
Compressive Sensing Aline Roumy

ComputerLab: compressive sensing and application to MRI

This computer lab addresses the implementation and analysis of reconstruction algorithms for
compressive sensing. In particular, an application to Medical resonance imaging (MRI) is addressed.
The goal is to show the connection between compressive sensing and denoising. To get an intuition,
this Lab first explores synthetic 1D sparse signals.

This computer lab employs Python. You can also use jupyter notebook.

Part 1 Denoising sparse 1D signals

Create a script file called tp1.py (or tp1.ipynb) that contains all instructions described below.

(a) Generate a 1×n vector, x, with k non-zero ((1:k)/k) coefficients where n = 128, k = 5, and
permute them randomly.
Create a graph reporting the signal as a function of the position in the vector. For each
plot add labels, titles. You can use latex in the titles.

(b) Add random Gaussian noise with standard deviation σ = 0.05 to the signal, y = x+N .
Create a graph showing the noisy signal.

(c) One approach for denoising consists in using regularization with Tichonov penalty to esti-
mate the signal from noisy data. More precisely, it solves for λ ≥ 0:

x̂ = arg min
z∈Rn

1

2
||z − y||22 + λ

1

2
||z||22 (1)

This optimization trades the norm of the solution with data consistency. This approach has
two advantages: (i) it has a closed form solution, (ii) the estimate is a linear function of
the noisy data.
Show that the problem admits a closed form solution, and that this solution is

x̂ =
1

1 + λ
y (2)

(d) Compute the estimate (2). Create a graph showing the reconstructed signal for λ ∈
{0.01, 0.05, 0.1, 0.2}.
Why is the solution x̂ not sparse?

(e) Instead of Tichonov regularization, which penalizes the l2 norm, we will use the l1 norm
penalized solution. More precisely, we will solve for λ ≥ 0:

x̂ = arg min
z∈Rn

1

2
||z − y||22 + λ||z||1 (3)

Show that the problem admits a closed form solution, and that this solution is

x̂ = SoftThresh(y, λ) =

yl + λ if yl ≤ −λ

0 if |yl| < λ
yl − λ if yl ≥ λ

∀l ∈ {1, ..., n} (4)

In the course, the Basis Pursuit (BP) algorithm has been used instead of a
closed form solution. What is the difference between (3) and the problem
solved by BP?

1

(f) The function (4) is often referred to as Soft-Thresholding or Shrinkage. Write a function
called SoftThresh, that implements (4).
Plot SoftThresh(u, λ) for u ∈ [−10, 10] and λ = 2.
Describe what happens when y is small compared to λ, and when y is large.

(g) Apply SoftThresh to the noisy signal y for λ ∈ {0.01, 0.05, 0.1, 0.2} and include the plot
of x̂ for λ = 0.1 in your report. Is the solution x̂ sparse? Is the solution x̂ the
same as x? In particular, compare the position and the value of the non-zero
coefficients.

Part 2 Random Frequency Domain Sampling and Aliasing

We’ll now explore the connection between compressive sensing and denoising and the importance
of choosing a good measurement matrix. To do so, we’ll observe the effect of regular and then
random sampling of the signal in the frequency domain.

Create a script file called tp2 that contains all instructions described below.

(a) (same as Part 1) Generate a 1 × n vector, x, with k non-zero ((1:k)/k) coefficients where
n = 128, k = 5, and permute them randomly.
Create a graph reporting the signal as a function of the position in the vector.

(b) Compute the Fourier transform of the sparse signal, X = Fx where F is a Fourier transform
operator,
Create a graph reporting the signal X as a function of the position in the vector.

(c) In the following, we will measure a subset of the Fourier transform, Xu = Fux where Fu

is a Fourier transform evaluated only at a subset of frequency domain samples. This is
an underdetermined data set for which there is an infinite number of possible solutions.
However, we do know that the original signal is sparse, so there is hope we will be able
to reconstruct it. This technique of subsampling the Fourier transform coefficients can
be seen as a compressive sensing technique. Indeed, in compressive sensing, we take less
measurements than dictated by the Shannon-Nyquist criterion and take linear combinations
of the signal. More formally, we compute y = Mx, where M is a matrix with more columns
than rows. Fu is an example of such a compressive sensing measurement matrix.
The theory of compressive sensing suggests random undersampling. To see why, we will
look at (non random) equispaced undersampling and compare it to random undersampling.

Undersample the Fourier transform coefficients by taking 32 equispaced samples.
Compute the inverse Fourier transform, filling the missing data (in the frequency domain)
with zeroes, and multiply it by 4 to correct for the fact that we have only 1/4 of the samples,

Plot the real and imaginary parts of xu: real(xu) imag(xu). You should observe that xu
is a periodic version of x. Why? Will we be able to reconstruct the original
signal from the result?

(d) Now, undersample X by taking 32 samples at random. Compute the zero-filled inverse
Fourier transform and multiply by 4 again,
Plot the real and imaginary parts of xr: real(xr) imag(xr). (Use the Matlab functions stem,
hold on/off).
Describe the result. Will we be able to reconstruct the signal from the result?
How does this resemble a denoising problem? And how does this differ from a
denoising problem?

Part 3. Reconstruction from Randomly Sampled Frequency Domain Data

Create a new script file called tp3 that contains all instructions described below.

(a) (same as Part 1) Generate a 1 × n vector, x, with k non-zero ((1:k)/k) coefficients where
n = 128, k = 5, and permute them randomly. Plot x.

2

Create a graph reporting the signal as a function of the position in the vector. Add the
title “original signal x”.

(same as Part 2) Compute the Fourier transform X and undersample X by taking 32 samples
at random. This leads to y, the acquired signal. Create a graph reporting the acquired
signal as a function of the position in the vector. Add the title “acquired signal y”.

Note that here the acquired signal y is a n-length vector, containing “0” and
the “true” acquired samples. This will ease the implementation.

(b) Modify SoftThresh to handle complex signals

x̂ = SoftThresh(y, λ) =

{
0 if |yl| < λ

yl
|yl|(|yl| − λ) if |yl| ≥ λ

∀l ∈ {1, ..., n} (5)

and test this function.

(c) We will now estimate x by taking into account the fact that x is sparse.

To do so, we will implement the Projection Over Convex Sets (POCS) algorithm described
below. This algorithm consists in iteratively applying soft-thresholding and constraining
data consistency. First, we initially set X̂0 = y. Then, we implement the following iteration

i. Compute the inverse Fourier transform to get an estimate of the signal x̂i = F−1X̂i =
F ∗X̂i (F is unitary).

ii. Apply SoftThresh x̂i = SoftThresh(x̂i, λ) in the signal domain (where the signal is
sparse)

iii. Compute the Fourier transform X̂i = Fx̂i

iv. Enforce data consistency in the frequency domain

X̂i+1[j] =

{
X̂i[j] if y[j] = 0
y[j] otherwise

(6)

v. Stop after a fixed number of iteration. Another stopping criterion can be used: repeat
until ||x̂i+1 − x̂i|| < ε (little changes of the estimate) .

(d) Apply the algorithm (at least 100 iterations) to the undersampled signal with λ ∈ {0.01, 0.05, 0.1}
and plot the reconstructed signal at each iteration.

(e) Make a plot of error between the true x and the estimate at each iteration xi as a function
of the iteration number i, plotting the result for each of the λ’s. Comment.

(f) Now, repeat the iterative reconstruction for the equispaced undersampled signal. What’s
wrong?

3

