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Lecture: Definition Entropy and Mutual information

Theorem (KL1). Positivity of KL [1, Th. 2.6.3]:

D(p||q) ≥ 0 (1)

with equality iff ∀x, p(x) = q(x).

This is a consequence of Jensen’s inequality [1, Th. 2.6.2]:
If f is a convex function and Y is a random variable with numerical values, then

E[f(Y )] ≥ f(E[Y ])

with equality when f(.) is not strictly convex, or when f(.) is strictly convex and Y follows a degenerate
distribution (i.e. is a constant).

Proof. Let X ∼ p(x). Let q(x) be another distribution defined on the same alphabet X. Let Supp(p) =
{x : p(x) > 0}.

Let Y =
q(X)

p(X)
, where p(X) > 0. Y is a r.v. with numerical values. More precisely,

Y =


q(x)

p(x)
with probability p(x), if p(x) > 0

0 otherwise
(2)

D(p||q) = EX

[
log2

p(X)

q(X)

]
(3)

= −EY [log2 Y ] (4)

≥ − log2 EY [Y ] (5)

≥ 0 (6)

where (5) follows from the convexity of the function − log2(.) and Jensen’s inequality, and where (6)
follows from

E[Y ] =
∑

x∈Supp(p)

p(x)
q(x)

p(x)
(7)

Case of equality in (1). From the case of equality in Jensen’s inequality (see [1, Th. 2.6.2] and reminder
above), and from the fact that − log is strictly convex, there is equality in (1) if Y is deterministic i.e.
q(X)
p(X) is constant a.s. i.e.

∀x ∈ Supp(p), q(x) = cp(x), where c ∈ R. (8)

Moreover, there is equality in (6), therefore, from (7), we have that∑
x∈Supp(p)

q(x) = 1. (9)

Therefore
∑

x∈Supp(p) q(x) = 1 = c
∑

x∈Supp(p) p(x), which leads to c = 1. i.e.{
∀x ∈ Supp(p), q(x) = p(x)
∀x ∈ X/Supp(p), q(x) = p(x) = 0.

(10)

Conversely if (10), D(p||q) = 0.
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Lecture: Variable Length Coding - Zero error data compression

Theorem 1 (uniquely decodable code ⇔ KI). [1, Th 5.5.1]
The codeword lengths of any uniquely decodable code (UDC) must satisfy the Kraft inequality (KI):

M∑
i=1

D−li ≤ 1 (11)

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a
uniquely decodable code with these codeword lengths.

Proof. Sufficient condition: KI (11) ⇒ UDC.
It was shown that (11) ⇒ ∃ a prefix code. So in particular a UDC.

Necessary condition: UDC ⇒ KI (11).
Let C be a UDC. Let lmax = maxi li.

M∑
i=1

D−li =

lmax∑
j=1

wjD
−j , wj = # of codewords of length j (12)

lmax∑
j=1

wjD
−j

n

=
∑
j1

. . .
∑
jn︸ ︷︷ ︸

1≤jk≤lmax

wj1 . . . wjnD
−j1 . . . D−jn (13)

=

nlmax∑
k=n

NkD
−k (14)

since ∀k, 1 ≤ jk ≤ lmax ⇒ n ≤ j1+. . .+jn ≤ nlmax, and where Nk is the number of sequence of codewords
of length k, corresponding to the encoding of n source symbols.

But UDC implies that 2 different source messages have 2 different codeword sequences. Therefore the
Nk codewords are distincts.
Therefore, Nk ≤ Dk = # of possible sequences with k letters. Therefore,lmax∑

j=1

wjD
−j

n

=

nlmax∑
k=1

NkD
−k ≤

nlmax∑
k=n

DkD−k ≤ nlmax (15)

lmax∑
j=1

wjD
−j ≤ n 1

n l
1
n
max = e

1
n log(nlmax) −−−−→

n→∞
e0 = 1 (16)

Therefore,

lmax∑
j=1

wjD
−j ≤ 1 (17)

Theorem 2 (Expected length of a Shannon code [CT Sec. 5.4]). Let X be a r.v. with entropy H(X).
The Shannon code for the source X can be turned into a prefix code and its expected length L(C)
satisfies

H(X)

logD
≤ L(C) <

H(X)

logD
+ 1 (18)

Proof. For the ith symbol of the alphabet of X with probability pi > 0, the Shannon code assign a
codeword of length li = d− logD(pi)e ⇔ − logD(pi) ≤ li < − logD(pi) + 1.
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• First, the set of lengths {li}i satisfies the Kraft inequality. Indeed, since pi > 0 (we encode only
symbols with non zero probability)

− logD(pi) ≤ li ⇔ D−li ≤ pi ⇒
∑
i

D−li ≤ 1

Therefore, there exists a prefix code with the codeword lengths of the Shannon code i.e. any
Shannon code can be turned into a prefix code.

• The expected length of the Shannon code satisfies

−
∑
i

pi logD(pi) ≤
∑
i

pili < −
∑
i

pi logD(pi) + 1⇔ H(X)

logD
≤ L(C) <

H(X)

logD
+ 1

Theorem 3 (Lower and upper bound on the expected length of an optimal code [CT 5.4.1]). Let X be
a r.v. with entropy H(X). Any optimal code C∗ for X with codeword lengths l∗1, ..., l

∗
M and expected

length L(C∗) =
∑
pil
∗
i satisfies

H(X)

logD
≤ L(C∗) <

H(X)

logD
+ 1

Proof. • Upper bound: The code is optimal so it is better than a Shannon code C:

L(C∗) ≤ L(C) <
H(X)

logD
+ 1

• Lower bound: Any prefix code satisfies the lower bound. So does the optimal.

H(X)

logD
≤ L(C∗)

Lemma 1 (Necessary conditions on optimal prefix codes[CT Le5.8.1]). Given a binary prefix code C with
word lengths l1, ..., lM associated with a set of symbols with probabilities p1, ..., pM .
Without loss of generality, assume that
(i) p1 ≥ p2 ≥ ... ≥ pM ,
(ii) a group of symbols with the same probability is arranged in order of increasing codeword length (i.e.
if pi = pi+1 = ... = pi+r then li ≤ li+1... ≤ li+r).
If C is optimal within the class of prefix codes, C must satisfy:

1. higher probabilities symbols have shorter codewords (pi > pk ⇒ li < lk),

2. the two least probable symbols have equal length (lM = lM−1),

3. among the codewords of length lM , there must be at least two words that agree in all digits
except the last.

Proof. 1. By contradiction. Assume pi > pk and li > lk. Let C ′ be the code where we exchange the
codewords of i and k.

L(C)− L(C ′) = pili + pklk − pilk − pklk = (pi − pk)︸ ︷︷ ︸
>0

(li − lk)︸ ︷︷ ︸
>0

> 0

Therefore there exists a code C ′ with shortest expected length than C. This contradicts the fact
that C is optimal.

2. By contradiction. Assume lM 6= lM−1.
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• Then, necessarily lM < lM−1. Indeed, lM ≤ lM−1 holds in general either due to Condition 1,
if pM−1 > pM , or due to condition (ii) if pM−1 > pM .

• If lM < lM−1, then the codeword for the M − 1th symbol is not prefix of the codeword for
symbol M
i.e. the M − 1 first letters of the codeword for the M − 1th symbol differ from the M − 1 first
letters of the codeword for symbol M
Therefore we can eliminate without any ambiguity the last letter of the codeword for M .
This builds a new code C ′, which is prefix and is shorter than C. This contradicts the fact
that C is optimal.

3. By contradiction. Condition 3. states that if symbols αM−1 and αM have associated codewords of
length lM , then these symbols admit the following codewords:

αM−1 :
texttextlM−1texttext←−−−−−−−−−−−−−→ 0

αM :
texttextlM−1texttext←−−−−−−−−−−−−−→ 1

If Condition 3 is not satisfied, then symbols αM−1 and αM admit the following codewords:

αM−1 :
texttexlM−2texttex←−−−−−−−−−−−−→ 0 1

αM :
texttexlM−2texttex←−−−−−−−−−−−−→ 1 0

Then, we can eliminate without any ambiguity the last letter of the codeword for symbols αM−1
and αM .
This builds a new code C ′, which is prefix and is shorter than C. This contradicts the fact that C
is optimal.

Theorem 4 (Huffman code is optimal [CT Th. 5.8.1]). If C is a Huffman code and C ′ is any other
uniquely decodable code, L(C) ≤ L(C ′).

Proof. By contradiction. Let us assume that C1 is not optimal i.e. ∃C ′1 for {α1, α2, ..., αM} with code-
words W ′1, ...,W

′
M of length l′1, ..., l

′
M ans C ′1 is optimal. Let us show now that this contradicts the fact

that C2 is optimal.

C ′1 is optimal ⇒ l′M = l′M−1. (condition 2)

⇒ at least two codewords agree in all digits except the last. (condition 3)

⇒ Let us assume that this is the case for WM−1,WM

Let us construct C ′2 from C ′1 for symbols {α1, ..., αM−2, αM−1,M}, where , αM−1,M is the combination of
αM−1 and αM s.t.

αi 7→W ′i

αM−1,M 7→W ′M−1,M

where W ′M−1,M contains the first l′M − 1 bits except the last one of WM−1 and WM (this is possible see
above the condition 3).
Finally, we get

L(C ′2)− L(C2) =

M−2∑
i=1

pil
′
i + (pM + pM−1)(l′M − 1)−

M−2∑
i=1

pili − (pM + pM−1)(lM − 1)

=

M∑
i=1

pil
′
i − (pM + pM−1)−

M∑
i=1

pili + (pM + pM−1)

= L(C ′1)− L(C1) < 0

since C1 is not optimal and C ′1 is. This contradicts the fact that C2 is optimal.
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