Quiz

0 . Which of the following statements are correct?
A. Σ_{s} is a union of subspaces of dimension s
B. Σ_{s} is a union of subspaces of different dimensions
C. Σ_{s} is a subspace of dimension s

1. Show that $(1) \Leftrightarrow(2)$
2. Which of the following statements might be correct? What is your intuition? And why? (we will establish the proof of one of these statements) if $\exists \epsilon>0$ s.t.
A. M is (ϵ, s)-RIP, then M is a good sensing matrix (i.e. allows reconstruction).
B. M is (ϵ, s)-RIP, then M is a bad sensing matrix.
C. M is $(\epsilon, 2 s)$-RIP, then M is a good sensing matrix.
D. M is $(\epsilon, 2 s)$-RIP, then M is a bad sensing matrix.
3. Prove Lemma RIP and operator norm. To do so,
A. (easy) first show that if M is (ϵ, s)-RIP, then

$$
\sup _{x_{S} \neq 0} \frac{\left\|M_{S} x_{S}\right\|_{2}^{2}-\left\|x_{S}\right\|_{2}^{2}}{\left\|x_{S}\right\|_{2}^{2}} \leq \epsilon
$$

B. (advanced) then show that

$$
\sup _{x_{S} \neq 0} \frac{\left\|M_{S} x_{S}\right\|_{2}^{2}-\left\|x_{S}\right\|_{2}^{2}}{\left\|x_{S}\right\|_{2}^{2}}=\max _{x_{S} \neq 0} \frac{\left\|\left(M_{S}^{T} M_{S}-I\right) x_{S}\right\|_{2}}{\left\|x_{S}\right\|_{2}}
$$

C. (easy) conclude with

$$
\max _{x_{S} \neq 0} \frac{\left\|\left(M_{S}^{T} M_{S}-I\right) x_{S}\right\|_{2}}{\left\|x_{S}\right\|_{2}}=\left\|M_{S}^{T} M_{S}-I\right\|_{o p}
$$

4. Which of the following statements are correct? If M is (ϵ, s)-RIP, then
A. $\forall S, M_{S}^{T} M_{S} \approx I$ when applied to any x_{S}
B. $M^{T} M \approx I$ when applied to any s-sparse vector
C. $M^{T} M \approx I$ when applied to any n - length vector
5. Which of the following statements are correct?
A. The theorem is a positive result: RIP guarantees the success of IHT.
B. The update rule of IHT $\left(x^{l} \rightarrow x^{l+1}\right)$ is a contraction mapping
C. $3 s$ is a typo. Should be s.
D. $3 s$ is a typo. Should be $2 s$.
6. Prove Theorem RIP is good for IHT. To do so, let us denote

$$
\begin{align*}
u^{l} & =x^{l}+M^{T}\left(y-M x^{l}\right)=x^{l}+M^{T} M\left(x-x^{l}\right) \tag{1}\\
x^{l+1} & =H_{s}\left(u^{l}\right)
\end{align*}
$$

- First show that $\forall s$-sparse vector x,

$$
\begin{equation*}
\left\|u^{l}-x^{l+1}\right\|^{2} \leq\left\|u^{l}-x\right\|^{2} \tag{2}
\end{equation*}
$$

- Explain all equalities and inequalities below

$$
\begin{align*}
\left\|\left(u^{l}-x\right)-\left(x^{l+1}-x\right)\right\|^{2} & \stackrel{(a)}{=}\left\|u^{l}-x\right\|^{2}+\left\|x^{l+1}-x\right\|^{2}-2\left\langle\left(u^{l}-x\right),\left(x^{l+1}-x\right)\right\rangle \\
& \stackrel{(b)}{\leq}\left\|u^{l}-x\right\|^{2} \\
\left\|x^{l+1}-x\right\|^{2} & \stackrel{(c)}{\leq} 2\left\langle\left(u^{l}-x\right),\left(x^{l+1}-x\right)\right\rangle \stackrel{(d)}{=} 2\left\langle\left(I-M^{T} M\right)\left(x^{l}-x\right),\left(x^{l+1}-x\right)\right\rangle \tag{3}
\end{align*}
$$

- We now want to show that

$$
\begin{equation*}
\left\langle\left(I-M^{T} M\right)\left(x^{l}-x\right),\left(x^{l+1}-x\right)\right\rangle \leq \epsilon\left\|x^{l}-x\right\|\left\|x^{l+1}-x\right\| \tag{4}
\end{equation*}
$$

To do so, let us denote

$$
\begin{aligned}
u & =x^{l}-x \\
v & =x^{l+1}-x \\
T & =\operatorname{supp}(u) \cup \operatorname{supp}(v) \\
& \subset \operatorname{supp}\left(x^{l}\right) \cup \operatorname{supp}(x) \cup \operatorname{supp}\left(x^{l+1}\right) \\
|T| & \leq 3 s
\end{aligned}
$$

Explain all equalities and inequalities below

$$
\begin{aligned}
\left\langle\left(I-M^{T} M\right) u, v\right\rangle & \stackrel{(d)}{=} u_{T}^{T}\left(I-M_{T}^{T} M_{T}\right) v_{T} \\
& \stackrel{(e)}{\leq}\left\|\left(I-M_{T}^{T} M_{T}\right) u_{T}\right\|_{2}\left\|v_{T}\right\|_{2} \\
& \stackrel{(f)}{\leq}\left\|I-M_{T}^{T} M_{T}\right\|_{o p}\left\|u_{T}\right\|_{2}\left\|v_{T}\right\|_{2} \\
& \stackrel{(g)}{\leq} \epsilon\left\|u_{T}\right\|_{2}\left\|v_{T}\right\|_{2}
\end{aligned}
$$

which shows (4).

- Now, from (4) and (3), we have

$$
\begin{align*}
\left\|x^{l+1}-x\right\|^{2} & \leq \epsilon\left\|x^{l}-x\right\|\left\|x^{l+1}-x\right\| \\
\left\|x^{l+1}-x\right\| & \leq 2 \epsilon\left\|x^{l}-x\right\| \tag{5}
\end{align*}
$$

Conclude, by showing that if $2 \epsilon<1$, then $x^{l} \xrightarrow[l \rightarrow+\infty]{ } x$.

$$
\begin{aligned}
x^{0} & =0 \\
x^{l+1} & =H_{s}\left(x^{l}+M^{T}\left(y-M x^{l}\right)\right) \\
\hat{x} & =x^{l}
\end{aligned}
$$

7. The goal of this quiz is to explain why (5) is called a concentration inequality.

Let $y=M x$. Compute the distribution of y_{i} and of $\|y\|^{2}$.
Explain now why this is called concentration inequality.
8. Spot the differences between the two statements.
9. Proof of the Johnson Lindenstrauss lemma. Fill in when there is ??

$$
\begin{align*}
\mathbb{P}_{M}\left(\sup _{x \in \mathcal{Q}}\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \leq t\right) & =\mathbb{P}_{M}\left(? ? \forall \text { or } \exists ? ? x \in Q,\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \leq t\right) \tag{6}\\
& =1-\mathbb{P}_{M}(? ?)=: 1-p \tag{7}\\
p & \leq \sum_{x \in \mathcal{Q}} \mathbb{P}_{M}(? ?)=: \sum_{x \in \mathcal{Q}} p_{x} \tag{8}
\end{align*}
$$

What is p_{x} ?
Show that

$$
\begin{align*}
\mathbb{P}_{M}\left(\sup _{x \in \mathcal{Q}}\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right|>t\right) & \leq \sum_{x \in \mathcal{Q}} p_{x} \tag{9}\\
& \leq|Q| 2 e^{-\frac{m \epsilon^{2}}{6}} \leq \delta \tag{10}
\end{align*}
$$

Therefore, if $m \geq$?? then ??.

Solution:

$$
\begin{align*}
\mathbb{P}_{M}\left(\sup _{x \in \mathcal{Q}}\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \leq t\right) & =\mathbb{P}_{M}\left(\forall x \in Q,\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \leq t\right) \tag{11}\\
& \left.=1-\mathbb{P}_{M}\left(\exists x \in Q,\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right|\right\rangle t\right)=: 1-p \tag{12}\\
p & \left.\leq \sum_{x \in Q} \mathbb{P}_{M}\left(\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right|\right\rangle t\right)=: \sum_{x \in \mathcal{Q}} p_{x} \tag{13}
\end{align*}
$$

What is p_{x} ? a concentration inequality
From the derivation above, and from the fact that the distribution of $\|M x\|_{2}^{2}$ is sub-exponential, we have

$$
\begin{align*}
\mathbb{P}_{M}\left(\sup _{x \in \mathcal{Q}}\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right|>t\right) & \leq \sum_{x \in \mathcal{Q}} p_{x} \tag{14}\\
& \leq|Q| 2 e^{-\frac{m \epsilon^{2}}{6}} \leq \delta \tag{15}
\end{align*}
$$

Therefore, if $m \geq \frac{6}{t^{2}} \log \frac{2|Q|}{\delta}$, then

$$
\begin{equation*}
\mathbb{P}_{M}\left(\sup _{x \in \mathcal{Q}}\left|\frac{\|M x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \leq t\right) \geq 1-\delta \tag{16}
\end{equation*}
$$

10. Covering argument.

Let $\rho \geq 0$. Consider that Q allows to cover $\mathcal{S}_{1}\left(\mathbb{R}^{s}\right)$ (unit ball in \mathbb{R}^{s}) i.e.

$$
\sup _{x:\|x\|_{2}=1} \min _{q \in \mathcal{Q}}\|x-q\|_{2} \leq \rho
$$

We look for the smallest set Q. Which of the following statements are correct? $\exists \mathcal{Q} \subset \mathcal{S}_{1}\left(\mathbb{R}^{s}\right)$ s.t.
A. \mathcal{Q} is finite
B. \mathcal{Q} grows exponentially with s

