High Dimensional Learning Dimensionality reduction

Master 2 SIF

Aline Roumy

January 2022

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

About me

Aline Roumy

Researcher at Inria, Rennes Expertise: compression for video streaming image/signal processing, information theory, machine learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Web: http://people.rennes.inria.fr/Aline.Roumy/ email: aline.roumy@inria.fr

Course material

Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Website and online version at (web)

Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Birkhaüser, 2013.

Early and short version:

S. Foucart, Notes on compressed sensing, 2009. (pdf)

Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G. Kutyniok, Cambridge University Press, 2012.

• Chapter 1:

M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to compressed sensing. (pdf)

Short version:

G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM Mitteilungen 36 (2013), 79-101.

Lecture 3 - LINEAR dimensionality reduction and NON-LINEAR reconstruction = Compressive sensing

() 3.1. Reconstruction guarantee: Restricted Isometry Property

Q 3.2 Iterative Hard Thresholding satisfies RIP: IHT \Rightarrow RIP

3.3. Which matrices satisfy the RIP?

4 3.4. Summary on Compressive sensing

Reconstruction guarantee: Restricted Isometry Property (RIP)

The problem: invert y = Mx

$$\exists$$
 a reconstruction map:
 $\mathbb{R}^m o \mathbb{R}^d$
 $y \mapsto x = M^{-1}y$
 \diamondsuit

condition on the matrix

The problem: invert y = Mx

M square

$$\exists \text{ a reconstruction map} \\ \mathbb{R}^m \to \mathbb{R}^d \\ y \mapsto x = M^{-1}y \\ \\ \updownarrow \\ \end{cases}$$

condition on the matrix

rank(M) = m = d
ker(M) = {z : Mz = 0} = {0}
0
 ker(M)

$$\exists \text{ a reconstruction map:} \\ \mathbb{R}^m \to \mathbb{R}^d \\ y \mapsto x = ?? \\ \updownarrow$$

condition on the matrix ??? **NEW** Reduce the domain of definition of M: *s*-sparse

The restricted isometry property (RIP): definition

Definition (RIP)

Let $\epsilon > 0$, $s, m, d \in \mathbb{N}$. A matrix $M \in \mathbb{R}^{m,d}$ with $m \leq d$ is (ϵ, s) -RIP if

$$\forall x \in \Sigma_s, \ (1-\epsilon)||x||_2^2 \le ||Mx||_2^2 \le (1+\epsilon)||x||_2^2$$

(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation of (ϵ, s) -RIP:

• *M* preserves the Euclidean norm of *s*-sparse vectors

The restricted isometry property (RIP): definition

Definition (RIP)

Let $\epsilon > 0$, $s, m, d \in \mathbb{N}$. A matrix $M \in \mathbb{R}^{m,d}$ with $m \leq d$ is (ϵ, s) -RIP if

$$\forall x \in \Sigma_s, \ (1-\epsilon) ||x||_2^2 \le ||Mx||_2^2 \le (1+\epsilon) ||x||_2^2$$

Interpretation of (ϵ, s) -RIP:

- *M* preserves the Euclidean norm of *s*-sparse vectors
- $M \in \mathbb{R}^{m,d}$ with $m \ll d$ is (ϵ, s) -RIP if

$$\forall x \in \Sigma_s \setminus \{0\}, \ \left| \frac{||Mx||_2^2 - ||x||_2^2}{||x||_2^2} \right| \le \epsilon$$

$$(2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The restricted isometry property (RIP): definition

Definition (RIP)

Let $\epsilon > 0$, $s, m, d \in \mathbb{N}$. A matrix $M \in \mathbb{R}^{m,d}$ with $m \leq d$ is (ϵ, s) -RIP if

$$\forall x \in \Sigma_s, \ (1-\epsilon) ||x||_2^2 \le ||Mx||_2^2 \le (1+\epsilon) ||x||_2^2$$

Interpretation of (ϵ, s) -RIP:

- *M* preserves the Euclidean norm of *s*-sparse vectors
- $M \in \mathbb{R}^{m,d}$ with $m \ll d$ is (ϵ, s) -RIP if

$$\forall x \in \Sigma_s \setminus \{0\}, \ \left| \frac{||Mx||_2^2 - ||x||_2^2}{||x||_2^2} \right| \le \epsilon$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1)

Quiz 1, 2

RIP: *l*₀ reconstruction

Proposition (RIP and l_0 reconstruction) Let $M \in \mathbb{R}^{m,d}$ with $m \ll d$. Let $0 < \epsilon < 1$. If M is $(\epsilon, 2s)$ -RIP, then $\forall x \in \Sigma_s, \ \hat{x} = x, \text{ with } \hat{x} \in \arg\min_{z:Mz=y} ||z||_0.$

Proof. Blackboard + Th 2.13 of Foucart-Rauhut.

Interpretation:

"a (ϵ , 2s)-RIP matrix is a good sensing matrix for l_0 reconstruction." We "pay" 2s instead of s, because the support is unknown.

THE Question: is a $(\epsilon, 2s)$ -RIP matrix a good sensing matrix for practical reconstruction algorithms?

RIP: operator norm

Lemma (RIP and operator norm) Let $M \in \mathbb{R}^{m,d}$ with $m \ll d$. If M is (ϵ, s) -RIP, then $\forall S \subset [\![1,d]\!], |S| \leq s, \quad ||M_S^T M_S - I_S||_{op} \leq \epsilon.$ (3)

Recall (note in the definition below $||.||_2$ not $||.||_2^2$)

$$||M_{S}^{T}M_{S}-I||_{op} = \sup_{x_{S}\neq 0} \frac{||(M_{S}^{T}M_{S}-I)x_{S}||_{2}}{||x_{S}||_{2}}.$$

Proof. Quiz 3

Interpretation: Quiz 4 $\forall S, M_S^T M_S \approx I_S$ when applied to any x_S (vector of size S)

A practical algorithm Iterative Hard Thresholding satisfies RIP

Iterative Hard Thresholding (IHT) \Rightarrow *RIP*

(ロト (個) (E) (E) (E) (O) (O)

A practical algorithm

Definition (Iterative Hard Thresholding (IHT))

$$\begin{aligned} x^{0} &= 0\\ x^{l+1} &= H_{s} \left(x^{l} + M^{T} (y - M x^{l}) \right)\\ \text{output: } \hat{x}_{IHT} &= \lim_{l \to +\infty} x^{l} \end{aligned}$$

 H_s : Hard Thresholding keeps the *s* coefficients with largest absolute value.

Justification:
$$x^{l+1} = H_s(x^l + \underbrace{\operatorname{error}(y, M, x^l)}_{\approx x - x^l})$$

RIP is good for IHT

Theorem (Optimality of IHT for RIP matrices)

Let $M \in \mathbb{R}^{m,d}$ with $m \ll d$. Let $\epsilon > 0$. If M is $(\epsilon, 3s)$ -RIP, then

$$||x^{l+1} - x|| \le 2\epsilon ||x^{l} - x||$$

Interpretation: Quiz 5

(4)

RIP is good for IHT

Theorem (Optimality of IHT for RIP matrices)

Let $M \in \mathbb{R}^{m,d}$ with $m \ll d$. Let $\epsilon > 0$. If M is $(\epsilon, 3s)$ -RIP, then

$$||x'^{+1}-x|| \leq 2\epsilon ||x'-x||$$

In particular, if
$$\epsilon < \frac{1}{2}$$
, $x^{l} \xrightarrow[l \to +\infty]{} x$.
Interpretation: Quiz 5

Proof. Quiz 6

(4)

Summary: if *M* is $(\epsilon, 3s)$ -RIP, with $\epsilon < 1/2$, then $\hat{x}_{IHT} = x$

Similarly: if M is $(\epsilon, 2s)$ -RIP, with $\epsilon < 1/3$, then $\hat{x}_{BP} = x$ [FR, Th 6.9] if M is $(\epsilon, 13s)$ -RIP, with $\epsilon < 1/6$, then $\hat{x}_{OMP} = x$ [FR, Th 6.25]

THE question: how to construct a matrix *M* that is (1/2, 3s)-RIP?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Which matrices satisfy the RIP?

Sensing matrices that are not good

Vector y = Mx is all zero! \rightarrow If x sparse, M must be non-sparse

Concentration inequality

Theorem (Concentration of Gaussian Matrices [UML Lemma B.12])

Let $x \in \mathbb{R}^d$. Let $M \in \mathbb{R}^{m,d}$ s.t. $M_{i,j} \sim \mathcal{N}(0, 1/m)$ i.i.d.

$$\forall \ 0 \le t \le 3, \ \mathbb{P}_{M}\left(\underbrace{\left|\frac{||Mx||_{2}^{2}}{||x||_{2}^{2}} - 1\right| > t}_{(*)}\right) \le 2e^{-\frac{mt^{2}}{6}}$$
 (5)

Interpretation:

- $\operatorname{Neg}(*) \Leftrightarrow (1-t) ||x||_2^2 \leq ||Mx||_2^2 \leq (1+t) ||x||_2^2 \Leftrightarrow M$ is good for this x
- Quiz 7

Concentration inequality

Theorem (Concentration of Gaussian Matrices [UML Lemma B.12])

Let $x \in \mathbb{R}^d$. Let $M \in \mathbb{R}^{m,d}$ s.t. $M_{i,j} \sim \mathcal{N}(0, 1/m)$ i.i.d.

$$\forall \ 0 \le t \le 3, \ \mathbb{P}_{M}\left(\underbrace{\left|\frac{||Mx||_{2}^{2}}{||x||_{2}^{2}} - 1\right| > t}_{(*)}\right) \le 2e^{-\frac{mt^{2}}{6}}$$
 (5)

Interpretation:

• Neg(*) $\Leftrightarrow (1-t)||x||_2^2 \le ||Mx||_2^2 \le (1+t)||x||_2^2 \Leftrightarrow M$ is good for this x

• Quiz 7

(5)
$$\Leftrightarrow \exists \alpha, \delta \text{ s.t. } \mathbb{P}_M\left(\left|||Mx||_2^2 - \mathbb{E}[||Mx||_2^2]\right| > \alpha\right) \le \delta$$

concentration (around the mean) inequality

Markov's inequality (due to Chebyshev (Markov's teacher)): Given a non-negative random variable X with finite mean

$$\mathbb{P}(X \ge t) \le rac{\mathbb{E}[X]}{t}, \quad \forall t > 0.$$
 Decay in $\mathbb{O}(rac{1}{t})$

(6)

Markov's inequality (due to Chebyshev (Markov's teacher)): Given a non-negative random variable X with finite mean

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \quad \forall t > 0. \quad \text{Decay in } \mathcal{O}(\frac{1}{t})$$
 (6)

Chebyshev's inequality: Given a random variable X with mean μ and finite variance (denoted var(X) < ∞)

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{var}(X)}{t^2}, \quad \forall t > 0. \quad \text{Decay in } \mathcal{O}(\frac{1}{t^2}) \tag{7}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Chernoff bound: (due to Herman Rubin) Given a random variable X with mean μ and finite variance

$$\mathbb{P}(X - \mu \ge t) \le \frac{\mathbb{E}[e^{\lambda |X - \mu|}]}{e^{\lambda t}}, \quad \forall t, \lambda > 0. \text{ Decay in } \mathcal{O}(e^{-\lambda t})$$
(8)

Chernoff bound: (due to Herman Rubin) Given a random variable X with mean μ and finite variance

$$\mathbb{P}(X - \mu \ge t) \le \frac{\mathbb{E}[e^{\lambda |X - \mu|}]}{e^{\lambda t}}, \quad \forall t, \lambda > 0. \text{ Decay in } \mathcal{O}(e^{-\lambda t})$$
(8)

Cramer-Chernoff method:

step 1 Apply Chernoff bound
step 2 Bound optimization

$$\inf_{\lambda>0} \frac{\mathbb{E}[e^{\lambda|X-\mu|}]}{e^{\lambda t}}$$

step 3 Repeat with X' := -X.

Difference between RIP and concentration

Concentration inequality for Gaussian matrices (5) means **Given** *x*

$$\mathbb{P}_{M}\left(\left|||Mx||_{2}^{2}-||x||_{2}^{2}\right|>t||x||_{2}^{2}\right)\leq 2e^{-\frac{mt^{2}}{6}}$$

RIP means For all x s-sparse

$$(1-t)||x||_2^2 \le ||Mx||_2^2 \le (1+t)||x||_2^2$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Quiz 8

Condition for "RIP" over FINITE set

Lemma (Johnson-Lindenstrauss)

alou

Let $M \in \mathbb{R}^{m,d}$ s.t. $M_{i,j} \sim \mathcal{N}(0, 1/m)$. Let $0 \leq t \leq 3, \delta > 0$. Let Ω be a finite set of vectors $\subset \mathbb{R}^n$.

If
$$m \geq \frac{6}{t^2} \log \frac{2|\Omega|}{\delta}$$
, then

$$\mathbb{P}_{M}\left(\sup_{x\in\Omega}\left|\frac{||Mx||_{2}^{2}}{||x||_{2}^{2}}-1\right|\leq t\right)\geq 1-\delta$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation: with probability at least $1 - \delta$, the norm of the vectors is preserved (precision *t*). Proof: Quiz 9

Condition for RIP and success of IHT

Theorem (RIP and success of IHT [FR, Th. 6.15 and Chap. 12.5])
Let
$$M \in \mathbb{R}^{m,d}$$
 s.t. $M_{i,j} \sim \mathcal{N}(0, 1/m)$. Let $\epsilon > 0, \delta > 0$.
If $m \ge \frac{4}{\epsilon^2} \left(2s \ln \frac{en}{s} + 7s + 2 \ln \frac{2}{\delta} \right)$, then
 $\mathbb{P}_M \left(\sup_{x \in \Sigma_s} \left| \frac{||Mx||_2^2}{||x||_2^2} - 1 \right| > \epsilon \right) \le \delta$ (10)

In particular: $\exists c_1, c_2, c_3 > 0$ s.t. if $m \ge c_1 s \ln \frac{n}{s} + c_2 s + c_3$, then with probability at least $1 - \delta$

$$\hat{x}_{IHT} = x$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: Quiz 10

3.4. Summary on Compressive sensing

Compressive sensing overview

Observe $x \in \mathbb{R}^d$ via *m* measurements, with $m \ll d$ More precisely, y = Mx where $y \in \mathbb{R}^m$

Assumptions:

- signal approximately s-sparse
- use $m \ge c \ s \log \frac{n}{s}$, c=constant, random linear measurements
- reconstruct by a non linear mapping

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで