m = 6 [11] and thus it does not allow to approach
the bound (18). However, the input sequence error (+2,−2)
allows to approach closely the bound and that’s why we con-
sider it in the following. On figure 3, we plot the normalized
error between the bound bound(µ2) =

`

d2
min + 8µ2

´

and the

quantity
`

‖εm‖2 + 4mµ2
´

computed for the input sequence er-
ror (+2,−2), for the three channels. This error is given by

error(µ2) =
‖εm‖2 − d2

min

bound(µ2)
. (19)

Figure 3 shows that this error is low. Actually, for µ > 0.3,

i.e., σ > 0.3σa, the error is less than 10%. Thus the considered
bound is a tight bound, especially when µ is high.

Proof-part3: P (Σ)
As in the case without a priori, at high SNR, the probability
P (Σ) can be approximated by



P (Σ) ' Q

 

p

d2
min

+ 8µ2

2σ

!

= Q

 

dmin

2σ

s

1 +
8µ2

d2
min

!

. (20)

Comparing (7) with (20), we can conclude that the effect of the
a priori is similar to a gain in SNR. Actually, the expression of
the error probability given in (20) can be seen as the one given
in (7) with an equivalent signal-to-noise ratio

ˆSNR = SNR(1 +
8µ2

d2
min

). (21)

In the following, we propose to verify this analytical result by
simulations.

V. Simulation results

In our simulations, we consider the following channels [11]:

• Channel3: (0.5; 0.71; 0.5)

• Channel5: (0.29; 0.50; 0.58; 0.50; 0.29)

The modulation used is the BPSK. The transmissions are
organized into bursts of 512 symbols. Figures 4 and 5 show
the Bit Error Rate (BER) curves with respect to the SNR, for
different values of the ratio µ = σ

σa

, for Channel3 and Chan-
nel5. Each curve is obtained while the ratio µ is kept constant.
The solid lines indicate the equalizer performance obtained by
simulations. The dotted lines are obtained by shifting the curve
corresponding to the case with no a priori and with a perfect
channel knowledge (µ = 0) by the values of the SNR shift:

10 log10(1 + 8µ2

d2

min

). Table.1 shows the values of the minimum

error distance dmin and the minimum distance input error se-
quence for the channels of interest [11].

Channel3 Channel5

dmin 1.5308 1.0532

Error sequence (2,−2) (2,−2)
Table.1

For both channels, the bound given in (18) is reached for the
error sequence (2,−2) since it is the input sequence allowing to
reach the minimum distance. Figure 4 shows that the theoreti-
cal curves (dotted lines) approximate well the BER for µ < 1.
When µ increases, the approximation becomes erroneous. Fig-
ure 5 shows that the theoretical curves fit better those obtained
by simulations for different values of µ for Channel5. Thus,
the approximation is better for Channel5. We can also con-
clude that the approximation holds in general for σ < σa. For a
given σa, the analytical expression holds for high SNR, such as
σ < σa. Figure 6, compares the performance obtained by simu-
lations and the theoretical performance when σa is kept constant
equal to 0.5. We notice that the theoretical curve approximates
very well the BER when the SNR is high (SNR>5dB). This is
coherent with the assumption we made previously in the perfor-
mance analysis. Actually, in order to obtain (20), we assumed
that the SNR is high.

VI. Conclusion

In this paper, we considered an iterative receiver composed

of a Maximum a posteriori (MAP) equalizer and a MAP de-

coder. We proposed to study analytically the impact of the a
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Figure 4: Comparison of the equalizer performance (solid
curves) and the theoretical performance (dotted curves)
obtained using (21) for Channel3.
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Figure 5: Comparison of the equalizer performance and the
theoretical performance obtained using (21) for Channel5.
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for Channel3.



priori information on the equalizer performance. We gave an

approximation of the error probability which allows us to find

an expression of the gain in terms of the SNR due to the use

of the a priori information. Simulation results show that this

approximation is quite good especially for long channels. This

work is a first step in the study of the convergence analysis of

iterative receivers.
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