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ABSTRACT

In the context of synchronous random DS-CDMA (Direct
Sequence Code Division Multiple Access) communications
over a mobile network, the receiver that minimizes the per-
user bit error rate (BER) is the symbol Maximum a pos-
teriori (MAP) detector. This receiver is derived under the
hypothesis of perfect channel state information at the re-
ceiver. In this paper we consider the case where the channel
noise variance is estimated and analyze the effect of this
mismatch. We show that the Bit Error Rate (BER) is piece-
wise monotonic wrt. the estimated noise variance, reaching
its minimum for the true channel variance. We also pro-
vide an upper bound of the individually optimum receiver
performance under noise variance mismatch. Thus we give
a theoretical justification for the usual bias towards noise
variance underestimation adopted by the community.

1. INTRODUCTION

Code Division Multiple Access (CDMA) is still the indus-
try standard for today’s mobile networks and is likely to
remain at the core of some next generation technologies.
We can think of 3GPP2, i.e. cdma2000, HDSPA, adopted
by the 3GPP community and based on a wideband CDMA,
or China’s standard based on a Time-Division CDMA. All
these prospects make it still highly beneficial to study the
CDMA model.

The optimal multiuser receiver [7], in the sense of min-
imum per user bit error rate (BER) is the symbol Maximum
a posteriori (MAP) detector and is also referenced as indi-
vidually optimum receiver [8]. The derivation and analysis
of this receiver [7] assume that the channel characteristics
(and in particular the channel noise variance) are perfectly
known at the receiver. However, the receiver does not know
perfectly the noise variance and has to estimate it.

Various methods have been proposed to estimate the
channel noise variance or equivalently the signal to noise
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ratio (SNR). Most methods [3, 4, 5] compute a variance es-
timate based on the moments of the received observation.
The interest in noise variance estimators has grown with the
introduction of powerful turbo-codes [2], decoded by means
of the symbol MAP decoder that needs to know the channel
noise variance. Then, in the context of turbo-codes, [6, 9]
study the effect of SNR mismatch and conclude that overes-
timation of SNR is less detrimental than underestimation. In
this paper we give a theoretical justification for this result in
the context of an instantaneous mixture that is synchronous
random DS-CDMA.

We compute here the performance behavior of the indi-
vidually optimum receiver wrt. the noise variance mismatch
and prove that the function BER(σe) decreases monotoni-
cally from σe = 0 to σe = σ, and then increases from
σe = σ to σ → ∞, where the individually optimum re-
ceiver behaves like a simple bank of Matched Filters (MF).

The rest of the present article is organized as follows: in
Section 2 we provide the reader with the theoretical back-
ground concerning the communication model used, and in
Section 3 we give the results obtained. We finally draw
some conclusions in Section 4.

Throughout this paper we will use the notationyi:j =
(yi, . . . , yj) for any sequence{yn}.

2. THEORETICAL BACKGROUND

In this section, the transmitter model (subsection 2.1) and
the individually optimum receiver will be presented. For
the sake of the following analysis, we will also present two
other receivers: the conventional detector (subsection 2.2)
and the jointly optimum receiver (subsection 2.4).

2.1. Transmitter model

Consider a K-user synchronous DS-CDMA system. Userk
is assigned a signaturesk(t), t ∈ [0, T ] and a data symbolbk

to be transmitted over the channel with a signal amplitude
Ak. The information concerning userk is therefore a signal



sig(k, t) during a time periodT :

sig(k, t) = Akbksk(t)

It follows that the received continuous-time real baseband
signal is

y(t) =
K∑

k=1

Akbksk(t) + n(t)

wheren(t) is a zero-mean random Gaussian noise with vari-
anceσ2. In this paper we consider BPSK data modulation,
thebk taking their values in the alphabet{−1,+1}. More-
over the transmitted symbols are assumed to be equally prob-
able.

We consider here also random DS-CDMA such that the
assigned signatures are correlated. We define asρij , the
correlation between the signatures of useri andj:

ρij
∆=

∫ T

0

si(t)sj(t)dt (1)

2.2. Conventional detector

The Conventional detector consists of a bank of matched fil-
ters followed by decision devices.
The bank of matched filters is a bench ofK correlators, one
for each user: if we consider thek-th correlator to imple-
ment the simple function

yk =
∫ T

0

y(t)sk(t)dt (2)

the receiver obtains from the signaly(t) a series ofK values
yk, k ∈ {1, ..., K}. It will then decide aboutbk being±1
considering its estimatêbk = sgn(yk).

2.3. Individually Optimum Detector

The Individually Optimum Detector minimizes the individ-
ual probability of error (or BER of each user). It computes
the most probable symbol given the signal received during
the periodT :

b̂k = arg max
bk

p (bk | {y(t)}0≤t<T ) (3)

This detector is therefore also called symbol MAP detector.
Under the hypothesis of white Gaussian noise, the rule in
the 2-user case for this receiver to decide whetherb1 = ±1
is as follows [8]:

b̂1 = sgn


y1 − σ2

2A1
log


cosh

[
A2y2+A1A2ρ12

σ2

]

cosh
[

A2y2−A1A2ρ12
σ2

]






The symmetric equation holds forb̂2. More generally the
set ofK scalarsy1:K) is a sufficient statistic forbk, where
yk is the output of thek-th matched filter (2).

2.4. Jointly optimum Detector

The Jointly optimum Detector minimizes the joint probabil-
ity of error (i.e. averaged BER of all the users). The deci-
sion rules are such to maximize the joint probability of the
K-upleb1:K given the signal received during the periodT :

b̂1:K = arg max
b1:K

p (b1:K | {y(t)}0≤t<T ) (4)

This receiver can also be called sequence MAP detector.
Under the white Gaussian noise assumption, the decision
rules forb1 andb2 in the 2-user case read [8]

b̂1 = sgn
(
A1y1 + 1

2 |A2y2 −A1A2ρ12|
− 1

2 |A2y2 + A1A2ρ12|
)

b̂2 = sgn
(
A2y2 + 1

2 |A1y1 −A1A2ρ12|
− 1

2 |A1y1 + A1A2ρ12|
)

Here again the set ofK scalarsy1:K is a sufficient statistic
for b1:K .

Remark. We notice that the decision rules of the con-
ventional and jointly optimum receiver do not depend on the
noise variance but not those of the individually optimum do.

2.5. Decision regions

Sincey1:K , is a sufficient statistic forbk and forb1:K [7], the
three receivers presented above can be compared by plotting
the decision regions for each receiver in aK-dimensional
space. This space is the projection of the infinite-dimensional
space in which{y(t)}0≤t<T lives onto the space spanned
by the vector of theK correlated signaturess1:K wheresk

stands for{sk(t)}0≤t<T . In this finite space, it is possi-
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Fig. 1. Decision regions for the 2-user case.
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(5)

ble to draw the region decisions, i.e. the set ofy1:K points
(each point being the projection of one specific received sig-
nal {y(t)}0≤t<T ) where a particular decision̂b1:K is taken
[8].

For the sake of clarity, we plot in figure 1 the decision
regions for the2-user case. The signal amplitudes are set to
1 = A1 = A2 and the correlationρ12 to 0.2. σ2 equals.5.
The vectors(s1(t), s2(t)) are represented: they span the 2-
dimensional space but do not form an orthogonal basis since
they are correlated. The four dots in the figure correspond to
the four possible hypotheses for(b1, b2) ∈ {+1,−1}2. The
three first curves represent the boundaries of the decision
regions for the three receivers seen above,(+, +) meaning

that in that region the decision̂(b1, b2) = (+1, +1) is taken.
In the rest of the paper all the figures are for the 2-user

case, with the simulation settings given above. However all
the proofs are given for the generalK-user case.

3. PERFORMANCE DEGRADATION WHEN THE
INDIVIDUALLY OPTIMUM RECEIVER DOES NOT

RECEIVE THE TRUE σ

In this section, we calculate the performance degradation
when the individually optimum receiver is given a noise
variance different from the true one. Without any loss of
generality, we assume now that the user of interest isk = 1.

3.1. Preliminary properties of the individually optimum
receiver

The noise being Gaussian, the symbols being equiprobable
andy1:K being a sufficient statistic forbk, the performance
of the individually optimum receiver are completely deter-
mined by the likelihood function

p(y1:K | b1:K) =

α exp


 1

σ2

K∑

k=1


Akbkyk −

K∑

j=1,j 6=k

AkAjbkbjρjk







whereα is a multiplicative coefficient independent ofy1:K

andb1:K . It follows that the individually optimum receiver

takes the decision
{

b̂1 = +1 iff p+(y1:K , σ) > p−(y1:K , σ)
b̂1 = −1 otherwise

wherep+ andp− are defined as:

p+(y1:K , σ) ∆= α e
A1y1

σ2
∑

e2∈{±1}
. . .

∑

eK∈{±1}

exp




1
σ2

K∑

k=2


Akekyk −

K∑

j=1:
j 6=k,e1=+1

AkAjekejρjk







p−(y1:K , σ) ∆= α e−
A1y1

σ2
∑

e2∈{±1}
. . .

∑

eK∈{±1}

exp




1
σ2

K∑

k=2


Akekyk −

K∑

j=1:
j 6=k,e1=−1

AkAjekejρjk







(6)
The decision rules can be rewritten as:

{
b̂1 = +1 iff y1 > fσ(y2:K)
b̂1 = −1 otherwise

wherefσ(y2:K) is defined in (5).
Property 1. [8] studies the limit behavior of the decision

boundaries for the individually optimum receiver. First it
shows that the minimum bit error rate decisions converge as
σ → +∞ to those of the conventional detector:

lim
σ→+∞

sgn (y1 − fσ(y2:K)) = sgn y1

Then it shows that the individually optimum decisions con-
verge asσ → 0 to the jointly optimum decisions.

Property 2. The performance of the individually opti-
mum receiver are evaluated through the probability of error
Pe for user1. Conditioned on all possible realizations of the
random variableb2:K , this probability reads

Pe =
∑

b2∈{±1}
. . .

∑

bK∈{±1}

1
2K
P(b̂1 = +1 | b1 = −1, b2:K)

+
∑

b2∈{±1}
. . .

∑

bK∈{±1}

1
2K
P(b̂1 = −1 | b1 = +1, b2:K)



The symmetries of the channel (the channel is output sym-
metric) and of the receiver (the decision regions are central
symmetrics) imply that:

P(b̂1 = −1 | b1 = 1, b2:K) = P(b̂1 = +1 | b1 = −1,−b2:K)

ThusPe may be written considering only the case where
b1 = −1:

Pe =
∑

b2∈{±1}
. . .

∑

bK∈{±1}

1
2K−1

P(b̂1 = +1 | b1 = −1, b2:K)

Using the notationp− introduced in (6), this probability be-
comes:

Pe =
∫

A

p−(y1:K , σ) dy1:K (7)

whereA corresponds to the region where the decisionb̂1 =
+1 is taken i.e.

A = {y1:K : y1 > fσ(y2:K)}

3.2. Performance at the limits

We now assume that the receiver is given a noise variance
σe different from the true oneσ. The fourth curve in Fig-
ure 1 shows the evolution of the decisions boundary for the
individually optimum receiver when the noise variance is
estimated (σ2

e = 2).
Proposition 1. The probability of error of the individu-

ally optimum receiver under noise variance mismatch con-
verges to the one of the conventional detector as the esti-
mated noise varianceσe tends to+∞ and to the one of the
jointly optimum receiver asσe tends to0.

Proof. It follows directly from the convergence of the
decision regions (see Property 1 in Section 3.1) and from
the definition of the probability of error (7). ¤

3.3. Monotonic increase and decrease of the probability
of error

Having determined the limit behavior of the probability of
error under noise variance mismatch, we would like to fur-
ther investigate the behavior of the receiver in the range of
all possible estimated noise variances.

Proposition 2. The probability of error of the individ-
ually optimum receiver under noise variance mismatch is
a piecewise monotonic function of the estimated noise vari-
anceσe. It decreases monotonically fromσe = 0 toσe = σ,
and then increases fromσe = σ to σe → +∞, where the
individually optimum receiver behaves as the conventional
detector.

Proof. Consider now two receivers that estimate the
noise variance toσe and toσ′e. Without loss of general-
ity we assume thatσe > σ′e. We define two setsA andA′

which correspond to the integration domains:

A = {y1:K : y1 > fσe(y2:K)}
A′ = {y1:K : y1 > fσ′e(y2:K)}

Then we introduce the difference between both probabilities
of error:

∆Pe = Pe − P ′e
=

∫

A

p−(y1:K , σ) dy1:K −
∫

A′
p−(y1:K , σ) dy1:K

It is important to note that the densities depend on the obser-
vation and thus on the true variance whereas the decision re-
gions depend on the receiver and therefore on the estimated
variance. We now use the short-hand notation for∆Pe:

∆Pe =
∫

A

p− −
∫

A′
p−

Proof part 1: partitioning the space.The domainsA and
A′ overlap. To determine the non-overlapping areas, we
introduce:

B = {y1:k|fσe(y2:k) < fσ′e(y2:k)}.
It can be easily checked that onB, A′ is included inA (A′∩
B ⊆ A ∩B) whereasA is included inA′ onBc. It follows
that

∆Pe =
∫

A∩B

p− −
∫

A′∩B

p− +
∫

A∩Bc

p− −
∫

A′∩Bc

p−

=
∫

(A\A′)∩B

p− −
∫

(A′\A)∩Bc

p−

Proof part 2: reducing the number of integrals.This
quantity can be further simplified noticing that:
∫

(A′\A)∩Bc

p−(y1:k)dy1:k =
∫

−(A′\A)∩Bc

p−(−y1:k)dy1:k

=
∫

(A\A′)∩B

p−(−y1:k)dy1:k

=
∫

(A\A′)∩B

p+(y1:k)dy1:k

The first equality is obtained by the change of variabley1:k →
z1:k = −y1:k. The second equality is due to the fact that, for
a givenσe, fσe(y2:k) is an odd function ofy2:k, fσe(−y2:k) =
−fσe(y2:k) (and this is immediate from the definition of the
function (5)). The last equality follows from the symmetry
of the channel. We get

∆Pe =
∫

(A\A′)∩B

p− − p+

Proof part 3. Finally we show that the functionσe →
Pe(σe) decreases on[0, σ] and increases on[σ,∞[.



First consider the interval:(σe, σ
′
e) ∈ [0, σ].

Sinceσ′e < σ, for all y1:k belonging to(A\A′)∩B, we have
fσ(y2:k) < fσ′e(y2:k). And by definition ofA, fσ′e(y2:k) <
y1. It follows that on(A \ A′) ∩ B, fσ(y2:k) < y1 which
is equivalent top−(y1:k) − p+(y1:k) < 0 by definition of
fσ(y2:k) (5). Thus∆Pe is the integral of a negative fonc-
tion, so∆Pe is negative.

A similar argument holds for the interval[σe,∞[. ¤

Proposition 2 allows us to derive upper and lower bounds
of the BER for the individually optimum receiver under
noise variance mismatch. In fact, as a corollary we have
that

Corollary 2 . The error probability under noise variance
mismatch is lower bounded by the one of individually op-
timum receiver under perfect variance knowledge (this is
clear since this receiver achieves minimum error probabil-
ity) and upper bounded by the maximum between the BER
of the conventional detector and the BER of the jointly op-
timum receiver.
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Fig. 2. Effect of noise variance mismatch mismatch on the
individually optimum receiver

Figure 2 illustrates proposition 2 and its corollary for
the 2-user case. As it is analytically proven above, the error
probability of the individually optimum receiver is a piece-
wise monotonic function of the estimated noise variance. In
the case of positive signal to noise ratio for user 1 (A1 >
σ2), the BER of the conventional detector is greater than
the BER of the jointly optimum receiver, which is known to
be close to the BER of the individually optimum receiver [1,
page 814]. This justifies a well known result in the commu-
nity that underestimation of the noise variance is less detri-
mental than overestimation.

4. CONCLUSION

In this paper we have studied the behavior of the individu-
ally optimum receiver when it has partial knowledge of the
noise variance. We have shown that the error probability is
piecewise monotonic.

It follows that the error probability under noise variance
mismatch is lower bounded by the one of individually op-
timum receiver under perfect variance knowledge (this is
clear since this receiver achieves minimum error probabil-
ity) and upper bounded by the maximum between the BER
of the conventional detector and of the BER of the jointly
optimum receiver. This shows that underestimation of the
noise variance is less detrimental than overestimation.
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