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About me

Aline Roumy
Researcher at Inria, Rennes
Expertise: compression for video streaming

image/signal processing, information theory, machine learning

Web: http://people.rennes.inria.fr/Aline.Roumy/

email: aline.roumy@inria.fr
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Course schedule (tentative)

Compressive sensing (CS): a self-sufficient course with a lot of connections to
sparse approximations

• Dec 2nd: Lecture (CS: intro+ how it works)

• Dec 4th: Lab

• Dec 10th at 9am: Lab (no course in the afternoon)
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Course grading
• Final Exam: about lectures 1-9 (C. Elvira, J. Cohen, C. Herzet)

I written exam (Dec 16th)
I 2 hours - No document.

• Project: about lectures 10-12 (A. Roumy)
I Part 1- Summary of the course

(half page of text not including eventual figures)

I Part 2- Computer lab (Dec 4 and 10th)
I using Collaborative Jupyter notebook
I write a short report (with jupyter) on the lab activities:

max 2 pages for the comments (excluding proofs, figures)
I send the pdf file + code files via email to aline.roumy@inria.fr
I You will get a grade from the evaluation of your report.

I deadline Dec. 10th 8pm

• TO DO:
I after 1st course: read the course and write the course summary. Get familiar

with Collaborative Jupyter notebook
I after 2nd course: augment/correct the course summary. Add comments in

YOUR version of the code.
I 3rd course: Add comments in YOUR version of the code. Do the final

question.
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Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing,
Birkhaüser, 2013.

Early and short version:
S. Foucart, Notes on compressed sensing, 2009. (pdf)
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http://www.math.tamu.edu/~foucart/teaching/notes/CS.pdf


Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G.
Kutyniok, Cambridge University Press, 2012.

• Chapter 1:
M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to
compressed sensing. (pdf)

• Short version:
G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM
Mitteilungen 36 (2013), 79-101.
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http://www-stat.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
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Part 1 - Why compressive sensing?
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What is compressive sensing?

Compressive sensing:
is a novel way to acquire (or sense or sample) and compress data.

Classical = sampling then compression

Compressive sensing = sampling AND compression

Several names exist:

• compressed sensing

• compressed sampling

• compressive sampling

• compressive sensing. More accurate. Chosen in this course.
The one of the reference book.
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Part 1 - Why compressive sensing?

Review of classical digital acquisition:
classical=sampling + compression
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Film camera

Film camera: records images passing through the camera’s lens.

𝑥𝑅: 0,1
2 → ℝ3

Camera
lens

continuous 
image

𝑥𝑅

sensing

from teach.robynbriggs.com

.
.
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Digital camera

Digital camera: converts an image into digital data and compress it.

𝑥𝑅: 0,1
2 → ℝ3

𝒙: 1, 𝑁𝑎 × 1,𝑁𝑏 → 0,255 3

𝐲: 1,𝑀𝑎 × 1,𝑀𝑏 → 0,255 3

Camera
lens

Rack of 
sensors

Dimensionality 
reduction

Entropy 
coder

Entropy 
decoder

Reconstruction

continuous 
image

raw discrete 
image measurements

𝑥𝑅 𝒙

sensing

𝐲

compression

.jpg file

ෝ𝒙

discrete 
image

from teach.robynbriggs.com

In this course: focus on the signal processing processes i.e. sensing + dimensionality reduction
entropy coder is an invertible process (from samples to bit)
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Questions related to Digital camera

Question related to sampling:
is it possible to recover a continuous signal from its sampled (discrete) version?

Wikipedia.

cf. course of Clément Elvira

Question related to compression:
is it possible to reduce the size of a discrete image?

14/ 55



Sampling: (1) optimal sampling rate

Nyquist–Shannon sampling theorem: “Exact reconstruction of a
continuous-time signal from discrete samples is possible if the signal is bandlimited
and the sampling frequency is greater than twice the highest frequency.”

IDCOM, University of Edinburgh

Classical Sampling Theory

The Whittaker–Kotelnikov–Shannon 

Sampling Theorem states: 

“Exact reconstruction of a continuous-time 

signal from discrete samples is possible if 

the signal is bandlimited and the sampling 

frequency is greater than twice the highest 

frequency.” 

Sampling below this rate introduces aliasing

Subspace of 

bandlimited 

signals 

Sampling 

Operator 

S i g n a l s p a c e 

Reconstruction 

Operator (linear) 

Observation space 
Mike Davies.
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Sampling: (2) degradation if “slow” sampling
Sampling below the optimal rate introduces:

(1) aliasing

SVI.nl

(2) signal ambiguity
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Compression: (1) image decomposition principle

1- Split image into blocks of size N1 × N2 each

2- Decompose each N1 × N2 image block as:

How to choose the basis functions? How to compute the coefficients?
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Compression: (2) image decomposition example

with 2D-discrete cosine transform (DCT) (orthogonal basis)
1- Split image into blocks of size N1 × N2 each

2- For each N1 × N2 image block (xn1,n2 )
2- compute the N1 × N2 block of transformed image (ck1,k2 ) with:

ck1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
︸ ︷︷ ︸

Φn1,n2 (k1, k2)

Example: 8x8 DCT transform
Top-left matrix is (Φn1,n2 (k1 = 0, k2 = 0))n1,n2

Quiz 1, 2, 3
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Compression: (3) image decomposition result

Left: image Right: discrete cosine transform of image

Key concept: few degrees of freedom in the transform domain
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Compression: (4) dimensionality reduction with s-term

approximation
1. Dimensionality reduction:

keep the s coefficients cs with largest absolute value
2. Reconstruction: x̂ = Φ−1cs

Left: 1% kept Right:5% kept

Quiz 420/ 55



Summary on classical sensing

Classical

𝑥𝑅: 0,1
2 → ℝ3

𝒙: 1, 𝑁𝑎 × 1,𝑁𝑏 → 0,255 3

𝐲: 1,𝑀𝑎 × 1,𝑀𝑏 → 0,255 3

Camera
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.jpg file
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discrete 
image

from teach.robynbriggs.com

Sampling raw discrete HD video
1920x1080=2.07 M pixels/image
25Hz: images/s,
12(=8+2+2) bits/pixel

→ 0.6 Gbit/s

Compression
For instance, HEVC (2013)
0.6 Gbit/s → 2Mbit/s

compression ratio 300:1!!!
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Classical vs compressive sensing

Classical

𝑥𝑅: 0,1
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take
lots of samples, x : [1,Na]× [1,Nb]→ {0, 255}3

throw most of the coefficients away y : [1,Ma]× [1,Mb]→ {0, 255}3

(MaMb � NaNb)

Compressive sensing: can we acquire less data in the first place?
Compressive sensing: and still recover x̂?

Camera
lens

Rack of 
sensors

Dimensionality 
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Entropy 
decoder

Reconstruction

𝑥𝑅: 0,1
2 → ℝ3

measurements
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𝐲: 1,𝑀𝑎 × 1,𝑀𝑏 → 0,255 3

𝑥𝑅 𝒙 𝐲

.jpg file

ෝ𝒙
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image

Compressive sensing: merge these 3 steps
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Can we sample signals at the “Information Rate”?

Yes, we can!

Wikipedia.

E. J. Candes and T. Tao, 2005
“Decoding by linear programming”

Wikipedia.

D. L. Donoho, 2006
“Compressed sensing”
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Part 2 - Maths of compressive sensing -
how it works?

Notations (Reminder)
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Norms

Definition (lp-norm)

The lp-norm of x ∈ Rn, p > 1 is defined as

||x ||p =


(

n∑
i=1

|xi |p
)1/p

p ∈ [1,∞)

max
i
|xi | p =∞

If p < 1, definition still valid, but triangle inequality not satisfied
⇒ quasi-norm.

Definition (inner product)

〈x , z〉 = zT x =
n∑

i=1

xizi

See textbook F.R. for extension to Cn.
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Definition (support and l0-norm)

The support of a vector x is the index set of its non-zero entries, i.e.

supp (x) = {j ∈ [n] : xj 6= 0}, where [n] = {1, 2, ..., n}

The l0-norm of x is defined as

||x ||0 = card ( supp (x) )

||x ||0 counts the number of non-zero entries of x .
||.||0 is not even a quasi-norm.
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Sparsity definition

Definition (s-sparse)

A signal x ∈ Rn is said to be s-sparse if it has at most s non-zero entries, i.e.
||x ||0 ≤ s.

Definition (Σs)

We define Σs as the set containing all s-sparse signals, i.e.
Σs = {x ∈ Rn : ||x ||0 ≤ s}.

Quiz 5

Note 1: Sparsity is a highly nonlinear model (Σs is not a linear space)

Note 2: in many practical cases, x is not sparse itself, but it has a sparse
representation in some basis Φ. We still say that x is s-sparse, with the
understanding that we can write x = Φu, and ||u||0 ≤ s.
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Approximate sparsity

• A sparse signal can be represented exactly giving the positions and values of
its s nonzero components

• Real-world signals are rarely exactly sparse.
We need to

I generalize the def: from “sparse’’ to “compressible” signals,
I describe the representation error i.e. the error incurred representing just s

components of the signal.
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Best s-term approximation

The best s-term approximation picks the s components that minimize the
representation error

Definition (best s-term approximation)

For p > 0, the lp-error incurred by the best s-term approximation to a vector
x ∈ Rn is given by

σs(x)p = min
x̂∈Σs

||x − x̂ ||p

• If x ∈ Σs , then σs(x)p = 0 for any p.
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Compressible signal

Optimal strategy to compute the best s-term approximation:
thresholding

• Reorder the elements of x by decreasing magnitude

• Pick the first s elements, set all others to zero.

Definition (compressible signal)

a signal x ∈ Rn is said to be compressible if the error of its best s-term
approximation decays quickly in s
i.e. if ∃C1, q > 0 such that |xi | ≤ C1i

−q., when the coefficients have been ordered
such that |x1| ≥ |x2|... ≥ |xn|.
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Sparsity support

Suppose x ∈ Rn. Let S ⊂ [n] and Sc ⊂ [n]\S
• S : sparsity support of x , i.e. the locations of the nonzero coefficients of x

• Sc : set of locations of the 0 coefficients

• S for compressible signal: set of locations of the coefficients belonging to the
best s-term approximation of x .

Notation

xS vector obtained by setting the entries of x indexed by Sc to 0.

MS matrix obtained by setting the columns of M indexed by Sc to 0.

• Same notation to denote vectors/matrices where the elements/columns have
been removed, instead of being set to 0
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Part 2 - Maths of compressive sensing -
how it works?

Problem formulation
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Compressive sensing

Goal of Compressive sensing (CS):

• achieve the same reconstruction quality on x̂ as the best s-term
approximation

• from the measurement y acquired with a nonadaptive encoder.
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𝑥𝑅: 0,1
2 → ℝ3
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𝒙: 1, 𝑁𝑎 × 1,𝑁𝑏 → 0,255 3

𝐲: 1,𝑀𝑎 × 1,𝑀𝑏 → 0,255 3

𝑥𝑅 𝒙 𝐲

.jpg file

ෝ𝒙

discrete 
image

Compressive sensing: merge these 3 steps

continuous 
image

raw discrete 
image

To achieve this, we need to

1 model the dependency between signal x and measurement y

2 formulate the reconstruction problem
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Sensing process model

(Modeling the dependency between signal and measurement)

Let x ∈ Rnx1 be a s-sparse signal to be recovered.

Let y ∈ Rmx1, m < n, be linear measurements of the signal as
y = Mx

with M ∈ Rmxn, being the sensing matrix.
Sensing process

= .

y M

x

• How should we choose a “good” matrix A with m π n??
• How do we reconstruct x from y , given A?

49 / 235
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Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx , Recover x,
s-sparse.

Sensing process

= .

y M

x

• How should we choose a “good” matrix A with m π n??
• How do we reconstruct x from y , given A?

49 / 235

Difficulties?

• Underdetermined system ⇒ infinitely many solutions.

• Idea exploit the sparsity assumption of x .
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Minimum l0-norm solution

x̂ = arg min
z∈Rn
||z ||0 subject to Mz = y

Complexity?

• Problem is non-convex

• Problem is NP-hard:
for a given s, try all possible

(
n
s

)
supports, estimate the s nonzero values of x ,

check if constraint is satisfied
⇒ infeasible for practical problem sizes
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Practical philosophies

x̂ = arg min
z∈Rn
||z ||0 subject to Mz = y

Greedy
algorithms

Focus on ||x ||0

Thresholding
algorithms

Focus on y ∼ Mx

Convex relaxation
algorithms

Solve a nicer problem

see course C. Elvira
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Signal sparse in transform domain

Real signals are rarely directly sparse...
but rather sparse in a transform domain

original image DCT coefficients of the image
original image in the transform domain
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Signal sparse
vs signal sparse in transform domain

x sparse

SENSING
y = Mx

RECONSTRUCTION
x̂ = argminz∈Rn ||z ||1

subject to Mz = y
.

x = Φu, u sparse

SENSING
y = Mx

RECONSTRUCTION
û = argminz∈Rn ||z ||1

subject to MΦz = y
x̂ = Φû

In conclusion: sparse vs sparse in the transform domain

• same sensing

• similar reconstruction problem

• Make sure that MΦ (and not M) is a “good” sensing matrix
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Part 2 - Maths of compressive sensing -
how it works?

Compressive sensing vs other schemes
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Compressive sensing (CS)
vs Sparse approximation (SA)
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CS vs SA (con’t)

Non-linear solvers:

CS Given y and M, find x̂ sparse
such that Mx̂ ≈ y .

Return x̂ with guarantee that
||x̂ − x || small

SA Given x and D, find ĉ sparse
such that x̂ = Dĉ ≈ x .

Return x̂ with guarantee that
||x̂ − x || = ||D(ĉ − c)|| small

CS: proximity to the true root

SA: proximity to zero in the range of the function
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CS vs SA (con’t)

Non-linear solvers:

CS Given y and M, find x̂ sparse
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SA Given x and D, find ĉ sparse
such that x̂ = Dĉ ≈ x .
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Same decomposition algorithms
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CS vs SA (con’t)

Non-linear solvers:

CS Given y and M, find x̂ sparse
such that Mx̂ ≈ y .

Return x̂ with guarantee that
||x̂ − x || small

SA Given x and D, find ĉ sparse
such that x̂ = Dĉ ≈ x .

Return x̂ with guarantee that
||x̂ − x || = ||D(ĉ − c)|| small

Root-finding algorithm:

CS Given y = 0 and f , find x̂ such
that y = 0 ≈ f (x̂).

Return x̂ with guarantee that
||x̂ − x || small

SA Given y = 0 and f , find x̂ such
that y = 0 ≈ ŷ = f (x̂).

Return ŷ with guarantee that
||f (x̂)− 0|| small

CS: proximity to the true root
SA: proximity to zero in the range of the function
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CS vs SA (con’t)

𝜖𝜖
𝜖𝜖 x

y
y=f(x)

solutions of SA
solutions of CS

Root-finding algorithm:

CS Given y = 0 and f , find x̂ such
that y = 0 ≈ f (x̂).
Return x̂ with guarantee that

||x̂ − x || small

SA Given y = 0 and f , find x̂ such
that y = 0 ≈ ŷ = f (x̂).
Return ŷ with guarantee that

||f (x̂)− 0|| small

CS: proximity to the true root
SA: proximity to zero in the range of the function
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Part 3 - Compressive sensing -
good sensing matrix?

First insights
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Sensing process
Sensing process

= .

y M

x

• How should we choose a “good” matrix A with m π n??
• How do we reconstruct x from y , given A?

49 / 235

• How should we choose a “good” matrix M with m� n?
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Sensing matrices that are not good

Sensing matrices that are not good

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

x
Mk

• Vector y is all zero!
I We need A to be di�erent from x (in this case non-sparse)

∆ incoherence

56 / 235

Vector y is all zero!
→ If x sparse, M must be non-sparse
→ We need M to be different from x
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Good sensing matrices

• if A follows a subgaussian distribution with m ≥ c s ln(n/s),
c=constant,

[easy construction / easy to verify...]

then with probability at least 1− 2e−c0m, c0= constant

exact reconstruction under P1, OMP, IHT...

• Gaussian, Bernoulli (Rademacher entries) matrices ..., subsampled Fourier
matrices achieve exact reconstruction.

• the constant c depends on the algorithm and the sensing matrix distribution.
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Part 4 - Compressive sensing -
what it is good for?

.
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How to spot a compressive sensing system?

Case 1

• Think about systems that use a raster mode for sampling
then think of physical ways to perform multiplexing instead

• Once you perform the multiplexing,
use compressive sensing solvers to reconstruct signal

• Does it work better or as well with fewer measurements ?

51/ 55



Example: single pixel camera

Classical i=1
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Example: single pixel camera

Classical i=2
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Example: single pixel camera

Classical i=3
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Example: single pixel camera

Classical i=4
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Example: single pixel camera

Classical i=5
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Example: single pixel camera

Classical i=1000
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Example: single pixel camera

Classical i=10000000
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Example: single pixel camera

Compressive sensing i=1
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Example: single pixel camera

Compressive sensing i=2
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Example: single pixel camera

Compressive sensing i=3
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Example: single pixel camera

Compressive sensing

if image is 3-sparse, the sufficient number of measurements scales with 3 and not
the size of the image!!!!
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How to spot a compressive sensing system?

Case 2

• Look for acquisition schemes that multiplexes a signal already

• Is the signal produced by this system sparse in some basis?

• If yes, subsample the acquisition,
use compressive sensing solvers to reconstruct signal

• Does it work better or as well with fewer measurements ?
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Part 5 - Compressive sensing -
summary

.
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Compressive sensing overview

Observe x ∈ Rn via m measurements, with m� n
More precisely, y = Mx where y ∈ Rm

Assumptions:

- signal approximately s-sparse

- use m ≥ c s log
n

s
, c=constant, random

linear measurements

- reconstruct by a non linear mapping

IDCOM, University of Edinburgh 

Compressed sensing Overview 

Compressed Sensing assumes a 

compressible set of signals, i.e. 

approximately k-sparse. 

Using approximately  

𝑚 ≥ 𝒪 𝑘 log2

𝑁

𝑘
 

random projections for measurements 

we have little or no information loss.  

Signal reconstruction by a nonlinear 

mapping. 

Many practical algorithms with 

guaranteed performance e.g. 𝐿1 min., 

OMP, CoSaMP, IHT. 

Compressible 

set of interest 

random projection 

(observation) 

nonlinear 

approximation 

(reconstruction) 

Observe 𝒙 ∈ ℝ𝑁 via 𝑚 ≪ 𝑁 measurements, 𝒚 ∈ ℝ𝑚 where 𝒚 = Φ𝒙 

Mike Davies.
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