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SageMath installation

SageMath library: a mathematical software suite based on Python, open-source.

Download at https://www.sagemath.org/download.html (consider mirrors)
Choose No development.
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The lecturer: Aurore Guillevic

• Permenent researcher at Inria, France Since 2016
• Visiting professor at Aarhus University, 2021–2022

See https://members.loria.fr/AGuillevic/teaching/
§Aarhus 2022, for course materials on elliptic curves
• PhD in 2010–2013 at Thales and École Normale Superieure, Paris, France
• aurore.guillevic@inria.fr

6/77

https://members.loria.fr/AGuillevic/teaching/


Content

• Basic introduction on elliptic curves this morning
• What is an elliptic curve, over Q, over Fp?
• Group law
• Scalar multiplication
• Hard problems in crypto: discrete logarithm computation
• Elliptic curves in cryptography (requirements, constraints, examples)

• Introduction on pairings and the CM method this afternoon
• Supersingular curves, ordinary curves
• Frobenius, torsion
• Hints on point counting
• pairings on elliptic curves for crypto
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Elliptic curves in cryptography
• 1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method

(ECM) for integer factoring
• 1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for

Diffie–Hellman key exchange
• 1985, Certicom: company owning patents on ECC
• 2000 Elliptic curves in IEEE P1363 standard
• 2000 Bilinear pairings over elliptic curves
• NSA cipher suite B, elliptic curves for public-key crypto
• 2014: Quasi-polynomial-time algorithm

for discrete log computation in GF(2n), GF(3m)
No more pairings on elliptic curves over these fields
• 2015: Tower Number Field Sieve in GF(pn)

Pairing-friendly curves should have larger key sizes
• 2016: NIST Post-Quantum competition

Isogenies on elliptic curves, Hiroshi Onuki’s next talk
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Widely deployed elliptic curves in cryptosystems

• elliptic curve over the prime field 2255 − 19 of order 8r where r is prime
• Curve25519 in Montgomery form E : y2 = x3 + 48662x2 + x
• Ed25519 in twisted Edwards form E : − x2 + y2 = 1− 121665

121666 x2y2

• NIST P-xxx curves
• secp256k1, BLS12-381... in proof systems and blockchains
• . . .

Usage:
• Digital signatures (ECDSA): Play Station, EU Covid Certificate...
• Diffie–Hellman key exchange: open-ssl, TLS...
• Encryption: PGP, ...

9/77



Why elliptic curves?

Diophantine equations
From Diophantus of Alexandria, mathematician
Finding integer or rational solutions to polynomial equations

Bachet equation y 2 − x3 = c
given an integer c, find a cube x3 and a square y2 whose difference is c
Claude-Gaspard Bachet de Méziriac (1581–1638)
Translated Diophantus’ Arithmetica from Greek to latin.

Fermat’s conjecture, a.k.a. Fermat’s Last Theorem
Pierre de Fermat (1601–1665)
For n ≥ 3, the equation Xn + Y n = Zn has no solutions in
non-zero integers X , Y , Z .
Actually not proven by Fermat

https://www.wikitimbres.fr/
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Bachet’s equation y 2 − x 3 = c
Bachet discovered in 1621 this

duplication formula
If (x , y) is a rational solution, then(

x4 − 8cx
4y2 ,

−x6 − 20cx3 + 8c2

8y3

)

is another solution in rational numbers.
If xy ̸= 0 and c ̸= 1,−432, it gives infinitely many distinct solutions.

y 2 − x3 = −2
Starting from 52 − 33 = 25− 27 = −2, one obtains

(3, 5) ,

(129
100 ,

383
1000

)
,

(2340922881
58675600 ,

113259286337279
449455096000

)
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Example in Washington’s book

Volume and surface
Rearrange a pyramid of height x layers of fruits into a flat square:
solve y2 = x(x + 1)(2x + 1)/6 with integer solutions
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Conic sections

Ellipses are conic sections defined by x2

a2 + y2

b2 = 1

a b

Ellipses are not elliptic curves.
This ellipse has area πab. What is the circumference? → complicated formula with
elliptic integral.
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Bachet’s equation is an elliptic curve
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Curves with singularities are not elliptic curves
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The curve is smooth

Let E : f (x , y) = 0 over a field K , K = Q, K = Fp, K = F2n for example.
There is no singular point (x0, y0) such that

f (x0, y0) = 0

∂f
∂x (x0, y0) = 0

∂f
∂y (x0, y0) = 0

where ∂f /∂x , ∂f /∂y are the partial derivatives.
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Definitions

Elliptic Curve
An Elliptic Curve over a field K is a smooth curve of genus 1 with a K -rational point.

Genus 1
A curve given by an equation

y2 = f (x), where deg f ∈ {3, 4}

has genus 1.

Structure of Group
Given two points P(x , y), Q(x ′, y ′), one can add two points P + Q and double a point
P + P (algebraic point of view) ans the group law has a geometric meaning.
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Weierstrass model

• An elliptic curve over a field K of characteristic ̸= 2, 3 is given by an equation of
the form

E : y2 = x3 + ax + b, with a, b ∈ K

and ∆ = −16(4a3 + 27b2) ̸= 0 so that E is smooth
(the cubic x3 + ax + b has simple roots)
• The set of K -rational points of an elliptic curve is

E (K ) =
{

(x , y) ∈ K × K ; y2 = x3 + ax + b
}
∪ {O}

• In the general case, one considers the long Weierstrass form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K .
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Chord and tangent rule

ℓP,Q(x , y)

P
Q

R

P + Q

P(x1, y1), Q(x2, y2), x1 ̸= x2

slope λ = ∆y
∆x = y2 − y1

x2 − x1
line L through P and Q has equation
L : y = λ(x − x1) + y1
→ check that (x1, y1) ∈ L, (x2, y2) ∈ L

compute L ∩ E
(x , y) ∈ L and ∈ E ⇒{

L : y = λ(x − x1) + y1
E : y2 = x3 + ax + b ⇒(

λ(x − x1) + y1
)2 = x3 + ax + b

Solve with SageMath to avoid mistakes
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Chord and tangent rule

{
L : y = λ(x − x1) + y1
E : y2 = x3 + ax + b

Substitute y = λ(x − x1) + y1 in E to get a cubic in x :
x3 − λ2x2 + (2x1λ2 − 2y1λ + a)x − x2

1 λ2 + 2x1y1λ− y2
1 + b = 0

We know that x1, x2 are solutions =⇒
(x − x1)(x − x2) is a factor. Take out (x − x1)(x − x2):
x − λ2 + x1 + x2 = 0 =⇒ x3 = λ2 − x1 − x2 is solution
Use L equation to get −y3 = λ(x3 − x1) + y1 (negative sign)
Finally,

λ = y2 − y1
x2 − x1

,

{
x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

One can check with group_law_short_weierstrass_affine.sage
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Doubling a point in affine coordinates (x , y)

ℓP,P(x , y)
P

R

2P
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Doubling a point in affine coordinates (x , y)
The line L tangent at the curve E : f (x , y) = y2 − x3 − ax − b = 0
at P(x1, y1) has equation

∂f
∂x (x1, y1) + ∂f

∂y (x1, y1)dy
dx = 0

(−3x2
1 − a) + 2y1

y − y1
x − x1

= 0

(−3x2
1 − a)(x − x1) + 2y1(y − y1) = 0

−3x2
1 + a
2y1

(x − x1) + (y − y1) = 0 if y1 ̸= 0

The slope is λ = −∂f /∂x
∂f /∂y (x1, y1) = 3x2

1 + a
2y1

Again L has equation λ(x − x1) + (y − y1) = 0
This time we know that x1 is a double root of E ∩ L
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Algebraic description of the addition operation

Let P = (x1, y1) and Q = (x2, y2) be two points on

E : y2 = x3 + ax + b .

The slope of the line (P, Q) is given by

λ =


y2 − y1
x2 − x1

if P ̸= ±Q

3x1 + a
2y1

if P = Q and y1 ̸= 0

The sum of P and Q is the point

P + Q = (x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1) .
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Points of order 2, points of order 3

Points of order 2 are such that P + P = O, that is P = −P and P = (x0, 0).
At P the tangent is a vertical.

Points of order 3 are inflexion points.
2P = −P that is the intersection of the tangent at P with the curve is again at P, is
has multiplicity 3.
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Projective space and point at infinity
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Projective space and point at infinity
E/R : y2 = x3 − 3x + 1
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Projective space and point at infinity

E/K : y2 = x3 + Ax + B Char(K ) ̸= 2, 3

Affine plane (Euclidean plane) over a field K

A2(K ) = {(x , y) : x , y ∈ K}

Group of points of E on K
The set of rational points on the curve E/K is

E (K ) =
{

(x , y) ∈ A2(K ) | (x , y) satisfies E
}
∪ {P∞}

where P∞ is the point at infinity.
We cannot represent the point at infinity P∞ in the affine space A: there is no (∞,∞).
Intuition: store the denominator z of the coordinates (x , y) in a 3rd coord.
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Projective space and point at infinity

Elliptic curves are projective plane (smooth) curves

Projective plane
The projective plane of dimension 2 defined over a field K , denoted P2(K ) is

P2(K ) =
{

(X , Y , Z ) ∈ K 3 | (X , Y , Z ) ̸= (0, 0, 0)
}

/ ∼

with the equivalence relation (X , Y , Z ) ∼ (X ′, Y ′, Z ′) ⇐⇒
there exists λ ̸= 0 ∈ K such that (X , Y , Z ) = (λX ′, λY ′, λZ ′).

The equivalence class w.r.t. ∼ is denoted (X : Y : Z )
with colons instead of commas.
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Two parallel lines meet at infinity
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At infinity is not a single point
Distinct pairs of parallel lines do not meet at the same point at infinity.
L1 ∩ L2 = {P} in A2 so L1,L2 cannot share a 2nd point O

L2

L′
2 O2

O2

L′
1

L1

O1

O1 P
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Projective plane smooth curve

A projective plane cubic curve C in P2(K ) is given by an equation

C : F (X , Y , Z ) = 0

where F is a homogeneous polynomial of degree 3.

An elliptic curve in P2(K ) is given by an equation

E : Y 2Z = X 3 + aXZ 2 + bZ 3, 4a3 + 27b2 ̸= 0

and the group of points on E is

E(K ) = {(X , Y , Z ) ∈ P2(K ) : FE(X , Y , Z ) = 0}
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Point at infinity in the Projective Plane

E : Y 2Z = X 3 + aXZ 2 + bZ 3, 4a3 + 27b2 ̸= 0

Z = 0 =⇒ E : 0 = X 3

The Point at infinity is

(X , Y , Z = 0) ∈ E(K ) =⇒ X = 0

There is no condition on Y except Y ̸= 0 because (0, 0, 0) /∈ P2.
Then (0, λ, 0) for any λ ̸= 0 is the direction of a vertical line in A2.

Point at infinity on E
The equivalence class of the point at infinity on E is O = (0 : 1 : 0).
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Projective coordinates

Washington’s book section 2.6.1
Addition and doubling can be done without special treatment of points of order 2
P(x , 0) ∈ A2 7→ (X , 0, 1) ∈ P2

P(X1, Y1, Z1) + Q(X2, Y2, Z2)
Suppose that none is O, then Z1 ̸= 0, Z2 ̸= 0.
Their affine part is P(x1, y1) = (X1/Z1, Y1/Z1) and Q(x2, y2) = (X2/Z2, Y2/Z2).

L through P and Q has slope λ = y2 − y1
x2 − x1

= Y2/Z2 − Y1/Z1
X2/Z2 − X1/Z1

= Y2Z1 − Y1Z2
X2Z1 − X1Z2

If P = Q then λ = 3x2
1 + a
2y1

= 3X 2
1 /Z 2

1 + a
2Y1/Z1

= 3X 2
1 + aZ 2

1
2Y1Z1
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Addition law in projective coordinates (in P2(K ))

See the Elliptic Curve Formula Database (EFD) by Tanja Lange:
www.hyperelliptic.org/EFD/g1p/auto-shortw-projective.html
Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points on

E : Y 2Z = X 3 + aXZ 2 + bZ 3 .

Adapting directly the formula λ = (y2 − y1)/(x2 − x1), resp. λ = (3x2
1 + a)/(2y1) to

projective coordinates with xi = Xi/Zi , yi = Yi/Zi , the slope of the line (P, Q) is given
by

λ =


Y2Z1 − Y1Z2
X2Z1 − X1Z2

if P ̸= ±Q

3X 2
1 + aZ 2

1
2Y1Z1

if P = Q and Y1 ̸= 0
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Addition law in projective coordinates in P2(K )

Cohen, Miyaji and Ono published at Asiacrypt’1998 the formulas

u = Y2 · Z1 − Y1 · Z2

v = X2 · Z1 − X1 · Z2

A = u2 · Z1 · Z2 − v3 − 2v2 · X1Z2

X3 = v · A
Y3 = u · (v2X1Z2 − A)− v3 · Y1Z2

Z3 = v3 · Z1Z2

this costs 11 Mult., the squares u2, v2, then v3 = v2 · v , hence
12 Mult. + 2 Squares and negligible additions and subtractions.
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Addition law in projective coordinates in P2(K )

For doubling, Cohen, Miyaji and Ono have

w = aZ 2
1 + 3X 2

1

s = Y1 · Z1

B = X1 · Y1 · s
h = w2 − 8B

X3 = 2h · s
Y3 = w · (4B − h)− 8 · (Y1s)2

Z3 = 8s3

this costs 6 Mult., 5 Squares and w3 = w2 · w , hence
7 Mult. + 5 Squares and negligible additions, subtractions and a multiplication by a.
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Corner cases of addition law in projective coordinates in P2(K )

If P = (X1, Y1, Z1) and Q = −P = (X1,−Y1, Z1) with Y1 ̸= 0
then the addition formula computes
(X3, Y3, Z3) = (0, Y3, 0) and Y3 = 8Y 3

1 Z 5
1 ̸= 0

This is the point at infinity O, without division by 0.

If P = (X1, 0, Z1) has order 2, the doubling formula computes
(0, Y3, 0) = O without a division by 0.
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Other coordinate systems and forms of elliptic curves
There are many other coordinate systems:
• affine (x , y)
• projective (X , Y , Z ) 7→ (X/Z , Y /Z )
• Jacobian (X , Y , Z ) 7→ (X/Z 2, Y /Z 3)
• extended Jacobian (X , Y , Z , Z 2) 7→ (X/Z 2, Y /Z 3)
• . . .

that can be combined with different forms of curves:
• Short Weierstrass with a = −3, a = 1, a = 0, b = 0, etc
• Specificities: points of order 2 or 4 available
• Montgomery form
• Edwards, twisted Edwards form
• Jacobi Quartic
• Huff form
• . . .

→ EFD contains almost all of them.
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Associativity: (P + Q) + R = P + (Q + R)
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Associativity: (P + Q) + R = P + (Q + R)
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Associativity: (P + Q) + R = P + (Q + R)
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Multiplicity of intersection and Bézout theorem

Idea of the proof using Bézout’s theorem
Silverman–Tate book pages 16–21 and 238–240.
From Bézout’s theorem, two distinct cubic projective plane curves without a common
component have exactly 9 intersection points.
Idea of the proof:
Let’s consider an elliptic curve C and the eight points

P, Q, R,O,−(P + Q), P + Q,−(Q + R), (Q + R) ∈ C .

To show associativity, show that there is a unique ninth point:

−((P + Q) + R) = −(P + (Q + R)) .
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Main questions on curves over Q

Given a bivariate polynomial equation y2 = f (x) with integer coefficients,
1. Are there any solutions in integers?
2. Are there any solutions in rational numbers?
3. Are there infinitely many solutions in integers?
4. Are there infinitely many solutions in rational numbers?

Consider these questions for elliptic curves, where

y2 = x3 + ax2 + bx + c
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Main theorems on curves over Q

A non-singular cubic equation has only finitely many integer solutions (Siegel 1920),
bound on the coefficients: Baker–Coates, 1970.

Nagell–Lutz: Points of finite order on an elliptic curve have integer coordinates.

Mordell: the group of points is finitely generated.

Mazur: structure of the group of torsion points (points of finite order)
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Main theorems on curves over Q

Nagell–Lutz Theorem
Let

y2 = f (x) = x3 + ax2 + bx + c

be a non-singular cubic curve with integer coefficients a, b, c; and let D be the
discriminant of the cubic polynomial f (x),

= −4a3c + a2b2 + 18abc − 4b3 − 27c2 .

Let P = (x , y) be a rational point of finite order. Then x and y are integers; and
either y = 0, in which case P has order two, or else y divides D.
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Main theorems on curves over Q

Mazur’s theorem
Let C be a non-singular rational cubic curve, and suppose that C(Q) contains a point
of finite order m. Then either

1 ≤ m ≤ 10 or m = 12 .

More precisely, the set of all points of finite order in C(Q) forms a subgroup which has
one of the following two forms:

1. Z/nZ A cyclic group of order n with 1 ≤ n ≤ 10 or n = 12.
2. Z/2Z× Z/2nZ The product of a cyclic group of order two and a cyclic group of

order 2n with 1 ≤ n ≤ 4.
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Main theorems on curves over Q

Mordell’s theorem (Mordell–Weil)
If a non-singular rational plane cubic curve has a rational point, then the group of
rational points is finitely generated.
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Finite field
Prime finite field: a finite field of prime order.
(a prime field F has no proper non-trivial subfield K ⊊ F )

3 notations for the same object:
• Z/pZ: the integers modulo p,
• GF(p) for Galois Field,
• Fp (the field of p elements).

Representation: the integers {0, 1, 2, . . . , p − 1}
or the centered set {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}.

The prime number p is the characteristic of the finite field.
Field with p = 2: {0, 1}, where 1 + 1 = 0 mod 2
Field with p = 3: {0, 1, 2} where 1 + 1 = 2, 1 + 2 = 0 mod 3, 2 + 2 = 1 mod 3
or {−1, 0, 1} where 1 + 1 = −1, −1− 1 = 1, 1− 1 = −1 + 1 = 0
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Arithmetic in a prime finite field Fp
reduction mod p
for x ∈ Z, compute the Euclidean division x = bp + r where 0 ≤ r < p. Then
x mod p = r .

neutral elements
0 is the neutral element for addition, 1 is the neutral element for multiplication

addition, subtraction x + y mod p, x − y mod p
compute x + y as integers, if x + y ≥ p, subtract p
Example: 3 + 5 mod 7 = 8 mod 7 = 1

multiplication: x · y mod p
Compute x · y like for integers then reduce modulo p

inversion
Because p is prime, its GCD with any integer 1 ≤ x < p is 1.
Compute Bézout’s identity ux + vp = 1 = gcd(x , p)
Then ux = 1 mod p and 1/x = u
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Extensions of prime fields

What does Fp2 mean? The field with p2 elements.
Analogy with the complex numbers C.
If p = 3 mod 4, −1 is not a square and X 2 + 1 is an irreducible polynomial in Fp[X ]
Define Fp2 as the quadratic extension Fp[X ]/(X 2 + 1)
This notation means: the quotient of all univariate polynomials a(X ) with coefficients
in Fp, modulo the polynomial X 2 + 1.
X + 5 mod (X 2 + 1) = X + 5
X 2 mod (X 2 + 1) = −1
3X 2 + 7X + 1 mod (X 2 + 1) = −3 + 7X + 1 = 7X − 2
(X + 3)× (2X − 1) = 2X 2 + 5X − 3 = −2 + 5X − 3 = 5X − 5
In general, Fpn is represented as Fp[X ]/(f (X )) where f (X ) is an irreducible polynomial
of degree n.
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Elliptic curves over finite fields
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Elliptic curves over finite fields
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Python

How to generate the set of points (x , y) of the curves
• y2 = x3 + x + 7
• y2 = x3 + x + 1

over F17? Over F31?
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Scalar multiplication
With an addition law on E , the points on the curve form a group E (K ).

Scalar multiplication (exponentiation)
The multiplication-by-m map, or scalar multiplication is

[m] : E → E
P 7→ P + . . . + P︸ ︷︷ ︸

m copies of P

for any m ∈ Z, with [−m]P = [m](−P) and [0]P = O.
• a key-ingredient operation in public-key cryptography
• given m > 0, computing [m]P as P + P + . . . P with m − 1 additions is

exponential in the size of m: m = eln m

• we can compute [m]P in O(log m) operations on E .
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Naive Scalar multiplication: Double-and-Add

Input: E defined over a field K , m > 0, P ∈ E (K )
Output: [m]P ∈ E

1 if m = 0 then return O
2 Write m in binary expansion m =

∑n−1
i=0 bi2i where bi ∈ {0, 1}

3 R ← P
4 for i = n − 2 dowto 0 do loop invariant: R = [⌊m/2i⌋]P
5 R ← [2]R
6 if bi = 1 then
7 R ← R + P
8 return R

Question: What are the best- and worst-case costs of the algorithm?
Question: Why is this algorithm dangerous if m is secret?
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Naive Scalar multiplication: Double-and-Add

msb = most significant bits (highest powers)
lsb = least significant bits (units)
Pervious slide: Most Significant Bits First algorithm.

In Washington’s book, §2.2 INTEGER TIMES A POINT p.18,
the LSB-first algorithm is given, disadvantage: one extra temporary variable.
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Frobenius map, curve trace
Let E an elliptic curve defined over a finite field Fq, q a prime power: q = p or q = pℓ,
p prime.
• E/Fq means E defined over Fq
• E (Fq) means the group of points defined over Fq (coordinates x , y ∈ Fq)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6b, ai ∈ Fq, ∆ ̸= 0
The Frobenius map in Fq is x 7→ xq.
The Frobenius map on E is

πq : E (Fq) → E (Fq)
(x , y) 7→ (xq, yq)

Note that we use xq, not xp, otherwise (xp, yp) ∈ Ep not Eq = E .

The trace of the endomorphism πq is denoted t. It satisfies the Hasse bound:
−2√q ≤ t ≤ 2√q ⇐⇒ t2 − 4q ≤ 0

The curve order is
#E (Fq) = q + 1− t = #{(x , y) ∈ Fq × Fq, (x , y) ∈ E} ∪ {O}
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Ordinary and supersingular curves

Let E an elliptic curve defined over a finite field Fq, q = pℓ a prime power
(ℓ = 1 allowed):
• a ordinary curve is such that t ̸= 0 mod p
• a supersingular curve meaning “super special” satisfies t = 0 mod p.

Textbook example:
p = 3 mod 4, E : y2 = x3 + x , (x , y) 7→ (−x , iy)
#E (Fp) = p + 1, t = 0.
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n-torsion points, isogenies, isomorphisms, j-invariant

A n-torsion point is such that its n-th multiple adds to the point at infinity, [n]P = O.

E [n] = {P ∈ E , [n]P = O}

Elliptic curves of the same order are isogenous but not necessary isomorphic.
Isomorphic curves are such that their j-invariant is equal:

E : y2 = x3 + ax + b, j(E ) = 4a3

4a3 + 27b2
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Public-key cryptography

Introduced in 1976 (Diffie–Hellman, DH) and 1977 (Rivest–Shamir–Adleman, RSA)
Asymmetric means distinct public and private keys
• encryption with a public key
• decryption with a private key
• deducing the private key from the public key is a very hard problem

Two hard problems:
• Integer factorization (for RSA)
• Discrete logarithm computation in a finite group (for Diffie–Hellman)
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Discrete logarithm problem

G multiplicative group of order r
g generator, G = {1, g , g2, g3, . . . , g r−2, g r−1}

Given h ∈ G, find integer x ∈ {0, 1, . . . , r − 1} such that h = gx .
Exponentiation easy: (g , x) 7→ gx

Discrete logarithm hard in well-chosen groups G
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Choice of group

Prime finite field Fp = Z/pZ where p is a prime integer
Multiplicative group: F∗

p = {1, 2, . . . , p − 1}
Multiplication modulo p

Finite field F2n = GF(2n), F3m = GF(3m) for efficient arithmetic, now broken

Elliptic curves E : y2 = x3 + ax + b/Fp
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Diffie-Hellman key exchange

Alice Bob

(G, ·), g , r = #G (G, ·), g , r = #Gpublic parameters
secret key skA = a← (Z/rZ)∗

public value PKA= ga
secret key skB = b ← (Z/rZ)∗

public value PKB= gb

PKA

PKB

gets Alice’s public key PKA
sk = PKA

b = gab
gets Bob’s public key PKB

sk = PKB
a = gab
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Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)
Given a finite cyclic group (G, ·), a generator g and h ∈ G, compute x s.t. h = gx .
→ can we invert the exponentiation function (g , x) 7→ gx?
Common choice of G:
• prime finite field Fp = Z/pZ (1976)
• characteristic 2 field F2n (≈ 1979)
• elliptic curve E (Fp) (1985)
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Discrete log problem

How fast can we invert the exponentiation function (g , x) 7→ gx?
• g ∈ G generator, ∃ always a preimage x ∈ {1, . . . , #G}
• naive search, try them all: #G tests
• O(

√
#G) generic algorithms

• Shanks baby-step-giant-step (BSGS): O(
√

#G), deterministic
• random walk in G , cycle path finding algorithm in a connected graph (Floyd) →

Pollard: O(
√

#G), probabilistic
(the cycle path encodes the answer)

• parallel search (parallel Pollard, Kangarous)
• independent search in each distinct subgroup

+ Chinese remainder theorem (Pohlig-Hellman)
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Discrete log problem

How fast can we invert the exponentiation function (g , x) 7→ gx?
→ choose G of large prime order (no subgroup)
→ complexity of inverting exponentiation in O(

√
#G)

→ security level 128 bits means
√

#G ≥ 2128

take #G = 2256

analogy with symmetric crypto, keylength 128 bits (16 bytes)

Use additional structure of G if any.
=⇒ Number Field Sieve algorithms.
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Sony Play-Station 3 (PS3) hacking

• Revealed in 2010 at Chaos Communication Congress in Germany
• Problem of bad randomness in the ephemeral key of the ECDSA signature:

Same one used to sign everything
→ With two valid signatures, the attackers can deduce Sony’s private key

then forge valid signatures themselves for anything
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ECDSA signature, NIST FIPS 186-4, updated to 186-5 (February 3, 2023)

Domain parameters
• field size q = p an odd prime or q = 2m a binary field
• elliptic curve parameters: curve type (Koblitz, binary, short Weierstrass,

Montgomery), curve coefficients a, b,
• group G parameters: prime order n = #G, curve cofactor h,

G = (xG , yG) a generator of order n, optional domain parameter seed

Key pair (d , P) generation, secret d and public P
• generate a private secret random 0 < d < n (in the scalar field)
• compute the public key: curve point P = [d ]G
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ECDSA signature of a message m, under the private key d
• generate a new secret random ephemeral key k ← {1, . . . , n − 1}
• compute its inverse k−1 mod n
• compute R = [k]G = (xR , yR) and set r = xR
• compute the signature (r , s) with

s = k−1 · (H(m) + r · d) mod n

• securely erase k and k−1

Moreover the standard specifies how to generate random ephemeral keys ki
and how to select a secure cryptographic hash function H.

Verify (r , s): with P = [d ]G , check that Q has xQ = r mod n, with

Q = [s−1 · H(m) mod n]G + [s−1 · r mod n]P = (xQ, yQ)
= [s−1(H(m) + r · d)]G =? R = [k]G
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PS3 attack (2010)
Same ephemeral key k used to sign different messages, say m1, m2
• (r , s1 = k−1 · (H(m1) + r · d) mod n)
• (r , s2 = k−1 · (H(m2) + r · d) mod n)

Recover the private key d
• compute the difference s1 − s2 = k−1 · (H(m1)− H(m2)) mod n
• the secret part r · d vanished!
• publicly compute H(m1)− H(m2) mod n and recover the ephemeral secret key

k = (s1 − s2)−1 · (H(m1)− H(m2)) mod n

• from (r , s1) and k, recover d = (k · s1 − H(m1)) · r−1 mod n

Knowing the manufacturer’s private key d allows anyone to sign any non-legitimate
documents (software, games for the PS3). The signature will be accepted as valid by
any verifier.
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Credits

• Rémi Clarisse PhD thesis at tel-03506116
• Jérémie Detrey for many slides and support from ARCHI’2017 summer school
• Laurent Imbert for slides from ECC’11 summer school
• Simon Masson for the graph on page 20 from his PhD thesis
• Christophe Ritzenthaler for ressources at his webpage
• Emmanuel Thomé and Cyril Bouvier for slides from a winter school at ISI Delhi in

2017
• Ben Smith for his slides from MPRI
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