Foundations of Smart Sensing Compressive Sensing

MSc in Statistics for Smart Data - ENSAI

Aline Roumy

December 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

1 Part 1 - Why compressive sensing?

Part 2 - Compressive sensing: how it works? Notations (Reminder) Problem formulation Compressive sensing vs other schemes

Or the sensing matrices? Good sensing matrices? Good sensing matrices? First insights

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

4 Part 4 - Compressive sensing: what it is good for?

③ Part 5 - Compressive sensing: summary

About me

Aline Roumy

Researcher at Inria, Rennes Expertise: compression for video streaming image/signal processing, information theory, machine learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Web: http://people.rennes.inria.fr/Aline.Roumy/ email: aline.roumy@inria.fr

Course schedule (tentative)

Compressive sensing (CS): a self-sufficient course with a lot of connections to sparse approximations

- Dec 2nd: Lecture (CS: intro+ how it works)
- Dec 4th: Lab
- Dec 10th at 9am: Lab (no course in the afternoon)

Course grading

- Final Exam: about lectures 1-9 (C. Elvira, J. Cohen, C. Herzet)
 - written exam (Dec 16th)
 - 2 hours No document.
- Project: about lectures 10-12 (A. Roumy)
 - Part 1- Summary of the course (half page of text not including eventual figures)
 - Part 2- Computer lab (Dec 4 and 10th)
 - using Collaborative Jupyter notebook
 - write a short report (with jupyter) on the lab activities:
 max 2 pages for the comments (excluding proofs, figures)
 - send the pdf file + code files via email to aline.roumy@inria.fr
 - You will get a grade from the evaluation of your report.
 - deadline Dec. 10th 8pm
- TO DO:
 - after 1st course: read the course and write the course summary. Get familiar with Collaborative Jupyter notebook
 - after 2nd course: augment/correct the course summary. Add comments in YOUR version of the code.
 - 3rd course: Add comments in YOUR version of the code. Do the final question.

Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Birkhaüser, 2013.

Early and short version:

S. Foucart, Notes on compressed sensing, 2009. (pdf)

Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G. Kutyniok, Cambridge University Press, 2012.

• Chapter 1:

M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to compressed sensing. (pdf)

Short version:

G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM Mitteilungen 36 (2013), 79-101.

Outline

1 Part 1 - Why compressive sensing?

Part 2 - Compressive sensing: how it works? Notations (Reminder) Problem formulation Compressive sensing vs other schemes

Or the sensing matrices? Good sensing matrices? Good sensing matrices? First insights

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

4 Part 4 - Compressive sensing: what it is good for?

③ Part 5 - Compressive sensing: summary

Part 1 - Why compressive sensing?

What is compressive sensing?

Compressive sensing:

is a novel way to acquire (or sense or sample) and compress data.

Classical =	sampling then compression
Compressive sensing $=$	sampling AND compression

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Several names exist:

- compressed sensing
- compressed sampling
- compressive sampling
- **compressive sensing**. More accurate. Chosen in this course. The one of the reference book.

Part 1 - Why compressive sensing?

Review of **classical** digital acquisition: **classical**=sampling + compression

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Film camera

Film camera: records images passing through the camera's lens.

$$x_R: [0,1]^2 \to \mathbb{R}^3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Digital camera

Digital camera: converts an image into digital data and compress it.

Questions related to Digital camera

Question related to sampling:

is it possible to recover a continuous signal from its sampled (discrete) version?

cf. course of Clément Elvira

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Question related to compression:

is it possible to reduce the size of a discrete image?

Sampling: (1) optimal sampling rate

Nyquist–Shannon sampling theorem: "Exact reconstruction of a continuous-time signal from discrete samples is possible if the signal is bandlimited and the sampling frequency is greater than twice the highest frequency."

Sampling: (2) degradation if "slow" sampling

(日)

э

Sampling below the optimal rate introduces: (1) aliasing

SVI.nl

Sampling: (2) degradation if "slow" sampling

Sampling below the optimal rate introduces: (1) aliasing (2)

SVI.nl

(2) signal ambiguity

Compression: (1) image decomposition principle

- 1- Split image into blocks of size $\textit{N}_1 \times \textit{N}_2$ each
- 2- Decompose each $N_1 \times N_2$ image block as:

How to choose the basis functions? How to compute the coefficients?

Compression: (2) image decomposition example

with 2D-discrete cosine transform (DCT) (orthogonal basis)

- 1- Split image into blocks of size $\textit{N}_1 \times \textit{N}_2$ each
- 2- For each $N_1 \times N_2$ image block (x_{n_1,n_2}) compute the $N_1 \times N_2$ block of transformed image (c_{k_1,k_2}) with:

$$c_{k_{1},k_{2}} = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1},n_{2}} \underbrace{\cos\left[\frac{\pi}{N_{1}}\left(n_{1}+\frac{1}{2}\right)k_{1}\right] \cos\left[\frac{\pi}{N_{2}}\left(n_{2}+\frac{1}{2}\right)k_{2}\right]}_{\Phi_{n_{1},n_{2}}(k_{1},k_{2})}$$

Example: 8x8 DCT transform Top-left matrix is $(\Phi_{n_1,n_2}(k_1 = 0, k_2 = 0))_{n_1,n_2}$ Quiz 1, 2, 3

Compression: (3) image decomposition result

Left: image

Right: discrete cosine transform of image

Key concept: few degrees of freedom in the transform domain

Compression: (4) dimensionality reduction with *s*-term approximation

1. Dimensionality reduction:

keep the s coefficients c_s with largest absolute value

2. Reconstruction: $\hat{x} = \Phi^{-1}c_s$

Left: 1% kept

(日)

э

Summary on classical sensing

Sampling raw discrete HD video 1920x1080=2.07 M pixels/image 25Hz: images/s, 12(=8+2+2) bits/pixel $\rightarrow 0.6 \text{ Gbit/s}$

Compression

For instance, HEVC (2013) 0.6 Gbit/s \rightarrow 2Mbit/s

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

compression ratio 300:1!!!

Classical vs compressive sensing

lots of samples, throw most of the coefficients away $\begin{array}{l} \textbf{x}: \ [1, N_a] \times [1, N_b] \to \{0, 255\}^3 \\ \textbf{y}: \ [1, M_a] \times [1, M_b] \to \{0, 255\}^3 \\ (M_a M_b \ll N_a N_b) \end{array}$

Classical vs compressive sensing

Compressive sensing: can we acquire less data in the first place? and still recover \hat{x} ?

Can we sample signals at the "Information Rate"?

Yes, we can!

Wikipedia.

Wikipedia.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

E. J. Candes and T. Tao, 2005 "Decoding by linear programming" D. L. Donoho, 2006 "Compressed sensing"

Outline

1 Part 1 - Why compressive sensing?

Part 2 - Compressive sensing: how it works? Notations (Reminder) Problem formulation Compressive sensing vs other schemes

Or the sensing matrices? First insights
Or the sensing matrices?

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

4 Part 4 - Compressive sensing: what it is good for?

③ Part 5 - Compressive sensing: summary

Part 2 - Maths of compressive sensing - how it works?

Notations (Reminder)

Norms

Definition (*l_p*-norm)

The l_p -norm of $x \in \mathbb{R}^n$, p > 1 is defined as

$$||x||_p = \left\{ egin{array}{c} \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p} & p\in [1,\infty) \ \max_i |x_i| & p=\infty \end{array}
ight.$$

If p < 1, definition still valid, but triangle inequality not satisfied \Rightarrow quasi-norm.

Definition (inner product)

$$\langle x, z \rangle = z^T x = \sum_{i=1}^n x_i z_i$$

See textbook F.R. for extension to \mathbb{C}^n .

Definition (support and *l*₀-norm)

The support of a vector x is the index set of its non-zero entries, i.e.

supp
$$(x) = \{j \in [n] : x_j \neq 0\}$$
, where $[n] = \{1, 2, ..., n\}$

The l_0 -norm of x is defined as

$$||x||_0 = \text{ card } (\text{ supp } (x))$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $||x||_0$ counts the number of non-zero entries of x. $||.||_0$ is not even a quasi-norm.

Sparsity definition

Definition (s-sparse)

A signal $x \in \mathbb{R}^n$ is said to be *s*-sparse if it has at most *s* non-zero entries, i.e. $||x||_0 \leq s$.

Definition (Σ_s)

We define Σ_s as the set containing all *s*-sparse signals, i.e. $\Sigma_s = \{x \in \mathbb{R}^n : ||x||_0 \le s\}.$

Quiz 5

Note 1: Sparsity is a highly nonlinear model (Σ_s is not a linear space) Note 2: in many practical cases, x is not sparse itself, but it has a sparse representation in some basis Φ . We still say that x is s-sparse, with the understanding that we can write $x = \Phi u$, and $||u||_0 \le s$.

Approximate sparsity

- A sparse signal can be represented exactly giving the positions and values of its *s* nonzero components
- Real-world signals are rarely exactly sparse. We need to
 - generalize the def: from "sparse" to "compressible" signals,
 - describe the representation error i.e. the error incurred representing just s components of the signal.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Best *s*-term approximation

The best *s*-term approximation picks the *s* components that minimize the representation error

Definition (best *s*-term approximation)

For p > 0, the l_p -error incurred by the best *s*-term approximation to a vector $x \in \mathbb{R}^n$ is given by

$$\sigma_s(x)_p = \min_{\hat{x} \in \Sigma_s} ||x - \hat{x}||_p$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• If
$$x \in \Sigma_s$$
, then $\sigma_s(x)_p = 0$ for any p .

Compressible signal

Optimal strategy to compute the best *s*-term approximation: **thresholding**

- Reorder the elements of x by decreasing magnitude
- Pick the first *s* elements, set all others to zero.

Definition (compressible signal)

a signal $x \in \mathbb{R}^n$ is said to be compressible if the error of its best *s*-term approximation decays quickly in *s* i.e. if $\exists C_1, q > 0$ such that $|x_i| \leq C_1 i^{-q}$, when the coefficients have been ordered such that $|x_1| \geq |x_2| \dots \geq |x_n|$.

Sparsity support

Suppose $x \in R^n$. Let $S \subset [n]$ and $S^c \subset [n] \setminus S$

- S: sparsity support of x, i.e. the locations of the nonzero coefficients of x
- S^c: set of locations of the 0 coefficients
- *S* for compressible signal: set of locations of the coefficients belonging to the best *s*-term approximation of *x*.

Notation

 x_S vector obtained by setting the entries of x indexed by S^c to 0. M_S matrix obtained by setting the columns of M indexed by S^c to 0.

• Same notation to denote vectors/matrices where the elements/columns have been removed, instead of being set to 0

Outline

1 Part 1 - Why compressive sensing?

Part 2 - Compressive sensing: how it works? Notations (Reminder) Problem formulation Compressive sensing vs other schemes

Or the sensing matrices? Good sensing matrices? Good sensing matrices? First insights

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

4 Part 4 - Compressive sensing: what it is good for?

③ Part 5 - Compressive sensing: summary

Part 2 - Maths of compressive sensing - how it works?

Problem formulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Compressive sensing

Goal of Compressive sensing (CS):

- achieve the same reconstruction quality on $\hat{\boldsymbol{\chi}}$ as the best s-term approximation
- from the measurement y acquired with a nonadaptive encoder.

To achieve this, we need to

- (1) model the dependency between signal x and measurement y
- **2** formulate the reconstruction problem

Sensing process model

(Modeling the dependency between signal and measurement) Let $x \in R^{nx1}$ be a s-sparse signal to be recovered. Let $y \in R^{mx1}$, m < n, be linear measurements of the signal as y = Mx

with $M \in \mathbb{R}^{m \times n}$, being the sensing matrix.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x, s-sparse.

Difficulties?

Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x, s-sparse.

Difficulties?

• Underdetermined system \Rightarrow infinitely many solutions.

Reconstruction: problem formulation

(problem formulation)

Given measurement y, sensing matrix M and the model y = Mx, Recover x, s-sparse.

Difficulties?

- Underdetermined system \Rightarrow infinitely many solutions.
- Idea exploit the sparsity assumption of *x*.

Minimum *l*₀-norm solution

$$\hat{x} = \arg\min_{z \in \mathbb{R}^n} ||z||_0$$
 subject to $Mz = y$

Complexity?

- Problem is non-convex
- Problem is NP-hard:

for a given s, try all possible $\binom{n}{s}$ supports, estimate the s nonzero values of x, check if constraint is satisfied

 \Rightarrow infeasible for practical problem sizes

Practical philosophies

$$\hat{x} = \arg\min_{z \in \mathbb{R}^n} ||z||_0$$
 subject to $Mz = y$

Greedy	Thresholding	Convex relaxation
algorithms	algorithms	algorithms
Focus on $ x _0$	Focus on $y \sim Mx$	Solve a nicer problem

see course C. Elvira

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Signal sparse in transform domain

Real signals are rarely directly sparse...

but rather sparse in a transform domain

original image

DCT coefficients of the image in the transform domain

Signal sparse vs signal sparse in transform domain

x sparse	<i>X</i> :
SENSING	SE
y = Mx	y :
RECONSTRUCTION	RE
$\hat{x} = \arg\min_{z \in \mathbb{R}^n} z _1$	û :
subject to $Mz = y$	
	Ŷ:

 $x = \Phi u, u \text{ sparse}$ SENSING y = MxRECONSTRUCTION $\hat{u} = \arg\min_{z \in \mathbb{R}^n} ||z||_1$ subject to $M\Phi z = y$ $\hat{x} = \Phi \hat{u}$

In conclusion: sparse vs sparse in the transform domain

- same sensing
- similar reconstruction problem
- Make sure that $M\Phi$ (and not M) is a "good" sensing matrix

Part 2 - Maths of compressive sensing - how it works?

Compressive sensing vs other schemes

Compressive sensing (CS) vs Sparse approximation (SA)

・ロト ・ 雪 ト ・ ヨ ト

-

Non-linear solvers:

CS Given y and M, find \hat{x} sparse such that $M\hat{x} \approx y$. Return \hat{x} with guarantee that $||\hat{x} - x||$ small

SA Given x and D, find \hat{c} sparse such that $\hat{x} = D\hat{c} \approx x$.

Return \hat{x} with guarantee that

 $||\hat{x} - x|| = ||D(\hat{c} - c)||$ small

Non-linear solvers:

CS Given y and M, find \hat{x} sparse such that $M\hat{x} \approx y$. Return \hat{x} with guarantee that $||\hat{x} - x||$ small SA Given x and D, find \hat{c} sparse such that $\hat{x} = D\hat{c} \approx x$. Return \hat{x} with guarantee that $||\hat{x} - x|| = ||D(\hat{c} - c)||$ small

Same decomposition algorithms

Different criteria

Non-linear solvers:

CS Given y and M, find \hat{x} sparse such that $M\hat{x} \approx y$.

Return \hat{x} with guarantee that $||\hat{x} - x||$ small

SA Given x and D, find \hat{c} sparse such that $\hat{x} = D\hat{c} \approx x$.

Return \hat{x} with guarantee that $||\hat{x} - x|| = ||D(\hat{c} - c)||$ small Root-finding algorithm: CS Given y = 0 and f, find \hat{x} such that $y = 0 \approx f(\hat{x})$. Return \hat{x} with guarantee that $||\hat{x} - x||$ small

> SA Given y = 0 and f, find \hat{x} such that $y = 0 \approx \hat{y} = f(\hat{x})$. Return \hat{y} with guarantee that $||f(\hat{x}) - 0||$ small

CS: proximity to the true root SA: proximity to zero in the range of the function

Root-finding algorithm: CS Given y = 0 and f, find \hat{x} such that $y = 0 \approx f(\hat{x})$. Return \hat{x} with guarantee that

 $||\hat{x} - x||$ small

SA Given y = 0 and f, find \hat{x} such that $y = 0 \approx \hat{y} = f(\hat{x})$. Return \hat{y} with guarantee that

 $||f(\hat{x}) - 0||$ small

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

CS: proximity to the true root SA: proximity to zero in the range of the function

Part 3 - Compressive sensing - good sensing matrix?

First insights

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sensing process

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• How should we choose a "good" matrix M with $m \ll n$?

Sensing matrices that are not good

(日)

ъ

Vector y is all zero! \rightarrow If x sparse, M must be non-sparse \rightarrow We need M to be different from x

Good sensing matrices

• if A follows a subgaussian distribution with $m \ge c s \ln(n/s)$, c = constant,

[easy construction / easy to verify...]

then with probability at least $1 - 2e^{-c_0m}$, $c_0 =$ constant exact reconstruction under P_1 , OMP, IHT...

- Gaussian, Bernoulli (Rademacher entries) matrices ..., subsampled Fourier matrices achieve exact reconstruction.
- the constant *c* depends on the algorithm and the sensing matrix distribution.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Part 4 - Compressive sensing - what it is good for?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to spot a compressive sensing system?

Case 1

- Think about systems that use a raster mode for sampling then think of physical ways to perform multiplexing instead
- Once you perform the multiplexing, use compressive sensing solvers to reconstruct signal
- Does it work better or as well with fewer measurements ?

(日) (四) (日) (日) (日)

52/55

52/55

Compressive sensing i=1

Compressive sensing i=2

Compressive sensing i=3

Compressive sensing

if image is 3-sparse, the sufficient number of measurements scales with 3 and not the size of the image!!!!

How to spot a compressive sensing system?

Case 2

- Look for acquisition schemes that multiplexes a signal already
- Is the signal produced by this system sparse in some basis?
- If yes, subsample the acquisition, use compressive sensing solvers to reconstruct signal
- Does it work better or as well with fewer measurements ?

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Part 5 - Compressive sensing - summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Compressive sensing overview

Observe $x \in \mathbb{R}^n$ via *m* measurements, with $m \ll n$ More precisely, y = Mx where $y \in \mathbb{R}^m$

Assumptions:

- signal approximately s-sparse
- use $m \ge c \ s \log \frac{n}{s}$, c = constant, random linear measurements
- reconstruct by a non linear mapping

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○