Lecture: Definition Entropy and Mutual information

Theorem (KL1). Positivity of $\boldsymbol{K L}$ [1, Th. 2.6.3]:

$$
\begin{equation*}
D(p \| q) \geq 0 \tag{1}
\end{equation*}
$$

with equality iff $\forall x, p(x)=q(x)$.
This is a consequence of Jensen's inequality [1, Th. 2.6.2]:
If f is a convex function and Y is a random variable with numerical values, then

$$
\mathbb{E}[f(Y)] \geq f(\mathbb{E}[Y])
$$

with equality when $f($.$) is not strictly convex, or when f($.$) is strictly convex and Y$ follows a degenerate distribution (i.e. is a constant).

Proof. Let $X \sim p(x)$. Let $q(x)$ be another distribution defined on the same alphabet \mathcal{X}. Let $S u p p(p)=$ $\{x: p(x)>0\}$.
Let $Y=\frac{q(X)}{p(X)}$, where $p(X)>0 . Y$ is a r.v. with numerical values. More precisely,

$$
\begin{align*}
& Y= \begin{cases}\frac{q(x)}{p(x)} & \text { with probability } p(x), \text { if } p(x)>0 \\
0 & \text { otherwise }\end{cases} \tag{2}\\
& \qquad \begin{aligned}
D(p \| q) & =\mathbb{E}_{X}\left[\log _{2} \frac{p(X)}{q(X)}\right] \\
& =-\mathbb{E}_{Y}\left[\log _{2} Y\right] \\
& \geq-\log _{2} \mathbb{E}_{Y}[Y] \\
& \geq 0
\end{aligned} \tag{3}
\end{align*}
$$

where (5) follows from the convexity of the function $-\log _{2}($.$) and Jensen's inequality, and where (6)$ follows from

$$
\begin{equation*}
\mathbb{E}[Y]=\sum_{x \in \operatorname{Supp}(p)} p(x) \frac{q(x)}{p(x)} \tag{7}
\end{equation*}
$$

Case of equality in (1). From the case of equality in Jensen's inequality (see [1, Th. 2.6.2] and reminder above), and from the fact that $-\log$ is strictly convex, there is equality in (1) if Y is deterministic i.e. $\frac{q(X)}{p(X)}$ is constant a.s. i.e.

$$
\begin{equation*}
\forall x \in \operatorname{Supp}(p), q(x)=c p(x), \text { where } c \in \mathbb{R} . \tag{8}
\end{equation*}
$$

Moreover, there is equality in (6), therefore, from (7), we have that

$$
\begin{equation*}
\sum_{x \in \operatorname{Supp}(p)} q(x)=1 \tag{9}
\end{equation*}
$$

Therefore $\sum_{x \in \operatorname{Supp}(p)} q(x)=1=c \sum_{x \in \operatorname{Supp}(p)} p(x)$, which leads to $c=1$. i.e.

$$
\left\{\begin{array}{l}
\forall x \in \operatorname{Supp}(p), q(x)=p(x) \tag{10}\\
\forall x \in X \operatorname{Supp}(p), q(x)=p(x)=0
\end{array}\right.
$$

Conversely if (10), $D(p \| q)=0$.

Lecture: Variable Length Coding - Zero error data compression

Theorem 1 (uniquely decodable code $\Leftrightarrow \mathrm{KI}$). [1, Th 5.5.1]
The codeword lengths of any uniquely decodable code (UDC) must satisfy the Kraft inequality (KI):

$$
\begin{equation*}
\sum_{i=1}^{M} D^{-l_{i}} \leq 1 \tag{11}
\end{equation*}
$$

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a uniquely decodable code with these codeword lengths.

Proof. Sufficient condition: KI (11) \Rightarrow UDC.
It was shown that $(11) \Rightarrow \exists$ a prefix code. So in particular a UDC.

Necessary condition: UDC $\Rightarrow \mathrm{KI}$ (11).
Let C be a UDC. Let $l_{\text {max }}=\max _{i} l_{i}$.

$$
\begin{align*}
\sum_{i=1}^{M} D^{-l_{i}} & =\sum_{j=1}^{l_{\max }} w_{j} D^{-j}, \quad w_{j}=\# \text { of codewords of length } j \tag{12}\\
\left(\sum_{j=1}^{l_{\max }} w_{j} D^{-j}\right)^{n} & =\underbrace{\sum_{j_{1}} \ldots \sum_{j_{n}}}_{1 \leq j_{k} \leq l_{\max }} w_{j_{1}} \ldots w_{j_{n}} D^{-j_{1}} \ldots D^{-j_{n}} \tag{13}\\
& =\sum_{k=n}^{n l_{\max }} N_{k} D^{-k} \tag{14}
\end{align*}
$$

since $\forall k, 1 \leq j_{k} \leq l_{\max } \Rightarrow n \leq j_{1}+\ldots+j_{n} \leq n l_{\max }$, and where N_{k} is the number of sequence of codewords of length k, corresponding to the encoding of n source symbols.

But UDC implies that 2 different source messages have 2 different codeword sequences. Therefore the N_{k} codewords are distincts.
Therefore, $N_{k} \leq D^{k}=\#$ of possible sequences with k letters. Therefore,

$$
\begin{gather*}
\left(\sum_{j=1}^{l_{\max }} w_{j} D^{-j}\right)^{n}=\sum_{k=1}^{n l_{\max }} N_{k} D^{-k} \leq \sum_{k=n}^{n l_{\max }} D^{k} D^{-k} \leq n l_{\max } \tag{15}\\
\sum_{j=1}^{l_{\max }} w_{j} D^{-j} \leq n^{\frac{1}{n}} l_{\max }^{\frac{1}{n}}=e^{\frac{1}{n} \log \left(n l_{\max }\right)} \xrightarrow[n \rightarrow \infty]{\longrightarrow} e^{0}=1 \tag{16}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
\sum_{j=1}^{l_{\max }} w_{j} D^{-j} \leq 1 \tag{17}
\end{equation*}
$$

Theorem 2 (Expected length of a Shannon code [CT Sec. 5.4]). Let X be a r.v. with entropy $H(X)$. The Shannon code for the source X can be turned into a prefix code and its expected length $L(C)$ satisfies

$$
\begin{equation*}
\frac{H(X)}{\log D} \leq L(C)<\frac{H(X)}{\log D}+1 \tag{18}
\end{equation*}
$$

Proof. For the $i^{t h}$ symbol of the alphabet of X with probability $p_{i}>0$, the Shannon code assign a codeword of length $l_{i}=\left\lceil-\log _{D}\left(p_{i}\right)\right\rceil \Leftrightarrow-\log _{D}\left(p_{i}\right) \leq l_{i}<-\log _{D}\left(p_{i}\right)+1$.

- First, the set of lengths $\left\{l_{i}\right\}_{i}$ satisfies the Kraft inequality. Indeed, since $p_{i}>0$ (we encode only symbols with non zero probability)

$$
-\log _{D}\left(p_{i}\right) \leq l_{i} \Leftrightarrow D^{-l_{i}} \leq p_{i} \Rightarrow \sum_{i} D^{-l_{i}} \leq 1
$$

Therefore, there exists a prefix code with the codeword lengths of the Shannon code i.e. any Shannon code can be turned into a prefix code.

- The expected length of the Shannon code satisfies

$$
-\sum_{i} p_{i} \log _{D}\left(p_{i}\right) \leq \sum_{i} p_{i} l_{i}<-\sum_{i} p_{i} \log _{D}\left(p_{i}\right)+1 \Leftrightarrow \frac{H(X)}{\log D} \leq L(C)<\frac{H(X)}{\log D}+1
$$

Theorem 3 (Lower and upper bound on the expected length of an optimal code [CT 5.4.1]). Let X be a r.v. with entropy $H(X)$. Any optimal code C^{*} for X with codeword lengths $l_{1}^{*}, \ldots, l_{M}^{*}$ and expected length $L\left(C^{*}\right)=\sum p_{i} l_{i}^{*}$ satisfies

$$
\frac{H(X)}{\log D} \leq L\left(C^{*}\right)<\frac{H(X)}{\log D}+1
$$

Proof. - Upper bound: The code is optimal so it is better than a Shannon code C :

$$
L\left(C^{*}\right) \leq L(C)<\frac{H(X)}{\log D}+1
$$

- Lower bound: Any prefix code satisfies the lower bound. So does the optimal.

$$
\frac{H(X)}{\log D} \leq L\left(C^{*}\right)
$$

Lemma 1 (Necessary conditions on optimal prefix codes[CT Le5.8.1]). Given a binary prefix code C with word lengths l_{1}, \ldots, l_{M} associated with a set of symbols with probabilities p_{1}, \ldots, p_{M}.
Without loss of generality, assume that
(i) $p_{1} \geq p_{2} \geq \ldots \geq p_{M}$,
(ii) a group of symbols with the same probability is arranged in order of increasing codeword length (i.e. if $p_{i}=p_{i+1}=\ldots=p_{i+r}$ then $l_{i} \leq l_{i+1} \ldots \leq l_{i+r}$).
If C is optimal within the class of prefix codes, C must satisfy:

1. higher probabilities symbols have shorter codewords $\left(p_{i}>p_{k} \Rightarrow l_{i}<l_{k}\right)$,
2. the two least probable symbols have equal length ($l_{M}=l_{M-1}$),
3. among the codewords of length l_{M}, there must be at least two words that agree in all digits except the last.

Proof. 1. By contradiction. Assume $p_{i}>p_{k}$ and $l_{i}>l_{k}$. Let C^{\prime} be the code where we exchange the codewords of i and k.

$$
L(C)-L\left(C^{\prime}\right)=p_{i} l_{i}+p_{k} l_{k}-p_{i} l_{k}-p_{k} l_{k}=\underbrace{\left(p_{i}-p_{k}\right)}_{>0} \underbrace{\left(l_{i}-l_{k}\right)}_{>0}>0
$$

Therefore there exists a code C^{\prime} with shortest expected length than C. This contradicts the fact that C is optimal.
2. By contradiction. Assume $l_{M} \neq l_{M-1}$.

- Then, necessarily $l_{M}<l_{M-1}$. Indeed, $l_{M} \leq l_{M-1}$ holds in general either due to Condition 1 , if $p_{M-1}>p_{M}$, or due to condition (ii) if $p_{M-1}>p_{M}$.
- If $l_{M}<l_{M-1}$, then the codeword for the $M-1^{\text {th }}$ symbol is not prefix of the codeword for symbol M
i.e. the $M-1$ first letters of the codeword for the $M-1^{\text {th }}$ symbol differ from the $M-1$ first letters of the codeword for symbol M
Therefore we can eliminate without any ambiguity the last letter of the codeword for M.
This builds a new code C^{\prime}, which is prefix and is shorter than C. This contradicts the fact that C is optimal.

3. By contradiction. Condition 3. states that if symbols α_{M-1} and α_{M} have associated codewords of length l_{M}, then these symbols admit the following codewords:

$$
\begin{aligned}
\alpha_{M-1} & : \longleftrightarrow 0 \\
\alpha_{M} & : \longleftrightarrow l_{M-1}
\end{aligned}
$$

If Condition 3 is not satisfied, then symbols α_{M-1} and α_{M} admit the following codewords:

$$
\begin{aligned}
& \alpha_{M-1}: \longleftarrow 0 l_{M}-2 \\
& \alpha_{M}: \longleftrightarrow l_{M}-2 \\
& l_{M}
\end{aligned}
$$

Then, we can eliminate without any ambiguity the last letter of the codeword for symbols α_{M-1} and α_{M}.
This builds a new code C^{\prime}, which is prefix and is shorter than C. This contradicts the fact that C is optimal.

Theorem 4 (Huffman code is optimal [CT Th. 5.8.1]). If C is a Huffman code and C^{\prime} is any other uniquely decodable code, $L(C) \leq L\left(C^{\prime}\right)$.

Proof. By contradiction. Let us assume that C_{1} is not optimal i.e. $\exists C_{1}^{\prime}$ for $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M}\right\}$ with codewords $W_{1}^{\prime}, \ldots, W_{M}^{\prime}$ of length $l_{1}^{\prime}, \ldots, l_{M}^{\prime}$ ans $C^{\prime} 1$ is optimal. Let us show now that this contradicts the fact that C_{2} is optimal.

$$
\begin{aligned}
C^{\prime} 1 \text { is optimal } \Rightarrow & l_{M}^{\prime}=l_{M-1}^{\prime} .(\text { condition } 2) \\
\Rightarrow & \text { at least two codewords agree in all digits except the last. (condition 3) } \\
& \text { Let us assume that this is the case for } W_{M-1}, W_{M}
\end{aligned}
$$

Let us construct C_{2}^{\prime} from C_{1}^{\prime} for symbols $\left\{\alpha_{1}, \ldots, \alpha_{M-2}, \alpha_{M-1, M}\right\}$, where, $\alpha_{M-1, M}$ is the combination of α_{M-1} and α_{M} s.t.

$$
\begin{gathered}
\alpha_{i} \mapsto W_{i}^{\prime} \\
\alpha_{M-1, M} \mapsto W_{M-1, M}^{\prime}
\end{gathered}
$$

where $W_{M-1, M}^{\prime}$ contains the first $l_{M}^{\prime}-1$ bits except the last one of W_{M-1} and W_{M} (this is possible see above the condition 3).
Finally, we get

$$
\begin{aligned}
L\left(C_{2}^{\prime}\right)-L\left(C_{2}\right) & =\sum_{i=1}^{M-2} p_{i} l_{i}^{\prime}+\left(p_{M}+p_{M-1}\right)\left(l_{M}^{\prime}-1\right)-\sum_{i=1}^{M-2} p_{i} l_{i}-\left(p_{M}+p_{M-1}\right)\left(l_{M}-1\right) \\
& =\sum_{i=1}^{M} p_{i} l_{i}^{\prime}-\left(p_{M}+p_{M-1}\right)-\sum_{i=1}^{M} p_{i} l_{i}+\left(p_{M}+p_{M-1}\right) \\
& =L\left(C_{1}^{\prime}\right)-L\left(C_{1}\right)<0
\end{aligned}
$$

since C_{1} is not optimal and C_{1}^{\prime} is. This contradicts the fact that C_{2} is optimal.

References

[1] T. Cover and J. Thomas, Elements of information theory, second Edition. Wiley, 2006.

