Quiz

- 1. Given a block image x_{n_1,n_2} , with $n_1 \in \{0, ..., N_1 1\}$ and $n_2 \in \{0, ..., N_2 1\}$, what is the value of $c_{k_1=0,k_2=0}$?
 - A. 1 (whatever the image block is).
 - B. the average of the image block entries, up to a normalizing factor.
 - C. the imaginary part of the image block entries
 - D. the input block turned 90° counter clockwise
- 2. Consider an image that concatenates $c_{k_1=0,k_2=0}$ for each block. What does this image look like?
 - A. the same image with a smaller spatial resolution
 - B. the same image with a higher spatial resolution
 - C. the downsampled image
- 3. Can 2D-DCT decomposition be put into a matrix*vector form such as $c = \Phi x$, where Φ is a matrix and x, c are vectors? and why?

True

False

- 4. What are the differences/similarities between the classical (sampling+compression) approach and sparse approximation?
- 5. Which of the following statements are correct?
 - A. Σ_s is a union of subspaces of dimension s
 - B. Σ_s is a union of subspaces of different dimensions
 - C. Σ_s is a subspace of dimension s