Information Theory in the Finite Blocklength
 Regime

Maël Le Treust
ETIS UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, 6, avenue du Ponceau,
95014 Cergy-Pontoise CEDEX, France
Email: mael.le-treust@ensea.fr

I. Shannon's Entropy and Mutual Information

We consider two discrete sets \mathcal{X}, \mathcal{Y} and we denote by

- $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ the pair of random variables,
- $(x, y) \in \mathcal{X} \times \mathcal{Y}$ a pair of realizations,
- \mathcal{P}_{X} a probability distribution over the set \mathcal{X}, i.e. for all $x \in \mathcal{X}, \mathcal{P}_{X}(x)=\operatorname{Pr}(X=x) \in[0,1]^{\mathbb{R}^{|\mathcal{X}|}}$ and $\sum_{x \in \mathcal{X}} \mathcal{P}_{X}(x)=1$,
- $\Delta(\mathcal{X})$ the set of probability distributions \mathcal{Q}_{X} over \mathcal{X}, i.e. the probability simplex,
- $\operatorname{supp} \mathcal{Q}_{X}=\left\{x \in \mathcal{X}, \mathcal{Q}_{X}(x)>0\right\}$ the support of the distribution \mathcal{P}_{X},
- $\mathcal{P}_{X Y} \in \Delta(\mathcal{X} \in \mathcal{Y})$ a joint distribution with marginal distributions \mathcal{P}_{X}, \mathcal{P}_{Y}, i.e. $\mathcal{P}_{X}(x)=\sum_{y} \mathcal{P}_{X Y}(x, y)$, and with conditional distributions $\mathcal{P}_{X \mid Y} \in \Delta(\mathcal{X})^{|\mathcal{Y}|}, \mathcal{P}_{Y \mid X} \in \Delta(\mathcal{Y})^{|\mathcal{X}|}$, i.e. $\forall(x, y) \in \operatorname{supp} \mathcal{P}_{X} \times \mathcal{Y}$, $\mathcal{P}_{Y \mid X}(y \mid x)=\frac{\mathcal{P}_{X Y}(x, y)}{\mathcal{P}_{X}(x)}$.

Definition 1 Let $X \in \mathcal{X}$ a random variable with probability distribution $\mathcal{P}_{X} \in \Delta(\mathcal{X})$. The entropy is defined by

$$
\begin{equation*}
H(X)=\sum_{x \in \operatorname{supp} \mathcal{P}_{X}} \mathcal{P}_{X}(x) \log _{2} \frac{1}{\mathcal{P}_{X}(x)} . \tag{1}
\end{equation*}
$$

We define the function $f: \operatorname{supp} \mathcal{P}_{X} \rightarrow \mathbb{R}, x \mapsto f(x)=\log _{2} \frac{1}{\mathcal{P}_{X}(x)}$, the entropy reformulates

$$
\begin{equation*}
H(X)=\mathbb{E}[f(X)] \tag{2}
\end{equation*}
$$

Proposition 1 We have

- $0 \leq H(X) \leq \log _{2}|\mathcal{X}|$,
- $H(X)=\log _{2}|\mathcal{X}| \Longleftrightarrow X$ is uniformly distributed.

Example 1 We consider that $X \in\{0,1\}$ is drawn according to the Bernouilli distribution with parameter $p \in[0,1]$. We denote the binary entropy by $h_{b}(p)=p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}$.

Definition 2 The conditional entropy $H(X \mid Y)$ and the mutual information $I(X ; Y)$ are defined by

$$
\begin{align*}
& H(X \mid Y)=\sum_{(x, y) \in \operatorname{supp} \mathcal{P}_{X Y}} \mathcal{P}_{X Y}(x, y) \log _{2} \frac{1}{\mathcal{P}_{X \mid Y}(x \mid y)}, \tag{3}\\
& I(X ; Y)=\sum_{(x, y) \in \operatorname{supp} \mathcal{P}_{X Y}} \mathcal{P}_{X Y}(x, y) \log _{2} \frac{\mathcal{P}_{X Y}(x, y)}{\mathcal{P}_{X}(x) \mathcal{P}_{Y}(y)} . \tag{4}
\end{align*}
$$

Proposition 2

$$
\begin{align*}
H(X, Y) & =H(X)+H(Y \mid X)=H(Y)+H(X \mid Y) \tag{5}\\
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y) . \tag{6}
\end{align*}
$$

Example 2 We consider that $(X, Y) \in\{0,1\}^{2}$ is drawn according to the distribution $[(1-p) / 2, p / 2 ; p / 2,(1-$ p)/2], with parameter $p \in[0,1]$. Then $H(X)=H(Y)=1, H(X \mid Y)=H(Y \mid X)=h_{b}(p), H(X, Y)=$ $1+h_{b}(p), I(X ; Y)=1-h_{b}(p)$.

Definition 3 Given a distribution $\mathcal{P}_{X Y} \in \Delta(\mathcal{X} \times \mathcal{Y})$, we define the information density function

$$
\begin{align*}
i: \operatorname{supp} \mathcal{P}_{X Y} & \rightarrow \mathbb{R}, \tag{7}\\
(x, y) & \mapsto i(x, y)=\log _{2} \frac{\mathcal{P}_{X Y}(x, y)}{\mathcal{P}_{X}(x) \mathcal{P}_{Y}(y)} . \tag{8}
\end{align*}
$$

The function is well defined since $\operatorname{supp} \mathcal{P}_{X Y} \subset \operatorname{supp} \mathcal{P}_{X} \times \operatorname{supp} \mathcal{P}_{Y}$.
The notation $i(X, Y)$ stands for the image of the random pair (X, Y) by the information density function $i(x, y)$. Then $i(X, Y)$ is a random variable with expected value and variance.

Definition 4 The mutual information $I(X ; Y)$, the unconditional information variance $U(X, Y)$ and the third absolute moment $T(X, Y)$ are defined by

$$
\begin{align*}
I(X ; Y) & =\mathbb{E}[i(X, Y)], \tag{9}\\
U(X ; Y) & =\mathbb{E}\left[|i(X, Y)-\mathbb{E}[i(X, Y)]|^{2}\right]=\mathbb{E}\left[i(X, Y)^{2}\right]-I(X ; Y)^{2}, \tag{10}\\
T(X ; Y) & =\mathbb{E}\left[|i(X, Y)-\mathbb{E}[i(X, Y)]|^{3}\right] \tag{11}
\end{align*}
$$

Lemma 1 (Lemma 46, pp. 24 in Polyanskiy et al. [4])

$$
\begin{equation*}
T(X ; Y) \leq\left(\left(|\mathcal{X}|^{\frac{1}{3}}+|\mathcal{Y}|^{\frac{1}{3}}\right) \cdot \frac{3 \log _{2} e}{e}+\log _{2} \min (|\mathcal{X}|,|\mathcal{Y}|)\right)^{3} . \tag{12}
\end{equation*}
$$

The proof of Lemma 1 is stated in [4, App. F].

Example 3 We consider $(X, Y) \in\{0,1\}^{2}$ is drawn according to the distribution $[(1-p) / 2, p / 2 ; p / 2,(1-$ $p) / 2]$, with parameter $p \in[0,1]$. We have $i(x, y) \in\left\{1+\log _{2}(1-p), 1+\log _{2} p\right\}$, therefore

$$
\begin{align*}
& I(X ; Y)=2 \cdot \frac{1-p}{2} \cdot\left(1+\log _{2}(1-p)\right)+2 \cdot \frac{p}{2} \cdot\left(1+\log _{2}(p)\right)=1-h_{b}(p) \tag{13}\\
& U(X ; Y)=p(1-p) \cdot\left(\log _{2} \frac{1-p}{p}\right)^{2} \tag{14}
\end{align*}
$$

Definition 5 The Kullback-Liebler (KL) divergence between $\mathcal{P}_{X} \in \Delta(\mathcal{X})$ and $\mathcal{Q}_{X} \in \Delta(\mathcal{X})$ is defined by

$$
D\left(\mathcal{P}_{X} \| \mathcal{Q}_{X}\right)= \begin{cases}\sum_{x \in \operatorname{supp} \mathcal{P}_{X}} \mathcal{P}_{X}(x) \log _{2} \frac{\mathcal{P}_{X}(x)}{\mathcal{Q}_{X}(x)} & \text { if } \quad \operatorname{supp} \mathcal{Q}_{X} \subset \operatorname{supp} \mathcal{P}_{X} \tag{15}\\ +\infty & \text { otherwise }\end{cases}
$$

The divergence variance is defined by

$$
V\left(\mathcal{P}_{X} \| \mathcal{Q}_{X}\right)= \begin{cases}\sum_{x \in \operatorname{supp} \mathcal{P}_{X}} \mathcal{P}_{X}(x)\left(\log _{2} \frac{\mathcal{P}_{X}(x)}{\mathcal{Q}_{X}(x)}\right)^{2}-\left(D\left(\mathcal{P}_{X} \| \mathcal{Q}_{X}\right)\right)^{2} & \text { if } \quad \operatorname{supp} \mathcal{Q}_{X} \subset \operatorname{supp} \mathcal{P}_{X} \tag{16}\\ +\infty & \text { otherwise }\end{cases}
$$

The conditional information variance is defined by

$$
\begin{equation*}
V(X ; Y)=\mathbb{E}\left[i(X, Y)^{2}\right]-\sum_{x} \mathcal{P}_{X}(x)\left(D\left(\mathcal{P}_{Y \mid X}(\cdot \mid x) \| \mathcal{P}_{Y}\right)\right)^{2} \tag{17}
\end{equation*}
$$

II. Channel Coding Problem

Definition 6 A discrete channel $\left(\mathcal{X}, \mathcal{Y}, \mathcal{T}_{Y \mid X}\right)$ consists of two discrete sets \mathcal{X}, \mathcal{Y} and a conditional probability distribution $\mathcal{T}_{Y \mid X} \in \Delta(\mathcal{Y})^{|\mathcal{X}|}$. The channel is memoryless if for all $n \in \mathbb{N}^{\star}=\mathbb{N} \backslash\{0\}$ and for all pair of sequences $\left(x^{n}, y^{n}\right) \in \mathcal{X}^{n} \times \mathcal{Y}^{n}$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(y^{n} \mid x^{n}\right)=\prod_{t=1}^{n} \mathcal{T}_{Y \mid X}\left(y_{t} \mid x_{t}\right) . \tag{18}
\end{equation*}
$$

Example 4 The binary symmetric channel (BSC) with parameter $\delta \in\left[0, \frac{1}{2}\right]$.

Definition 7 Given $n \in \mathbb{N}^{\star}$ and $M \in \mathbb{N}^{\star}$, an (M, n)-code is a pair of functions (σ, τ) defined by

$$
\begin{align*}
& \sigma:\{1, \ldots, M\} \longrightarrow \mathcal{X}^{n}, \tag{19}\\
& \tau: \mathcal{Y}^{n} \longrightarrow\{1, \ldots, M\} . \tag{20}
\end{align*}
$$

We suppose that the message $m \in\{1, \ldots, M\}$ is drawn uniformly at random, therefore

$$
\begin{equation*}
\operatorname{Pr}\left(m, x^{n}, y^{n}, \hat{m}\right)=\frac{1}{M} \mathbb{1}\left(x^{n}=\sigma(m)\right)\left(\prod_{t=1}^{n} \mathcal{T}_{Y \mid X}\left(y_{t} \mid x_{t}\right)\right) \mathbb{1}\left(\hat{m}=\tau\left(y^{n}\right)\right), \quad \forall\left(m, x^{n}, y^{n}, \hat{m}\right) \tag{21}
\end{equation*}
$$

The maximal error probability is defined by

$$
\begin{equation*}
\mathcal{P}_{\max }=\max _{m \in\{1, \ldots, M\}} \operatorname{Pr}(\hat{m} \neq m \mid m) . \tag{22}
\end{equation*}
$$

The average error probability is defined by

$$
\begin{equation*}
\mathcal{P}_{\text {ave }}=\frac{1}{M} \sum_{m \in\{1, \ldots, M\}} \operatorname{Pr}(\hat{m} \neq m \mid m) . \tag{23}
\end{equation*}
$$

Definition 8 Given $n \in \mathbb{N}^{\star}$ and $\varepsilon>0$, the maximal code sizes are defined by

$$
\begin{align*}
& M_{\text {max }}^{\star}(n, \varepsilon)=\max _{\substack{(M, n)-\text { code, } \\
P_{\text {max }} \leq \varepsilon}} M, \tag{24}\\
& M_{\text {ave }}^{\star}(n, \varepsilon)=\max _{\substack{\exists(M, n) \text { code, } \\
P \text { veae } \leq \varepsilon}}^{\star} M . \tag{25}
\end{align*}
$$

For all $n \in \mathbb{N}^{\star}$ and $\varepsilon>0$, we have $M_{\text {max }}^{\star}(n, \varepsilon) \leq M_{\text {ave }}^{\star}(n, \varepsilon)$.

Proposition 3 Given $n \in \mathbb{N}^{\star}$ and $\varepsilon^{\prime}>\varepsilon>0$,

$$
\begin{equation*}
M_{\max }^{\star}\left(n, \varepsilon^{\prime}\right) \geq M_{\text {ave }}^{\star}(n, \varepsilon) \cdot\left(1-\frac{\varepsilon}{\varepsilon^{\prime}}\right) . \tag{26}
\end{equation*}
$$

Example 5 We remove half of the codewords of $M_{\text {ave }}^{\star}(n, \varepsilon)$ with higher error probability $\operatorname{Pr}(\hat{m} \neq m \mid m)$. Since the codewords are equiprobable, all the remaining codewords have an error probability less than $2 \varepsilon>0$, otherwise $\mathcal{P}_{\text {ave }}>\varepsilon$. Therefore $M_{\max }^{\star}(n, 2 \varepsilon) \geq \frac{1}{2} M_{\text {ave }}^{\star}(n, \varepsilon)$.

Definition 9 The capacity of the discrete channel $\left(\mathcal{X}, \mathcal{Y}, \mathcal{T}_{Y \mid X}\right)$ is defined by

$$
\begin{equation*}
C=\max _{\mathcal{P}_{\mathcal{X}} \in \Delta(\mathcal{X})} I(X ; Y), \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
I(X ; Y)=\sum_{x, y} \mathcal{P}_{X}(x) \mathcal{T}_{Y \mid X}(y \mid x) \log _{2} \frac{\mathcal{T}_{Y \mid X}(y \mid x)}{\sum_{x^{\prime}} \mathcal{P}_{X}\left(x^{\prime}\right) \mathcal{T}_{Y \mid X}\left(y \mid x^{\prime}\right)} . \tag{28}
\end{equation*}
$$

Example 6 The capacity of the binary symmetric channel (BSC) with parameter $p \in\left[0, \frac{1}{2}\right]$ is $C=$ $1-h_{b}(p)$.

Theorem 1 (Shannon 1948 [1])

$$
\begin{align*}
& \text { Achievability result } \quad \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow+\infty} \frac{\log _{2} M_{\max }^{\star}(n, \varepsilon)}{n} \geq C \tag{29}\\
& \text { Converse result } \quad \forall n \in \mathbb{N}^{\star} \lim _{\varepsilon \rightarrow 0} \frac{\log _{2} M_{\text {ave }}^{\star}(n, \varepsilon)}{n} \leq C \tag{30}
\end{align*}
$$

The proof is provided in [2, Chap.7].

Corollary 1

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow+\infty} \frac{\log _{2} M_{\max }^{\star}(n, \varepsilon)}{n}=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow+\infty} \frac{\log _{2} M_{\text {ave }}^{\star}(n, \varepsilon)}{n}=C . \tag{31}
\end{equation*}
$$

Remark 1 When we interchange the limits in (31), the problem is called zero-error channel coding problem. It corresponds to an open problem in Graph Theory, see [3].

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \lim _{\varepsilon \rightarrow 0} \frac{\log _{2} M_{\max }^{\star}(n, \varepsilon)}{n}=\lim _{n \rightarrow+\infty} \frac{\log _{2} M_{\max }^{\star}(n, 0)}{n}=\lim _{n \rightarrow+\infty} \frac{\log _{2} M_{\text {ave }}^{\star}(n, 0)}{n}=\lim _{n \rightarrow+\infty} \lim _{\varepsilon \rightarrow 0} \frac{\log _{2} M_{\text {ave }}^{\star}(n, \varepsilon)}{n} . \tag{32}
\end{equation*}
$$

For example, noisy type-writer with 7 elements.

Fig. 1. Plot of the Q-function. Figure available at https://en.wikipedia.org/wiki/Q-function

III. Achievability Result in the Finite Blocklength Regime

Definition 10 The Q-function is defined by

$$
\begin{align*}
Q: \mathbb{R} & \rightarrow[0,1] \tag{33}\\
x & \mapsto Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right) d t . \tag{34}
\end{align*}
$$

It is the tail distribution function $Q(x)=\operatorname{Pr}(X>x)$ of the standard normal distribution $X \sim \mathcal{N}(0,1)$. The inverse Q-function is defined by

$$
\begin{align*}
Q^{-1}:[0,1] & \rightarrow \mathbb{R}, \tag{35}\\
y & \mapsto Q^{-1}(y)=\text { x s.t. } Q^{-1} \circ Q=i d_{\mathbb{R}} \tag{36}
\end{align*}
$$

Theorem 2 (Theorem 45, pp. 24 in Polyanskiy et al. 2010 [4]) For any $\mathcal{P}_{X} \in \Delta(\mathcal{X})$, for all pair $\left.(n, \varepsilon) \in \mathbb{N}^{\star} \times\right] 0,+\infty[$ that satisfies

$$
\begin{equation*}
\varepsilon \cdot \sqrt{n} \geq \frac{2}{\sqrt{U(X ; Y)}}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{15 \cdot T(X ; Y)}{U(X ; Y)}\right) \tag{37}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{\log _{2} M_{\text {ave }}^{\star}(n, \varepsilon)}{n} \geq I(X ; Y)-\sqrt{\frac{U(X ; Y)}{n}} \cdot Q^{-1}\left(\varepsilon-\frac{2}{\sqrt{n \cdot U(X ; Y)}}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{15 T(X ; Y)}{U(X ; Y)}\right)\right) \tag{38}
\end{equation*}
$$

The proof of Theorem 2 is provided in Sec. IV and relies on the Berry-Esseen's Theorem.

Theorem 3 (Berry-Esseen) Let $Z_{k}, k \in\{1, \ldots, n\}$ i.i.d with

$$
\begin{equation*}
\mu=\mathbb{E}\left[Z_{k}\right], \quad \sigma^{2}=\mathbb{E}\left[\left|Z_{k}-\mu\right|^{2}\right], \quad t=\mathbb{E}\left[\left|Z_{k}-\mu\right|^{3}\right]<+\infty \tag{39}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|\operatorname{Pr}\left[\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \geq x\right]-Q(x)\right| \leq \frac{6 t}{\sqrt{n} \cdot \sigma^{3}} \tag{40}
\end{equation*}
$$

The proof of Theorem 3 is available in [5, Chap. XVI.5]. The convergence speed of the cumulative distribution function (CDF) of the sum of i.i.d. random variables is at least on the order of $\frac{1}{\sqrt{n}}$.

Remark 2 The random variable $\sum_{k=1}^{n} Z_{k}$ has mean and variance

$$
\begin{align*}
& \mathbb{E}\left[\sum_{k=1}^{n} Z_{k}\right]=n \cdot \mu \tag{41}\\
& \mathbb{E}\left[\left(\sum_{k=1}^{n}\left(Z_{k}-\mu\right)\right)^{2}\right]=(\sqrt{n} \cdot \sigma)^{2} \tag{42}
\end{align*}
$$

Therefore the random variable $\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma}$ has expected value 0 and variance 1 .

Remark 3 We also have for all $\lambda \in \mathbb{R}$

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}}\left|\operatorname{Pr}\left[\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \leq-\lambda\right]-Q(\lambda)\right| \leq \frac{6 t}{\sqrt{n} \cdot \sigma^{3}} . \tag{43}
\end{equation*}
$$

Moreover, for all $\lambda \in \mathbb{R}$ and for all $\delta>0$, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\lambda \leq \sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \leq \lambda+\delta\right] \leq Q(\lambda)-Q(\lambda+\delta)+\frac{12 t}{\sqrt{n} \cdot \sigma^{3}} . \tag{44}
\end{equation*}
$$

Theorem 4 (Theorem 17 in Polyanskiy et al. 2010 [4]; Dependence Testing (DT) Bound) For any distribution \mathcal{P}_{X}, for all $\gamma>0, n \in \mathbb{N}^{\star}$ we define $\varepsilon>0$ by

$$
\begin{equation*}
\varepsilon=\mathbb{E}\left[\exp \left(-\left(i\left(X^{n} ; Y^{n}\right)-\ln \gamma\right)^{+}\right)\right] \tag{45}
\end{equation*}
$$

with the notation $(x)^{+}=\max (0, x)$. Then $M_{\text {ave }}^{\star}(n, \varepsilon) \geq 2 \gamma+1$.
The proof of Theorem 4 is stated in [4, pp. 7].

IV. Proof of Theorem 2

We select a distribution $\mathcal{P}_{X} \in \Delta(\mathcal{X})$ and we denote $\mathcal{P}_{X Y}=\mathcal{P}_{X} \mathcal{T}_{Y \mid X} \in \Delta(\mathcal{X} \times \mathcal{Y})$. For $n \in \mathbb{N}^{\star}$, the pair of sequences $\left(X^{n}, Y^{n}\right)$ is drawn i.i.d. according to $\mathcal{P}_{X Y}$. We consider the sequence of i.i.d. random variables $Z_{k}, k \in\{1, \ldots, n\}$ defined by

$$
\begin{equation*}
Z_{k}=i\left(X_{k}, Y_{k}\right)=\log _{2} \frac{P_{X Y}\left(X_{k}, Y_{k}\right)}{P_{X}\left(X_{k}\right) P_{Y}\left(Y_{k}\right)} \tag{46}
\end{equation*}
$$

We have $i\left(X^{n}, Y^{n}\right)=\sum_{k=1}^{n} Z_{k}$ and moreover

$$
\begin{align*}
\forall k \in\{1, \ldots, n\} \quad \mathbb{E}\left[Z_{k}\right] & =I(X ; Y)=\mu, \tag{47}\\
\mathbb{E}\left[\left|Z_{k}-\mu\right|^{2}\right] & =U(X ; Y)=\sigma^{2}, \tag{48}\\
\mathbb{E}\left[\left|Z_{k}-\mu\right|^{3}\right] & =T(X ; Y)=t . \tag{49}
\end{align*}
$$

By Lemma $1, t<+\infty$ and we apply Theorem 3 (Berry-Esseen), to the sequence of random variables $-Z_{k}, k \in\{1, \ldots, n\}$. For any $\lambda \in \mathbb{R}$, we have

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\sum_{k=1}^{n} \frac{-Z_{k}+\mu}{\sqrt{n} \cdot \sigma} \geq \lambda\right]-Q(\lambda)\right| \leq \frac{6 t}{\sqrt{n} \cdot \sigma^{3}} \tag{50}
\end{equation*}
$$

By hypothesis $\varepsilon \cdot \sqrt{n} \geq \frac{2}{\sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{15 t}{\sigma^{2}}\right)$. We introduce the parameters

$$
\begin{align*}
\lambda & =Q^{-1}\left(\varepsilon-\frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{15 t}{\sigma^{2}}\right)\right), \tag{51}\\
\ln \gamma & =n \cdot I(X ; Y)-\lambda \sqrt{n \cdot U(X ; Y)}, \tag{52}
\end{align*}
$$

and (50) reformulates

$$
\begin{align*}
& \operatorname{Pr}\left[\sum_{k=1}^{n} \frac{-Z_{k}+\mu}{\sqrt{n} \cdot \sigma} \geq \lambda\right] \leq Q(\lambda)+\frac{6 t}{\sqrt{n} \cdot \sigma^{3}} \tag{53}\\
\Longleftrightarrow & \operatorname{Pr}\left[\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \leq-\lambda\right] \leq Q(\lambda)+\frac{6 t}{\sqrt{n} \cdot \sigma^{3}} \tag{54}\\
\Longleftrightarrow & \operatorname{Pr}\left[i\left(X^{n}, Y^{n}\right) \leq n \cdot I(X ; Y)-\lambda \sqrt{n \cdot U(X ; Y)}\right] \leq Q(\lambda)+\frac{6 t}{\sqrt{n} \cdot \sigma^{3}} \tag{55}\\
\Longleftrightarrow & \operatorname{Pr}\left[i\left(X^{n}, Y^{n}\right) \leq \ln \gamma\right] \leq \varepsilon-\frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) . \tag{56}
\end{align*}
$$

Lemma 2 (Lemma 47 in Polyanskiy et al. 2010 [4]) For $n \in \mathbb{N}^{\star}$, let $Z_{k}, k \in\{1, \ldots, n\}$ i.i.d. discrete random variables with $\sigma^{2}=\mathbb{E}\left[\left|X_{k}-\mu\right|^{2}\right]$ and $t=\mathbb{E}\left[\left|X_{k}-\mu\right|^{3}\right]<+\infty$. Then for all $A \in \mathbb{R}$

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(-\sum_{k=1}^{n} Z_{k}\right) \cdot \mathbb{1}\left(\sum_{k=1}^{n} Z_{k}>A\right)\right] \leq \exp (-A) \cdot \frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) . \tag{57}
\end{equation*}
$$

The proof of Lemma 2 is in Sec. IV-A. By replacing $A=\ln \gamma$ in (57), we have

$$
\begin{equation*}
\gamma \cdot \mathbb{E}\left[\exp \left(-i\left(X^{n} ; Y^{n}\right)\right) \cdot \mathbb{1}\left(i\left(X^{n} ; Y^{n}\right)>\ln \gamma\right)\right] \leq \frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) \tag{58}
\end{equation*}
$$

Equations (56) and (58) imply

$$
\begin{align*}
& \mathbb{E}\left[\exp \left(-\left(i\left(X^{n} ; Y^{n}\right)-\ln \gamma\right)^{+}\right)\right] \tag{59}\\
= & \operatorname{Pr}\left[i\left(X^{n}, Y^{n}\right) \leq \ln \gamma\right]+\gamma \cdot \mathbb{E}\left[\exp \left(-i\left(X^{n} ; Y^{n}\right)\right) \cdot \mathbb{1}\left(i\left(X^{n} ; Y^{n}\right)>\ln \gamma\right)\right] \tag{60}\\
\leq & \varepsilon-\frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right)+\frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right)=\varepsilon . \tag{61}
\end{align*}
$$

Theorem 4 concludes the proof of Theorem 2 .

$$
\begin{align*}
\frac{\log _{2} M_{\text {ave }}^{\star}(n, \varepsilon)}{n} & \geq \frac{\log _{2} 2 \gamma+1}{n} \tag{62}\\
& \geq \frac{\log _{2} \gamma}{n} \tag{63}\\
& =I(X ; Y)-\lambda \sqrt{\frac{U(X ; Y)}{n}} \tag{64}\\
& =I(X ; Y)-\sqrt{\frac{U(X ; Y)}{n}} \cdot Q^{-1}\left(\varepsilon-\frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{15 t}{\sigma^{2}}\right)\right) . \tag{65}
\end{align*}
$$

A. Proof of Lemma 2

By Lemma $1, t<+\infty$ and we apply Theorem 3 (Berry-Esseen), for all $\lambda \in \mathbb{R}$ and for all $\delta>0$, we have

$$
\begin{align*}
\operatorname{Pr}\left[\lambda \leq \sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \leq \lambda+\delta\right] & =\operatorname{Pr}\left[\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \geq \lambda\right]-\operatorname{Pr}\left[\sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \geq \lambda+\delta\right] \tag{66}\\
& \leq Q(\lambda)-Q(\lambda+\delta)+\frac{1}{\sqrt{n}} \frac{12 t}{\sigma^{3}} \tag{67}\\
& =\int_{\lambda}^{\lambda+\delta} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right) d t+\frac{1}{\sqrt{n}} \frac{12 t}{\sigma^{3}} \tag{68}\\
& \leq \frac{\delta}{\sqrt{2 \pi}}+\frac{1}{\sqrt{n}} \frac{12 t}{\sigma^{3}} . \tag{69}
\end{align*}
$$

For all $A \in \mathbb{R}$ we have

$$
\begin{align*}
& \mathbb{E}\left[\exp \left(-\sum_{k=1}^{n} Z_{k}\right) \cdot \mathbb{1}\left(\sum_{k=1}^{n} Z_{k}>A\right)\right] \tag{70}\\
\leq & \sum_{l=0}^{+\infty} \exp (-(A+l \ln 2)) \cdot \operatorname{Pr}\left[A+l \ln 2 \leq \sum_{k=1}^{n} Z_{k} \leq A+(l+1) \ln 2\right] \tag{71}\\
= & \sum_{l=0}^{+\infty} \exp (-(A+l \ln 2)) \cdot \operatorname{Pr}\left[\frac{A+l \ln 2-\mu}{\sqrt{n} \cdot \sigma} \leq \sum_{k=1}^{n} \frac{Z_{k}-\mu}{\sqrt{n} \cdot \sigma} \leq \frac{A+l \ln 2-\mu}{\sqrt{n} \cdot \sigma}+\frac{\ln 2}{\sqrt{n} \cdot \sigma}\right] \tag{72}\\
\leq & \sum_{l=0}^{+\infty} \exp (-(A+l \ln 2)) \cdot \frac{1}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) \tag{73}\\
= & \exp (-A) \cdot \frac{1}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) \cdot \sum_{l=0}^{+\infty} 2^{-l} \tag{74}\\
= & \exp (-A) \cdot \frac{2}{\sqrt{n} \cdot \sigma}\left(\frac{\ln 2}{\sqrt{2 \pi}}+\frac{12 t}{\sigma^{2}}\right) . \tag{75}
\end{align*}
$$

This concludes the proof of Lemma 2.

V. Example: The Binary Symmetric Channel

Theorem 5 (Theorem 52, pp. 264 in Polyanskiy et al. 2010 [4]) We consider the Binary Symmetric Channel (BSC) with parameter $p \in[0,1] \backslash\left\{0, \frac{1}{2}, 1\right\}$ and uniform input distribution \mathcal{P}_{X}. For all $\varepsilon>0$, there exists $\bar{n} \in \mathbb{N}^{\star}$, for all $n \geq \bar{n}$ we have

$$
\begin{equation*}
\frac{\log _{2} M_{\max }^{\star}(n, \varepsilon)}{n} \geq 1-h_{b}(p)-\sqrt{\frac{p(1-p)}{n}} \log _{2} \frac{1-p}{p} \cdot Q^{-1}(\epsilon)+\frac{1}{2} \frac{\log _{2} n}{n}+O\left(\frac{1}{n}\right), \tag{76}
\end{equation*}
$$

Fig. 2. [4, Fig. 8]. Rate $\frac{\log _{2} M_{\text {max }}^{\star}(n, \varepsilon)}{n}$ and blocklength n tradeoff for the BSC with crossover probability $p=0.11$ and error probability $\varepsilon=10^{-3}$.

References

[1] C. Shannon, "A mathematical theory of communication," Bell System Technical Journal, vol. 27, pp. 379-423, 1948.
[2] T. M. Cover and J. A. Thomas, Elements of information theory. New York: 2nd. Ed., Wiley-Interscience, 2006.
[3] C. E. Shannon, "The zero error capacity of a noisy channel," IRE Trans. Inf. Theory, vol. 2, pp. 8-19, 1956.
[4] Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Transactions on Information Theory, vol. 56, no. 5, p. 2307, 2010.
[5] W. Feller, An Introduction to Probability Theory and Its Applications. Wiley, New York, 1971.

