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Lecture: Definition Entropy and Mutual information

Theorem (KL1). Positivity of KL [1, Th. 2.6.5]:

D(pllg) = 0 (1)
with equality iff Vo, p(x) = q(x).

This is a consequence of Jensen’s inequality [1, Th. 2.6.2]:
If f is a convex function and Y is a random variable with numerical values, then

E[f(Y)] = f(E[Y])

with equality when f(.) is not strictly convex, or when f(.) is strictly convex and Y follows a degenerate
distribution (i.e. is a constant).

Proof. Let X ~ p(z). Let q(z) be another distribution defined on the same alphabet X. Let Supp(p) =
{z : p(x) > 0}.

X
Let Y = ;EX;, where p(X) > 0. Y is a r.v. with numerical values. More precisely,
a(x) with probability p(z), if p(x) > 0
V=19 ») (2)
0 otherwise
p(X)
D(pllq) = E [log } 3
(bl = Ex 106, 25 Q
= —Ey [log, Y] (4)
> —logy Ey [Y] (5)
>0 (6)
where (5) follows from the convexity of the function —log,(.) and Jensen’s inequality, and where (6)

follows from

~

EY]= Y p)i2 (7)

z€Supp(p) P

~

Case of equality in (1). From the case of equality in Jensen’s inequality (see [1, Th. 2.6.2] and reminder

above), and from the fact that — log is strictly convex, there is equality in (1) if Y is deterministic i.e.

a(X) . . Lol
(%) 1s constant a.s. 1.e.

Vo € Supp(p), q¢(x) = ep(x), where ¢ € R. (8)
Moreover, there is equality in (6), therefore, from (7), we have that
S @)=t (9)
z€Supp(p)

Therefore }- c gpn(p) €(2) =1 =3, cgupp(p) P(¥), Which leads to ¢ = 1. i.e.

{ Va € Supp(p), q(z) = p(x) (10)
V€ X/Supp(p),q(x) = p(z) = 0.

Conversely if (10), D(pl||q) = 0.



Lecture: Variable Length Coding - Zero error data compression

Theorem 1 (uniquely decodable code < KI). [I, Th 5.5.1]
The codeword lengths of any uniquely decodable code (UDC) must satisfy the Kraft inequality (KI):

M
> pli<i (11)
i=1

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a
uniquely decodable code with these codeword lengths.

Proof. Sufficient condition: KI (11) = UDC.
It was shown that (11) = 3 a prefix code. So in particular a UDC.

Necessary condition: UDC = KI (11).
Let C be a UDC. Let [, = max; ;.

Imax

M
ZD‘“ = Z w; D77, w; = # of codewords of length j (12)
i=1 j=1

n
lmax

ijD_j :Z...Z’wh...’LanD_jl...D_j" (13)
j=1 J1 Jn

1<jk <lmax
=Y NDF (14)

since Vk, 1 < jk <lpax = n < j1+. ..+ jn < nlpax, and where Ny, is the number of sequence of codewords
of length k, corresponding to the encoding of n source symbols.

But UDC implies that 2 different source messages have 2 different codeword sequences. Therefore the
N}, codewords are distincts.
Therefore, N;, < D¥ = # of possible sequences with k letters. Therefore,

n
Imax Nlmax Nlmax

ijD‘j = Z N,D7F < Z D*D* < nliax (15)
j=1 k=1 k=n
lI[laX
Z ijfj < n%léﬁax — ewlos(nlmax) 4 0 (16)
Therefore,
lll’lELX
> w;DV <1 (17)
j=1
O
Theorem 2 (Expected length of a Shannon code [CT Sec. 5.4]). Let X be a r.v. with entropy H(X).
The Shannon code for the source X can be turned and its
H(X) H(X)
< L(C 1 18
logD — ()<10gD+ (18)

Proof. For the it" symbol of the alphabet of X with probability p; > 0, the Shannon code assign a
codeword of length I; = [—logp(pi)] © —logp(p:) <l < —logp(pi) + 1.



e First, the set of lengths {I;}; satisfies the Kraft inequality. Indeed, since p; > 0 (we encode only
symbols with non zero probability)

ool <65 D < > YD <

K2

Therefore, there exists a prefix code with the codeword lengths of the Shannon code i.e. any
Shannon code can be turned into a prefix code.
e The expected length of the Shannon code satisfies

H(X)

H(X
- nilogp(r) < 3 ond <~ X pilogp() +1 e LD < 1) < 11

log D

+1

O

Theorem 3 (Lower and upper bound on the expected length of an optimal code [CT 5.4.1]). Let X be
a r.v. with entropy H(X). Any optimal code C* for X with codeword lengths I3, ..., 1%, and

H(X)
log D

H(X)

1
log D +

< L(C*) <

Proof. e Upper bound: The code is optimal so it is better than a Shannon code C"

H(X)

1
log D +

L(C*) < L(C) <

e Lower bound: Any prefix code satisfies the lower bound. So does the optimal.

H(X)
< L(C*
logD — (@)
O
Lemma 1 (Necessary conditions on optimal prefix codes[CT Le5.8.1]). Given a prefix code C with

word lengths 11, ...,y associated with a set of symbols with probabilities p1, ..., P -
Without loss of generality, assume that

(i) p1 > p2> ... > pu,
(ii) a group of symbols with the same probability is arranged in order of increasing codeword length (i.e.

if pi = piv1 = oo = Digr then l; <lip1... <liyr).
If within the class of codes,
1. probabilities symbols have codewords (p; > pr = l; < i),
2. the two least probable symbols have length (Inr = lpr—1),
3. among the codewords of , there must be at least two words that

Proof. 1. By contradiction. Assume p; > p, and I; > [;,. Let C’ be the code where we exchange the
codewords of i and k.

L(C) — L(C") = pil; + prli, — il — pelic = (pi — pr) (L = 1) > 0
>0 >0

Therefore there exists a code C’ with shortest expected length than C. This contradicts the fact
that C is optimal.

2. By contradiction. Assume lp; # Ipr—1.



e Then, necessarily lp; < lps—1. Indeed, Iy < lp;—1 holds in general either due to Condition 1,
if par—1 > pu, or due to condition (ii) if par—1 > pas-

o If Iy < lpr—1, then the codeword for the M — 1** symbol is not prefix of the codeword for
symbol M
i.e. the M — 1 first letters of the codeword for the M — 1** symbol differ from the M — 1 first
letters of the codeword for symbol M
Therefore we can eliminate without any ambiguity the last letter of the codeword for M.
This builds a new code C’, which is prefix and is shorter than C. This contradicts the fact
that C' is optimal.

3. By contradiction. Condition 3. states that if symbols ap;—1 and ap; have associated codewords of
length [/, then these symbols admit the following codewords:

Iv—1
QpNf—1 - M 0

Iv—1
[65.V 8 M 1

If Condition 3 is not satisfied, then symbols ap;_1 and aj; admit the following codewords:

v —2
[0 7,V/ 5 I M 01

[63.V 80 I =2 10

Then, we can eliminate without any ambiguity the last letter of the codeword for symbols ap;_1
and ay.
This builds a new code C’, which is prefix and is shorter than C. This contradicts the fact that C
is optimal.

O

Theorem 4 (Huffman code is optimal [CT Th. 5.8.1]). If C is a Huffman code and C' is any other
uniquely decodable code, L(C) < L(C").

Proof. By contradiction. Let us assume that C is not optimal i.e. 3C] for {a1, as, ..., apr} with code-
words W, ...,Wj, of length I,..., 1%, ans C'1 is optimal. Let us show now that this contradicts the fact
that Cy is optimal.
C'1 is optimal = I, = I};_;. (condition 2)
= at least two codewords agree in all digits except the last. (condition 3)
Let us assume that this is the case for Wy,_1, Wy
Let us construct C4 from Cf for symbols {aq,...,ap—2, @pr—1,0}, where , aps—1 a7 is the combination of
ap—1 and apy s.t.
o > WZI
anv—1,m = Wiy _1m
where Wy, , ), contains the first I}, — 1 bits except the last one of W,y and W)y (this is possible see

above the condition 3).
Finally, we get

S

—2 M—2

L(C3) — L(C2) = pili + (o +pyv—1) (G — 1) — Z pili = (pmr + pr—1) (I — 1)
1 i=1

<.
Il

M
pili = (par +pa—1) — Y pili+ (par +par—1)
i=1

I

o
Il
-

= L(Ci) — L(Cl) <0

since C is not optimal and Cf is. This contradicts the fact that Cs is optimal.
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