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About me

Aline Roumy
Researcher at Inria, Rennes
Expertise: compression for video streaming

image/signal processing, information theory, machine learning

Web: http://people.rennes.inria.fr/Aline.Roumy/
email: aline.roumy@inria.fr
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Course material

Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, 2014.

Website and online version at (web)
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https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/index.html


Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing,
Birkhaüser, 2013.

Early and short version:
S. Foucart, Notes on compressed sensing, 2009. (pdf)
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http://www.math.tamu.edu/~foucart/teaching/notes/CS.pdf


Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G.
Kutyniok, Cambridge University Press, 2012.

• Chapter 1:
M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to
compressed sensing. (pdf)

• Short version:
G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM
Mitteilungen 36 (2013), 79-101.
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http://www-stat.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf


Lecture 3 - LINEAR dimensionality reduction and
Lecture 3 - NON-LINEAR reconstruction
Lecture 3 - = Compressive sensing

1 3.1. Reconstruction guarantee: Restricted Isometry Property

2 3.2 Iterative Hard Thresholding satisfies RIP: IHT ⇒ RIP

3 3.3. Which matrices satisfy the RIP?

4 3.4. Summary on Compressive sensing

6/ 25



Reconstruction guarantee:
Restricted Isometry Property (RIP)
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The problem: invert y = Mx

M square

∃ a reconstruction map:

Rm → Rd

y 7→ x = M−1y

⇕
condition on the matrix

rank(M) = m = d

ker(M) = {z : Mz = 0} = {0}

.

.

.
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M fat

∃ a reconstruction map:

Rm → Rd

y 7→ x =??

⇕
condition on the matrix ???

NEW Reduce the domain of definition
of M: s-sparse

.
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The restricted isometry property (RIP): definition

Definition (RIP)

Let ϵ > 0, s,m, d ∈ N. A matrix M ∈ Rm,d with m ≤ d is (ϵ, s)-RIP if

∀x ∈ Σs , (1− ϵ)||x ||22 ≤ ||Mx ||22 ≤ (1 + ϵ)||x ||22 (1)

Interpretation of (ϵ, s)-RIP:

• M preserves the Euclidean norm of s-sparse vectors

• M ∈ Rm,d with m ≪ d is (ϵ, s)-RIP if

∀x ∈ Σs \ {0},
∣∣∣∣ ||Mx ||22 − ||x ||22

||x ||22

∣∣∣∣ ≤ ϵ (2)

Quiz 1, 2
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RIP: l0 reconstruction

Proposition (RIP and l0 reconstruction)

Let M ∈ Rm,d with m ≪ d . Let 0 < ϵ < 1. If M is (ϵ, 2s)-RIP, then

∀x ∈ Σs , x̂ = x , with x̂ ∈ arg min
z:Mz=y

||z ||0.

Proof. Blackboard + Th 2.13 of Foucart-Rauhut.

Interpretation:
“a (ϵ, 2s)-RIP matrix is a good sensing matrix for l0 reconstruction.’ We ”pay” 2s
instead of s, because the support is unknown.

THE Question: is a (ϵ, 2s)-RIP matrix a good sensing matrix for practical
reconstruction algorithms?
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RIP: operator norm

Lemma (RIP and operator norm)

Let M ∈ Rm,d with m ≪ d . If M is (ϵ, s)-RIP, then

∀S ⊂ J1, dK, |S | ≤ s, ||MT
S MS − IS ||op ≤ ϵ. (3)

Recall (note in the definition below ||.||2 not ||.||22)

||MT
S MS − I ||op = sup

xS ̸=0

||(MT
S MS − I )xS ||2
||xS ||2

.

Proof. Quiz 3

Interpretation: Quiz 4

∀S ,MT
S MS ≈ IS when applied to any xS (vector of size S)
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A practical algorithm Iterative Hard Thresholding
satisfies RIP

Iterative Hard Thresholding (IHT) ⇒ RIP
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A practical algorithm

Definition (Iterative Hard Thresholding (IHT))

x0 = 0

x l+1 = Hs

(
x l +MT (y −Mx l)

)
output: x̂IHT = lim

l→+∞
x l

Hs : Hard Thresholding
keeps the s coefficients with largest absolute value.

Justification: x l+1 = Hs(x
l + error(y ,M, x l)︸ ︷︷ ︸

≈x−x l

)
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RIP is good for IHT

Theorem (Optimality of IHT for RIP matrices )

Let M ∈ Rm,d with m ≪ d . Let ϵ > 0.
If M is (ϵ, 3s)-RIP, then

||x l+1 − x || ≤ 2ϵ||x l − x || (4)

In particular, if ϵ <
1

2
, x l −−−−−−−−→

l→+∞
x .

Interpretation: Quiz 5

Proof. Quiz 6
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Summary: if M is (ϵ, 3s)-RIP, with ϵ < 1/2, then x̂IHT = x

Similarly: if M is (ϵ, 2s)-RIP, with ϵ < 1/3, then x̂BP = x [FR, Th 6.9]

Similarly: if M is (ϵ, 13s)-RIP, with ϵ < 1/6, then x̂OMP = x [FR, Th 6.25]

THE question: how to construct a matrix M that is (1/2, 3s)-RIP?
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Which matrices satisfy the RIP?
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Sensing matrices that are not good

M =

Sensing matrices that are not good

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

x
Mk

• Vector y is all zero!
I We need A to be di�erent from x (in this case non-sparse)

∆ incoherence

56 / 235

Vector y = Mx is all zero!
→ If x sparse, M must be non-sparse
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Concentration inequality

Theorem (Concentration of Gaussian Matrices [UML Lemma B.12])

Let x ∈ Rd . Let M ∈ Rm,d s.t. Mi,j ∼ N(0, 1/m) i.i.d.

∀ 0 ≤ t ≤ 3, PM


∣∣∣∣ ||Mx ||22
||x ||22

− 1

∣∣∣∣ > t︸ ︷︷ ︸
(∗)

 ≤ 2e−
mt2

6 (5)

Interpretation:

• Neg(∗) ⇔ (1− t)||x ||22 ≤ ||Mx ||22 ≤ (1 + t)||x ||22 ⇔ M is good for this x

• Quiz 7

(5) ⇔ ∃α, δ s.t. PM

(∣∣||Mx ||22 − E[||Mx ||22]
∣∣ > α

)
≤ δ︸ ︷︷ ︸

concentration (around the mean) inequality
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Other concentration inequalities

Markov’s inequality (due to Chebyshev (Markov’s teacher)):
Given a non-negative random variable X with finite mean

P(X ≥ t) ≤ E[X ]

t
, ∀t > 0. Decay in O(

1

t
) (6)

Chebyshev’s inequality: Given a random variable X with mean µ and finite
variance (denoted var(X ) < ∞)

P(|X − E(X )| ≥ t) ≤ var(X )

t2
, ∀t > 0. Decay in O(

1

t2
) (7)

19/ 25



Other concentration inequalities

Markov’s inequality (due to Chebyshev (Markov’s teacher)):
Given a non-negative random variable X with finite mean

P(X ≥ t) ≤ E[X ]

t
, ∀t > 0. Decay in O(

1

t
) (6)

Chebyshev’s inequality: Given a random variable X with mean µ and finite
variance (denoted var(X ) < ∞)

P(|X − E(X )| ≥ t) ≤ var(X )

t2
, ∀t > 0. Decay in O(

1

t2
) (7)

19/ 25



Other concentration inequalities

Chernoff bound: (due to Herman Rubin)
Given a random variable X with mean µ and finite variance

P(X − µ ≥ t) ≤ E[eλ|X−µ|]

eλt
, ∀t, λ > 0. Decay in O(e−λt) (8)

Cramer-Chernoff method:

step 1 Apply Chernoff bound

step 2 Bound optimization

inf
λ>0

E[eλ|X−µ|]

eλt

step 3 Repeat with X ′ := −X .
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Difference between RIP and concentration

Concentration inequality for Gaussian matrices (5) means
Given x

PM

(∣∣||Mx ||22 − ||x ||22
∣∣ > t||x ||22

)
≤ 2e−

mt2

6

RIP means
For all x s-sparse

(1− t)||x ||22 ≤ ||Mx ||22 ≤ (1 + t)||x ||22

Quiz 8
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Condition for “RIP” over FINITE set

Lemma (Johnson-Lindenstrauss)

Let M ∈ Rm,d s.t. Mi,j ∼ N(0, 1/m) . Let 0 ≤ t ≤ 3, δ > 0.
Let Q be a finite set of vectors ⊂ Rn.

If m ≥ 6

t2
log

2|Q|
δ

, then

PM

(
sup
x∈Q

∣∣∣∣ ||Mx ||22
||x ||22

− 1

∣∣∣∣ ≤ t

)
≥ 1− δ (9)

Interpretation: with probability at least 1− δ, the norm of the vectors is preserved
(precision t).

Proof: Quiz 9
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Condition for RIP and success of IHT

Theorem (RIP and success of IHT [FR, Th. 6.15 and Chap. 12.5])

Let M ∈ Rm,d s.t. Mi,j ∼ N(0, 1/m) . Let ϵ > 0, δ > 0.

If m ≥ 4

ϵ2

(
2s ln

en

s
+ 7s + 2 ln

2

δ

)
, then

PM

(
sup
x∈Σs

∣∣∣∣ ||Mx ||22
||x ||22

− 1

∣∣∣∣ > ϵ

)
≤ δ (10)

In particular: ∃c1, c2, c3 > 0 s.t. if m ≥ c1s ln
n

s
+ c2s + c3,

then with probability at least 1− δ

x̂IHT = x

Proof: Quiz 10
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3.4. Summary on Compressive sensing

.
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Compressive sensing overview

Observe x ∈ Rd via m measurements, with m ≪ d
More precisely, y = Mx where y ∈ Rm

Assumptions:

- signal approximately s-sparse

- use m ≥ c s log
n

s
, c=constant, random

linear measurements

- reconstruct by a non linear mapping

IDCOM, University of Edinburgh 

Compressed sensing Overview 

Compressed Sensing assumes a 

compressible set of signals, i.e. 

approximately k-sparse. 

Using approximately  

𝑚 ≥ 𝒪 𝑘 log2

𝑁

𝑘
 

random projections for measurements 

we have little or no information loss.  

Signal reconstruction by a nonlinear 

mapping. 

Many practical algorithms with 

guaranteed performance e.g. 𝐿1 min., 

OMP, CoSaMP, IHT. 

Compressible 

set of interest 

random projection 

(observation) 

nonlinear 

approximation 

(reconstruction) 

Observe 𝒙 ∈ ℝ𝑁 via 𝑚 ≪ 𝑁 measurements, 𝒚 ∈ ℝ𝑚 where 𝒚 = Φ𝒙 

Mike Davies.
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