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About me

Aline Roumy
Researcher at Inria, Rennes
Expertise: compression for video streaming
image/signal processing, information theory, machine learning

Web: http://people.rennes.inria.fr/Aline.Roumy/
email: aline.roumy@inria.fr
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Course schedule (tentative)

Compressive sensing (CS): a self-sufficient course with a lot of connections to
sparse approximations

® Dec 2nd: Lecture (CS: intro+ how it works)
® Dec 4th: Lab

® Dec 10th at 9am: Lab (no course in the afternoon)
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Course grading

® Final Exam: about lectures 1-9 (C. Elvira, J. Cohen, C. Herzet)
> written exam (Dec 16th)
» 2 hours - No document.
e Project: about lectures 10-12 (A. Roumy)
» Part 1- Summary of the course
(half page of text not including eventual figures)
> Part 2- Computer lab (Dec 4 and 10th)

> using Collaborative Jupyter notebook

> short (with jupyter) on the lab activities:
max 2 pages for the comments (excluding proofs, figures)
> send the file + files via email to aline.roumy@inria.fr

> You will get a grade from the evaluation of your report.
» deadline Dec. 10th 8pm
e TO DO:

> after 1st course: read the course and write the course summary. Get familiar
with Collaborative Jupyter notebook

> after 2nd course: augment/correct the course summary. Add comments in
YOUR version of the code.

> 3rd course: Add comments in YOUR version of the code. Do the final
question.
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https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing,
Birkhatuiser, 2013.

A Mathematical
Introduction to

Compressive
Sensing

Early and short version:
S. Foucart, Notes on compressed sensing, 2009. (pdf)
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http://www.math.tamu.edu/~foucart/teaching/notes/CS.pdf

Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G.
Kutyniok, Cambridge University Press, 2012.

® Chapter 1:
M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to
compressed sensing. (pdf)

® Short version:
G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM
Mitteilungen 36 (2013), 79-101.
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http://www-stat.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
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Part 1 - Why compressive sensing?
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What is compressive sensing?

Compressive sensing;:
is a novel way to acquire (or sense or sample) and compress data.

Classical = sampling then compression

Compressive sensing = sampling AND compression

Several names exist:
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compressed sensing
compressed sampling
compressive sampling

compressive sensing. More accurate. Chosen in this course.
The one of the reference book.



Part 1 - Why compressive sensing?

Review of classical digital acquisition:
classical=sampling + compression
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Film camera

Film camera: records images passing through the camera’s lens.

shutter
film

object

continuous xz:[0,1]* - R®

image

from teach.robynbriggs.com

continuous
image

Camera | Xr
F——
lens

—

sensing
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Digital camera

Digital camera: converts an image into digital data and compress it.

st continuous

image g discrete
image

aperture

object

sensors
from teach.robynbriggs.com

xg:[0,1]° > R®
x:{1, Ng} x {1, Np} - {0,255}°
y:{1, Mg} x {1, M} - {0,255}°

continuous raw discrete discrete
image image measurements .jpg file image
Camera | Xr Rack of || ¥ Dimensionality y Entropy Entropy Reconstruction |
] R ! [ !
lens sensors reduction coder decoder
sensing compression

In this course: focus on the signal processing processes i.e. sensing + dimensionality reduction
entropy coder is an invertible process (from samples to bit)
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Questions related to Digital camera

Question related to sampling:
is it possible to recover a continuous signal from its sampled (discrete) version?

Wikipedia.

cf. course of Clément Elvira

Question related to compression:
is it possible to reduce the size of a discrete image?
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Sampling: (1) optimal sampling rate

Nyquist—Shannon sampling theorem: “Exact reconstruction of a
continuous-time signal from discrete samples is possible if the signal is

and the sampling frequency is the highest frequency.”
Signal space Subspace of
bandlimited
signals
Reconstruction | * Sampling
Operator (Iinear)i Operator

| I
Observation space

Mike Davies.
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Sampling: (2) degradation if “slow” sampling
Sampling below the optimal rate introduces:

(1) aliasing
X{e)
]
/N .
B B
Aliasing Xfw) T.>nB
\M\/\/\/
R R A
BT,
No Aliasing Xdw) T.<wB
\AANAN/
P M s @

SVinl
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Sampling: (2) degradation if “slow” sampling
Sampling below the optimal rate introduces:
(1) aliasing (2) signal ambiguity

X(w)
1-\
T T w
B B
Aliasing Xw) T,>wB
\M\_/\_/\_/
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BT 40
No Aliasing Xdw) T.<WB '
. | | | ®
an 2n o, o 4n
[ f, [ f, 1+, 2, 2f
: h
0
0 [XA f, f 24, 1,4, 2,
. 3 . : .
SVinl o 5 - = = <
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Compression: (1) image decomposition principle

1- Split image into blocks of size Ny x N, each

2- Decompose each N; x N, image block as:

= 2.92x

2 1.90x. +0.35x l10.12xI I f0.0GxI I I

2 1.42x +0.1 +0.07x +0.06x, +0.05x,

smooth

texture T T T T

basis function

How to choose the basis functions? How to compute the coefficients?
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Compression: (2) image decomposition example
with 2D-discrete cosine transform (DCT) (orthogonal basis)

1- Split image into blocks of size N; x N, each

2- For each Ny x N, image block (xp, n,)

compute the Ny x N, block of transformed image (cx, «,) with:

—1No—

1 T 1
Chy ky = Z Z Xny,np COS [ <n1 + §> kl} cos {WZ (I‘Iz + 5) k2:|

nm=0 ny=0

Example: 8x8 DCT transform

Top-left matrix is (Pp, 5, (k1 = 0, ko = 0))
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Compression: (3) image decomposition result

: image : discrete cosine transform of image

et

Key concept: few degrees of freedom in the transform domain
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Compression: (4) dimensionality reduction with s-term
approximation
1. Dimensionality reduction:

keep the s coefficients c¢; with largest absolute value
2. Reconstruction: ¥ = &~ 1c,

Left: 1% kept Right:5% kept




Summary on classical sensing

Classical
continuous raw discrete discrete
image image measurements .jpg file image
,| Camera | Xr Rack of || ¥ Dimensionality y Entropy Entropy Reconstruction |
— mN
lens sensors reduction coder decoder
sensing compression
Sampling raw discrete HD video
1920x1080=2.07 M pixels/image Compression

25Hz: images/s,
12(=8+-2+2) bits/pixel
— 0.6 Gbit/s
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compression ratio 300: 1!

For instance, HEVC (2013)

0.6 Gbit/s — 2Mbit/s



Classical vs compressive sensing

Classical
continuous raw discrete discrete
image image measurements jpg file image
__ || Camera | Xr Rack of || * Dimensionality _y’ Entropy Entropy L Reconstruction |
lens sensors reduction coder decoder
sensing compression
lots of samples, x:[1, Na] x [1, Np] — {0,255}3
throw most of the coefficients away y: [1,M,] x [1, Mp] — {0,255}3

(MaMb < NaNb)
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Classical vs compressive sensing

Classical
continuous raw discrete discrete
image image measurements .jpg file image
__ || Camera | XRr Rack of || * Dimensionality _y’ Entropy Entropy L Reconstruction | *
lens sensors reduction coder decoder
sensing compression
lots of samples, x: [1, 5] x [1, Ns] — {0,255}3
throw most of the coefficients away y: [1, Ms] x [1, My] — {0,255}

(MaMb < NaNb)

Compressive sensing: can we acquire less data in the first place?
and still recover X7

continuous raw discrete discrete
image image measurements .jpg file image
Camera  XR Rack of X Dimensionality y Entropy Entropy Reconstruction | *
e —_— _— — |
lens sensors reduction coder decoder

Compressive sensing: merge these 3 steps
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Can we sample signals at the “Information Rate”?

Yes, we can!

s

e /0 74

Wikipedia. Wikipedia.
E. J. Candes and T. Tao, 2005 D. L. Donoho, 2006
“Decoding by linear programming” “Compressed sensing”
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Part 2 - Maths of compressive sensing -
how it works?

Notations (Reminder)
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Norms

Definition (/,-norm)

The /,-norm of x € R", p > 1 is defined as

n i/p
Il = (Z 'X’|p> Pt
b= i=1

max |x;| p =00

If p < 1, definition still valid, but triangle inequality not satisfied
= quasi-norm.

Definition (inner product)

n
(x,2) = zTx = Zx,-z,-
i=1

See textbook F.R. for extension to C".
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Definition (support and /p-norm)

The support of a vector x is the index set of its non-zero entries, i.e.

supp (x) = {j € [n] : x; # O}, where [n] ={1,2,...,n}

The lh-norm of x is defined as

[|x|lo = card ( supp (x) )

[|x||lo counts the number of non-zero entries of x.
[|.]lo is not even a quasi-norm.
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Sparsity definition

Definition (s-sparse)

A signal x € R” is said to be s-sparse if it has at most s non-zero entries, i.e.
l[x]lo <'s.

Definition (X)

We define ¥ as the set containing all s-sparse signals, i.e.
Yo ={xeR":||x|o < s}.

Note 1: Sparsity is a highly nonlinear model (X is not a linear space)

Note 2: in many practical cases, x is not sparse itself, but it has a sparse
representation in some basis ®. We still say that x is s-sparse, with the
understanding that we can write x = ®u, and ||u||p < s.
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Approximate sparsity

® A sparse signal can be represented exactly giving the positions and values of
its s nonzero components

® Real-world signals are rarely exactly sparse.
We need to

> generalize the def: from “sparse’’ to “compressible” signals,

> describe the representation error i.e. the error incurred representing just s
components of the signal.
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Best s-term approximation

The best s-term approximation picks the s components that minimize the
representation error
Definition (best s-term approximation)

For p > 0, the /,-error incurred by the best s-term approximation to a vector
x € R" is given by

os(x)p = min |[x — X[|,
X

o If x € X, then o4(x), = 0 for any p.
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Compressible signal

Optimal strategy to compute the best s-term approximation:
thresholding

® Reorder the elements of x by decreasing magnitude
® Pick the first s elements, set all others to zero.

Definition (compressible signal)

a signal x € R" is said to be compressible if the error of its best s-term
approximation decays quickly in s

i.e. if 3Gy, g > 0 such that |x;| < Gi~9., when the coefficients have been ordered
such that |x1| > |xa|... > |Xn]-
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Sparsity support

Suppose x € R". Let S C [n] and §¢ C [n]\S
e S: of x, i.e. the locations of the nonzero coefficients of x
® G¢: set of locations of the 0 coefficients

® S for compressible signal: set of locations of the coefficients belonging to the
best s-term approximation of x.

Notation
Xs vector obtained by setting the entries of x indexed by 5S¢ to 0.
Ms matrix obtained by setting the columns of M indexed by S¢ to 0.

® Same notation to denote vectors/matrices where the elements/columns have
been removed, instead of being set to 0
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Part 2 - Maths of compressive sensing -
how it works?

Problem formulation
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Compressive sensing

Goal of Compressive sensing (CS):

® achieve the same reconstruction quality on X as the best s-term
approximation

® from the measurement y acquired with a nonadaptive encoder.

continuous raw discrete discrete
image image measurements pg file image
R, | * ) Y| Entropy Entropy Reconstruction | X
— N | —
coder decoder

Compressive sensing: merge these 3 steps

To achieve this, we need to
@ model the dependency between signal x and measurement y
® formulate the reconstruction problem
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Sensing process model

(Modeling the dependency between signal and measurement)

Let x € R™ be a s-sparse signal to be recovered.

Let y € R™ m < n, be linear measurements of the signal as
y = Mx

with M € R™", being the sensing matrix.
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Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x,
S-sparse.

X

Difficulties?
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Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x,
S-sparse.

X
Difficulties?

® Underdetermined system = infinitely many solutions.
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Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x,
S-sparse.

X
Difficulties?
® Underdetermined system => infinitely many solutions.

® |dea exploit the sparsity assumption of x.
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Minimum /p-norm solution

X = argzrg]ilg ||z||o subject to Mz =y

Complexity?
® Problem is non-convex

® Problem is NP-hard:
for a given s, try all possible ('s’) supports, estimate the s nonzero values of x,
check if constraint is satisfied
= infeasible for practical problem sizes
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Practical philosophies

= argzr’g]ilgn ||z||o subject to Mz =y

Greedy Thresholding Convex relaxation
algorithms algorithms algorithms
Focus on ||x]|o Focus on y ~ Mx Solve a nicer problem

see course C. Elvira
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Signal sparse in transform domain

Real signals are rarely directly sparse...
but rather sparse in a transform domain

£ 100 150 200

original image DCT coefficients of the image
in the transform domain
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Signal sparse
vs signal sparse in transform domain

X sparse x = Pu, u sparse
SENSING SENSING
y = Mx y = Mx
RECONSTRUCTION RECONSTRUCTION
% = arg min g ||2][1 0 = arg min cgn ||2|[1
subject to Mz =y subject to Mdz =y
X = o0

In conclusion: sparse vs sparse in the transform domain
® same sensing
® similar reconstruction problem

® Make sure that M® (and not M) is a “good” sensing matrix
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Part 2 - Maths of compressive sensing -
how it works?

Compressive sensing vs other schemes
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Compressive sensing (CS)
vs Sparse approximation (SA)

Linear encoding Non-linear decoding
X Encoder Y Decoder *
y=Mx
m<<n

matrix M independent of x

Linear | Decoder matrix D(S) depends on x
decoding| £ = D(S)é(S)

c
o . .
=) ) Encoder Compressive sensing
o] Non-linear
i support S
g encoding
=
o
_
o . s =card(S)<<n
= és) s out of d>>n
Q
4
(30}
o
w

=
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CS vs SA (con’t)

Non-linear solvers:

CS Given y and M, find X sparse
such that Mx =~ y.

Return X with guarantee that
||Xx —x|| small

SA Given x and D, find ¢ sparse
such that X = D¢ ~ x.

Return X with guarantee that
[|X = x|| =||D(&¢ — ¢)|| small
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CS vs SA (con’t)

Non-linear solvers:

44/ 55

CS Given y and M, find X sparse
such that Mx =~ y.

Return X with guarantee that
[|Xx = x|| small

SA Given x and D, find ¢ sparse
such that X = D¢ ~ x.

Return X with guarantee that
[|X = x|| =||D(&¢ — ¢)|| small

Same decomposition algorithms

Different criteria



CS vs SA (con’t)

Non-linear solvers:

CS Given y and M, find X sparse
such that Mx =~ y.

Return X with guarantee that
[|x — x|| small

SA Given x and D, find ¢ sparse
such that X = D¢ ~ x.

Return X with guarantee that

[|x = x|| = ||D(€ = ¢)|| small

Root-finding algorithm:
CS Given y =0 and f, find X such
that y = 0 = f(X).
Return X with guarantee that
[|X = x|| small

SA Given y =0 and f, find X such

that y = 0= § = f(X).

Return y with guarantee that
[|f(%) — 0| small

CS: proximity to the true root
SA: proximity to zero in the range of the function
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CS vs SA (con’t)

y Root-finding algorithm:
f1x) CS Given y =0 and f, find X such
y=Jx . that y = 0 ~ £(X).
solutions of CS Return X with guarantee that
=== solutions of SA
|x — x||  small

SA Given y =0 and f, find X such

€ -%—o that y =0~ § = f(X).

i ; X Return y with guarantee that
E\

|f(x) —0]| small

CS: proximity to the true root
SA: proximity to zero in the range of the function
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Part 3 - Compressive sensing -
good sensing matrix?

First insights
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Sensing process

X

® How should we choose a “good” matrix M with m < n?
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Sensing matrices that are not good

e RN

Vector vy is all zero!
— If x sparse, M must be non-sparse
— We need M to be different from x
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Good sensing matrices

® if A follows a distribution with ,
=constant,

[easy construction / easy to verify...]

then with at least 1 — 2e=%™ ¢y= constant

exact reconstruction under Py, OMP, IHT...

® Gaussian, Bernoulli (Rademacher entries) matrices ..., subsampled Fourier
matrices achieve exact reconstruction.

® the constant ¢ depends on the algorithm and the sensing matrix distribution.
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Part 4 - Compressive sensing -
what it is good for?
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How to spot a compressive sensing system?

Case 1
® Think about systems that use a raster mode for sampling
then think of physical ways to perform multiplexing instead

® Once you perform the multiplexing,
use compressive sensing solvers to reconstruct signal

® Does it work better or as well with fewer measurements ?
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Example: single pixel camera

Classical i=1

Ome Pixel shining (all other not shining in dir ection of PD)
Low-cost, fast, sensitive
optical detection

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD . for reconstruction
and-randombasis.
one pixel at a time ((
DSP
Rewr
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Example: single pixel camera

Classical i=2

Low-cost, fast, sensitive
optical detection

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and-randombasis.
one pixel at a time (((

52/ 55
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Example: single pixel camera

Classical i=3

Low-cost, fast, sensitive
optical detection

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and-randombasis.
one pixel at a time (((

52/ 55
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Example: single pixel camera

Classical i=4

Low-cost, fast, sensitive
optical detection

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and-randombasis.
one pixel at a time (((
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Example: single pixel camera

Classical i=5

Low-cost, fast, sensitive
optical detection

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and-randombasis.
one pixel at a time (((
Rewr
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Example: single pixel camera

Classical i=1000

Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and-randombasis.

— (GY—-
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Example: single pixel camera

Classical i=10000000

Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF
Image encoded by DMD
and-randombasis.

for reconstruction

— (GY—-

one pixel at a time

52/ 55



Example: single pixel camera

Compressive sensing i=1

Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction

and random basis
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Example: single pixel camera

Compressive sensing i=2

Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF

Image encoded by DMD for reconstruction

and random basis b
"""" DSP
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Example: single pixel camera

Compressive sensing i=3

Low-cost, fast, sensitive
optical detection
PD
=

Xmitr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction

and random basis
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Example: single pixel camera

Compressive sensing

Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF
for reconstruction

(

Revr

Image encoded by DMD
and random basis

DSP

if image is 3-sparse, the sufficient number of measurements scales with 3 and not
the size of the image!!!!
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How to spot a compressive sensing system?

Case 2
® | ook for acquisition schemes that multiplexes a signal already
® |s the signal produced by this system sparse in some basis?

® If yes, subsample the acquisition,
use compressive sensing solvers to reconstruct signal

® Does it work better or as well with fewer measurements ?
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Part 5 - Compressive sensing -
summary
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Compressive sensing overview

Observe x € R" via m measurements, with m << n
More precisely, y = Mx where y € R™

Compressible
set of interest

Assumptions:

- signal approximately s-sparse

n
- use m > ¢ slog —, c=constant, random
s

linear measurements

. . nonlinear l
- reconstruct by a non linear mapping approximation

(reconstruction) random projection

(observation)

%l

Mike Davies.
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