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SageMath installation

SageMath library: a mathematical software suite based on Python, open-source.

Download at https://www.sagemath.org/download.html (consider mirrors)
Choose No development.

SOE
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The lecturer: Aurore Guillevic

® Permenent researcher at Inria, France Since 2016

® Visiting professor at Aarhus University, 2021-2022
See https://members.loria.fr/AGuillevic/teaching/
§Aarhus 2022, for course materials on elliptic curves

e PhD in 2010-2013 at Thales and Ecole Normale Superieure, Paris, France

® aurore.guillevic@inria.fr
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Content

® Basic introduction on elliptic curves this morning
® What is an elliptic curve, over Q, over F,7
® Group law
Scalar multiplication
Hard problems in crypto: discrete logarithm computation
Elliptic curves in cryptography (requirements, constraints, examples)
® Introduction on pairings and the CM method this afternoon
® Supersingular curves, ordinary curves
® Frobenius, torsion
® Hints on point counting
® pairings on elliptic curves for crypto
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Elliptic curves in cryptography

1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method

(ECM) for integer factoring

1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for

Diffie-Hellman key exchange

1985, Certicom: company owning patents on ECC
2000 Elliptic curves in IEEE P1363 standard

2000 Bilinear pairings over elliptic curves

NSA cipher suite B, elliptic curves for public-key crypto
2014: Quasi-polynomial-time algorithm

for discrete log computation in GF(2"), GF(3™)

No more pairings on elliptic curves over these fields
2015: in GF(p")
Pairing-friendly curves should have larger key sizes
2016: NIST Post-Quantum competition

Isogenies on elliptic curves, Hiroshi Onuki's next talk
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Widely deployed elliptic curves in cryptosystems

elliptic curve over the prime field 22%° — 19 of order 8r where r is prime

® Curve25519 in Montgomery form E: y? = x3 4+ 48662x° + x
® Ed25519 in twisted Edwards form E: — x? + y? =1 — 121665,2,2

121666 < Y
® NIST P-xxx curves
® secp256kl, BLS12-381... in proof systems and blockchains
[ )
Usage:

¢ Digital signatures (ECDSA): Play Station, EU Covid Certificate...
e Diffie-Hellman key exchange: open-ssl, TLS...
e Encryption: PGP, ...
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Why elliptic curves?

Diophantine equations
From Diophantus of Alexandria, mathematician
Finding integer or rational solutions to polynomial equations

Bachet equation y? — x3 = ¢

given an integer ¢, find a cube x3 and a square y? whose difference is ¢
Claude-Gaspard Bachet de Méziriac (1581-1638)
Translated Diophantus’ Arithmetica from Greek to latin.

PIERRE DE FERMAT 1601- 1665

Fermat's conjecture, a.k.a. Fermat's Last Theorem
Pierre de Fermat (1601-1665)

For n > 3, the equation X" + Y = Z" has no solutions in ;
non-zero integers X, Y, Z. rz‘a}m:ydzsolutianpourdeentiesn>z
Actually not proven by Fermat

https://www.wikitimbres.fr/
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Bachet's equation y? — x3 = ¢

Bachet discovered in 1621 this
duplication formula

If (x,y) is a rational solution, then

x* —8cx —x% — 20ex3 + 8¢2
4y2 8y3

is another solution in rational numbers.

If xy # 0 and ¢ # 1, —432, it gives infinitely many distinct solutions.
y2—x3=-2

Starting from 52 — 33 = 25 — 27 = —2, one obtains

(3,5) <129 383> (2340922881 113259286337279)
777710071000/ "\ 58675600 ' 449455096000
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Example in Washington's book

Volume and surface
Rearrange a pyramid of height x layers of fruits into a flat square:
solve y? = x(x + 1)(2x + 1)/6 with integer solutions
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Conic sections

X2 )2
Ellipses are conic sections defined by — + = =1
a

2 [)2

‘
k

Ellipses are not elliptic curves.
This ellipse has area mab. What is the circumference? — complicated formula with
elliptic integral.
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Bachet's equation is an elliptic curve

y2—x3=-2 y2=x3—4x+4 y2=x3—-6x+4
y y y
5 5 15

B
X
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Curves with singularities are not elliptic curves
y2=x%(x +1) Y2 = X3

6 «
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The curve is smooth

Let E: f(x,y) =0 over a field K, K =Q, K =F,, K = for example.
There is no singular point (xo, yo) such that

f(x0.y0) =0

of
a(Xo,YO) =0

of
@(Xo,)/o) =0

where 0f /Ox, Of /Oy are the partial derivatives.
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Definitions

Elliptic Curve
An Elliptic Curve over a field K is a smooth curve of genus 1 with a K-rational point.

Genus 1
A curve given by an equation

y? = f(x), where degf € {3,4}
has genus 1.

Structure of Group

Given two points P(x,y), Q(x’,y’), one can add two points P + @ and double a point
P + P (algebraic point of view) ans the group law has a geometric meaning.
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Weierstrass model

® An elliptic curve over a field K of characteristic # 2, 3 is given by an equation of
the form

E:y?=x34ax+ b, with a,be K

and A = —16(4a% + 27b?) # 0 so that E is smooth
(the cubic x3 4 ax + b has simple roots)

® The set of K-rational points of an elliptic curve is
E(K):{(X,y)e K x K; y2:x3—|—ax—|—b}U{O}
® In the general case, one considers the long Weierstrass form
2 _ .3 2
Yy 4+ aixy + a3y = x° + axx” + asx + ag,

where a1, as, a3, a4, ag € K.
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Chord and tangent rule

lp q(x,

P+Q

P(x1, 1), g(x27}/2)' X1 # X2
slope A = 2 _y2mn

Ax  xo—Xx1
line L through P and @ has equation
Ly =Xx—x1)+xn
— check that (x1,y1) € L, (x2,y2) € L

compute LN E
(x,y)elLand € E =

Liy=XMx—x1)+n
E:y>=x3+ax+b

(A(x = x1) —i—y1)2 =x3+ax+b
Solve with SageMath to avoid mistakes
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Chord and tangent rule

Liy=Xx—x1)+n
E:y>=x3+ax+b

Substitute y = A(x — x1) + y1 in E to get a cubic in x:

x3 = A2x2 + (2x10% = 2y1 A + a)x — x12)\2 +2x11 A — y12 +b=0
We know that xi, xp are solutions —

(x — x1)(x — x2) is a factor. Take out (x — x1)(x — x2):

X=X 4+x14+x=0 = x3 =\ —x; — x is solution

Use L equation to get —y3 = A(x3 — x1) + y1 (negative sign)
Finally,

N 2T x3 =M% —x1 —x
xx—x1' | 3=Ax1—x3) =y

One can check with group_law_short_weierstrass_affine.sage

21/77



Doubling a point in affine coordinates (x, y)

lpp(x,y

(

2P
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Doubling a point in affine coordinates (x, y)

The line L tangent at the curve E: f(x,y) =y?> —x3 —ax —b=0
at P(xi1,y1) has equation

of of dy
&(Xl,)ﬂ) + @(leyl)a =0

Yy—-nn
_ 2y =
(—3xf —a) + N 0
(=3xf —a)(x —x1) +2(y —y1) = 0
3x2 + a .

- ;y1 (x=x1)+(y—y1) = 0ify1 #0
—0f JOx 3¢ +a
W(Xla)/l) = 20
Again L has equation A(x —x1)+(y —y1) =0
This time we know that xj is a double root of EN L

The slope is A =
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Algebraic description of the addition operation
Let P = (x1,y1) and Q = (x2, y2) be two points on

E:y>?=x34+ax+b.
The slope of the line (P, Q) is given by

Y2—x

if P+ +Q
Xo — X1

\ =
T3 b Qandy £0
2y1

The sum of P and @ is the point

P+Q=(x3y3) = (A —x1 — x2, \(x1 — x3) — 1) -
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Points of order 2, points of order 3

Points of order 2 are such that P+ P = O, that is P = —P and P = (x,0).
At P the tangent is a vertical.

Points of order 3 are inflexion points.
2P = —P that is the intersection of the tangent at P with the curve is again at P, is

has multiplicity 3.
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Projective space and the point at infinity
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P+ (—P)

Lro=Lpo

P+O=P

—4
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Projective space and point at infinity
E/R:y?=x3-3x+1
. . . 6 1
o
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Projective space and point at infinity
E/R:y?=x3-3x+1
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Projective space and point at infinity

E/K:y>?=x*4+Ax+B  Char(K)#2,3

Affine plane (Euclidean plane) over a field K
AYK) = {(x,y): x,y € K}

Group of points of E on K
The set of rational points on the curve E/K is

E(K) = {(x,y) € A%(K) | (x, y) satisfies E |} U {Px}

where Py, is the point at infinity.
We cannot represent the point at infinity Po, in the affine space A: there is no (o0, ).

Intuition: store the denominator z of the coordinates (x, y) in a 3rd coord.
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Projective space and point at infinity

Elliptic curves are projective plane (smooth) curves

Projective plane
The projective plane of dimension 2 defined over a field K, denoted P?(K) is

P2(K) = {(X, Y,Z)e K3|(X,Y,Z) # (0,0 0)}/~

with the equivalence relation (X, Y,Z) ~ (X', Y, Z') «~—
there exists A # 0 € K such that (X, Y,Z) = (AX,A\Y',\Z").

The equivalence class w.r.t. ~ is denoted (X : Y : Z)
with colons instead of commas.

30/77



Two parallel lines meet at infinity
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At infinity is not a single point
Distinct pairs of parallel lines do not meet at the same point at infinity.
L1 N Ly ={P}in A? so L1, L> cannot share a 2nd point O

/
2 'O/
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Projective plane smooth curve

A projective plane cubic curve C in P2(K) is given by an equation
C: F(X,Y,Z)=0
where F is a homogeneous polynomial of degree 3.
An elliptic curve in P2(K) is given by an equation
E:Y?Z =X34aXZ?+ bZ3, 423 +27b% £ 0
and the group of points on & is

E(K)={(X,Y,Z) e P*(K): Fg(X,Y,Z) =0}
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Point at infinity in the Projective Plane

E:Y?Z =X34aXZ?+bZ3, 42+ 2762 #0
Z7=0 = £:0=X3
The Point at infinity is
(X,Y,Z2=0)e&(K) = X=0

There is no condition on Y except Y # 0 because (0,0,0) ¢ P2.
Then (0, ), 0) for any A # 0 is the direction of a vertical line in A2,

Point at infinity on £
The equivalence class of the point at infinity on £is O = (0:1:0).

34/77



Projective coordinates

Washington's book section 2.6.1

Addition and doubling can be done without special treatment of points of order 2
P(x,0) € A% — (X,0,1) € P?

F’()(l, Yﬁ_,;Zl) + (?()(Q, \12,222)

Suppose that none is O, then Z; # 0, Z> # 0.

Their affine part is P(xl,yl) = (Xl/Zl, Yl/Zl) and Q(Xz,yg) = (XQ/Z2, YQ/Z2).

ve-n_Y/H-V2a4a _ Y2Zi-N2
xo—x1 XoJZo—X1/Zy XoZi — XiZo

L through P and Q has slope A =

3x+a 3XZ/Z7+a 3X}+azi
2y1 - 2Y1/Zl - 2Y121

If P=Q then \ =
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Addition law in projective coordinates (in P?(K))

See the Elliptic Curve Formula Database (EFD) by Tanja Lange:

www.hyperelliptic.org/EFD/glp/auto-shortw-projective.html
Let P = (X1, Y1,Z1) and Q = (X2, Y2, Z2) be two points on

E: Y?Z = X?+aXZ? + bZ* .
Adapting directly the formula A = (y2 — y1)/(x2 — x1), resp. A = (3xZ + a)/(2y1) to

projective coordinates with x; = X;/Z;, yi = Yi/Z;, the slope of the line (P, Q) is given
by

YoZi — Y14 .

RATNS epy

X7 Xz, TF7EQ
\ =

3X? + az?

if P= d Y;
2iZ: [ Qand Y1 #0
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Addition law in projective coordinates in P?(K)

Cohen, Miyaji and Ono published at Asiacrypt'1998 the formulas

u = Y Zi—-Y1-2
v = Xo - Zt—X1-2

= P 4-ZL—vP-272 X2
X3 = v-A
Y3 = u-(V*X1Z—A)—Vv: -2
Z3 = V37212,

2 3 2

this costs 11 Mult., the squares u ,v2, then v3 = v?. v, hence
12 Mult. + 2 Squares and negligible additions and subtractions.
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Addition law in projective coordinates in P?(K)

For doubling, Cohen, Miyaji and Ono have

w = aZf +3X}

s = Y124

B = Xi-Yi-s

h = w?>-8B

X3 = 2h-s

Ys = w-(4B—h)—8-(Y1s)?
Z3 = 8s3

this costs 6 Mult., 5 Squares and w3 = w? - w, hence

7 Mult. + 5 Squares and negligible additions, subtractions and a multiplication by a.
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Corner cases of addition law in projective coordinates in P?(K)

If P=(X1,Y1,21) and Q= —P = (X1,—Y1,2Z1) with Y1 #0
then the addition formula computes

(X3, Y3, 23) = (0, Yg,O) and Y3 = 8Y13215 7& 0

This is the point at infinity O, without division by 0.

If P =(X1,0,Z1) has order 2, the doubling formula computes
(0, Y3,0) = O without a division by 0.
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Other coordinate systems and forms of elliptic curves
There are many other coordinate systems:

affine (x, y)

e projective (X,Y,Z) — (X/Z,Y/Z)

Jacobian (X, Y,Z) — (X/Z%,Y/Z3)

® extended Jacobian (X, Y, Z,Z%) — (X/Z%,Y/Z3)

that can be combined with different forms of curves:
® Short Weierstrass with a=—3,a=1,a=0, b=0, etc
® Specificities: points of order 2 or 4 available
® Montgomery form
® Edwards, twisted Edwards form
Jacobi Quartic
Huff form

— EFD contains almost all of them.
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Associativity: (P+ Q)+ R=P+(Q+ R)
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Associativity: (P+ Q)+ R =P
6

Rf‘\o\
P, \(P+Q)+R

+(Q+ R)

to

—4 -3 — -1 0/

1
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—4 -3 - -1 0/ 1

2
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Associativity: (P+ Q)+ R=P+(Q+ R)
6

to

R Q
P+Q)+R
\PC\\(P :(Q):R)
7
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Multiplicity of intersection and Bézout theorem

Idea of the proof using Bézout's theorem

Silverman—Tate book pages 16-21 and 238-240.
From Bézout's theorem, two distinct cubic projective plane curves without a common
component have exactly 9 intersection points.

Idea of the proof:
Let's consider an elliptic curve C and the eight points

P,Q,R,O,—(P+Q),P+Q,—(QR+R),(R+R)eC.
To show associativity, show that there is a unique ninth point:

—(P+Q)+R)=—-(P+(Q+R)).
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Pure maths and number theory results on elliptic curves
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Main questions on curves over QQ

Given a bivariate polynomial equation y? = f(x) with integer coefficients,
1. Are there any solutions in integers?
2. Are there any solutions in rational numbers?
3. Are there infinitely many solutions in integers?
4. Are there infinitely many solutions in rational numbers?

Consider these questions for elliptic curves, where

yv2=x34+ax®+bx+c
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Main theorems on curves over Q)

A non-singular cubic equation has only finitely many integer solutions (Siegel 1920),
bound on the coefficients: Baker—Coates, 1970.

Nagell-Lutz: Points of finite order on an elliptic curve have integer coordinates.
Mordell: the group of points is finitely generated.

Mazur: structure of the group of torsion points (points of finite order)
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Main theorems on curves over Q)

Nagell-Lutz Theorem

Let
v =f(x)=x>+ax® +bx+c

be a non-singular cubic curve with integer coefficients a, b, ¢; and let D be the
discriminant of the cubic polynomial f(x),

— —432%¢c + a%b? + 18abc — 4b3 — 272 .

Let P = (x,y) be a rational point of finite order. Then x and y are integers; and
either y = 0, in which case P has order two, or else y divides D.
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Main theorems on curves over Q)

Mazur's theorem
Let C be a non-singular rational cubic curve, and suppose that C(Q) contains a point

of finite order m. Then either

1<m<10orm=12.

More precisely, the set of all points of finite order in C(Q) forms a subgroup which has
one of the following two forms:
1. Z/nZ A cyclic group of order n with 1 < n <10 or n = 12.
2. )27 x Z./]2nZ The product of a cyclic group of order two and a cyclic group of
order 2n with 1 < n < 4.
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Main theorems on curves over Q)

Mordell's theorem (Mordell-Weil)

If a non-singular rational plane cubic curve has a rational point, then the group of
rational points is finitely generated.
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Recap on finite fields
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Finite field

Prime finite field: a finite field of prime order.
(a prime field F has no proper non-trivial subfield K C F)

3 notations for the same object:
® 7./pZ: the integers modulo p,
® GF(p) for Galois Field,
® [, (the field of p elements).

Representation: the integers {0,1,2,...,p — 1}
or the centered set {—(p—1)/2,...,—1,0,1,...,(p—1)/2}.

The prime number p is the characteristic of the finite field.

Field with p = 2: {0,1}, where 1+ 1 =0 mod 2

Field with p = 3: {0,1,2} where 1+1=2,1+2=0mod3,2+2=1mod 3
or{—-1,0,1} where1+1=-1,-1-1=1,1-1=-141=0
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Arithmetic in a prime finite field I,

reduction mod p
for x € Z, compute the Euclidean division x = bp 4+ r where 0 < r < p. Then
xmod p=r.

neutral elements
0 is the neutral element for addition, 1 is the neutral element for multiplication

addition, subtraction x + y mod p, x — y mod p

compute x + y as integers, if x + y > p, subtract p
Example: 3+5mod7=8mod7=1

multiplication: x - y mod p
Compute x - y like for integers then reduce modulo p

inversion

Because p is prime, its GCD with any integer 1 < x < p is 1.
Compute Bézout's identity ux + vp = 1 = ged(x, p)

Then ux =1mod p and 1/x = u
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Extensions of prime fields

What does > mean? The field with p? elements.

Analogy with the complex numbers C.

If p =3 mod 4, —1 is not a square and X? + 1 is an irreducible polynomial in Fp[X]
Define F 2 as the quadratic extension F,[X]/(X? 4 1)

This notation means: the quotient of all univariate polynomials a(X) with coefficients
in ', modulo the polynomial X2 +1.

X+5mod (X2 +1)=X+5

X2mod (X?+1)=-1

3X24+7X +1mod (X2 +1)=-3+7X+1=7X-2

(X+3)x (2X —1)=2X?+5X -3=-2+5X-3=5X -5

In general, [Fpn is represented as F,[X]/(f (X)) where f(X) is an irreducible polynomial
of degree n.
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Elliptic curves over finite fields
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Elliptic curves over finite fields
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Elliptic curves over finite fields
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Elliptic curves over finite fields
E/Fni y2 :X3+X+1
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Python

How to generate the set of points (x, y) of the curves
o 2 =x3 4 x47
e 2 =x34x+1

over F17? Over [F317?
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Scalar multiplication on elliptic curves
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Scalar multiplication

With an addition law on E, the points on the curve form a group E(K).
Scalar multiplication (exponentiation)

The multiplication-by-m map, or scalar multiplication is

[m]: E — E
P - P+...+P
N————

m copies of P
for any m € Z, with [-m]P = [m](—P) and [0]P = O.
® 3 key-ingredient operation in public-key cryptography

® given m > 0, computing [m|P as P+ P + ... P with m — 1 additions is
exponential in the size of m: m = ¢e"™

® we can compute [m]P in O(log m) operations on E.
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Naive Scalar multiplication: Double-and-Add

Input: E defined over a field K, m >0, P € E(K)
Output: [m|P € E

1 if m =0 then return O

2 Write m in binary expansion m = 27;01 b;2" where b; € {0,1}

3 R<P

4 for i = n— 2 dowto 0 do loop invariant: R = [[m/2'|]P
5 R+ [2)R

6 if bj =1 then

7 R+~ R+P

8 return R

Question: What are the best- and worst-case costs of the algorithm?
Question: Why is this algorithm dangerous if m is secret?
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Naive Scalar multiplication: Double-and-Add

msb = most significant bits (highest powers)
Isb = least significant bits (units)
Pervious slide: Most Significant Bits First algorithm.

In Washington's book, §2.2 INTEGER TIMES A POINT p.18,
the LSB-first algorithm is given, disadvantage: one extra temporary variable.
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Frobenius map, torsion points, curve order, curve trace (new section)
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Frobenius map, curve trace

Let E an elliptic curve defined over a finite field Fq, g a prime power: g = p or g = p,
p prime.

® E/F, means E defined over F

® E£(F4) means the group of points defined over F, (coordinates x, y € [Fy)

E:y? +aixy + a3y = x> + apx® + agx + agh, a; € Fy, A #0
The Frobenius map in Fg is x — x9.
The Frobenius map on E is
mq: E(Fq) - E(Fq)
(xy) = (x9,59)

Note that we use x9, not xP, otherwise (xP,yP) € EP not E9 = E.

The trace of the endomorphism 7, is denoted t. It satisfies the Hasse bound:
—2/q<t<2,/q &= t*—4g<0
The curve order is

#E(Fq) =q+1-t=#{(x,y) €Fqg xFq, (x,y) € E}U{O}
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Ordinary and supersingular curves

Let E an elliptic curve defined over a finite field Fy, ¢ = p’ a prime power
(¢ =1 allowed):

® a ordinary curve is such that t # 0 mod p

® 3 supersingular curve meaning “super special” satisfies t = 0 mod p.
Textbook example:

p=3mod4, E: y> =x3+x, (x,y) = (—x,iy)
#E(F,) =p+1,t=0.
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n-torsion points, isogenies, isomorphisms, j-invariant

A n-torsion point is such that its n-th multiple adds to the point at infinity, [n]P = O.

E[n]={P€E, [n|]P=0}

Elliptic curves of the same order are isogenous but not necessary isomorphic.
Isomorphic curves are such that their j-invariant is equal:

433

E:y?=x3 b, (E) = 575
yo=xttaxt b J(B) = 5o
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The Discrete Log Problem in cryptography
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Public-key cryptography

Introduced in 1976 (Diffie-Hellman, DH) and 1977 (Rivest-Shamir—Adleman, RSA)
Asymmetric means distinct public and private keys

® encryption with a public key

® decryption with a private key

® deducing the private key from the public key is a very hard problem
Two hard problems:

® Integer factorization (for RSA)

e Discrete logarithm computation in a finite group (for Diffie—Hellman)
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Discrete logarithm problem

G multiplicative group of order r
g generator, G = {1,g,g%,g%,...,8" 2,1}

Given h € G, find integer x € {0,1,...,r — 1} such that h = g*

Exponentiation easy: (g, x) — g*
Discrete logarithm hard in well-chosen groups G
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Choice of group

Prime finite field F, = Z/pZ where p is a prime integer

Multiplicative group: Fj, = {1,2,...,p — 1}

Multiplication modulo p

Finite field Fo» = GF(2"), F3m = GF(3™) for efficient arithmetic, now broken

Elliptic curves E: y? = x3 + ax + b/F,

68/77



Diffie-Hellman key exchange

Alice Bob



Diffie-Hellman key exchange

Alice Bob
(G,-),g,r=#G public parameters (G,-),g,r=#G



Diffie-Hellman key exchange

Alice Bob
(G")?gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*

public value PK, = g2 public value PKg= g”



Diffie-Hellman key exchange

Alice Bob
(G")7gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*
public value PK, = g2 PKg public value PKg= g”
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Diffie-Hellman key exchange

Alice Bob
(G")?gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*
public value PK, = g2 PKg public value PKg= g”

N PKA 4
gets Bob's public key PKg gets Alice’s public key PK4

sk = PKg? = g2 sk = PKpP = g2
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Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)

Given a finite cyclic group (G, ), a generator g and h € G, compute x s.t. h = g*.
— can we invert the exponentiation function (g, x) — g*?

Common choice of G:
e prime finite field F, = Z/pZ (1976)
e characteristic 2 field Fan (= 1979)
® elliptic curve E(F,) (1985)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}

® naive search, try them all: #G tests

® O(\/#G) generic algorithms
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}
® naive search, try them all: #G tests
® O(\/#0G) generic algorithms

® Shanks baby-step-giant-step (BSGS): O(y/#G), deterministic

® random walk in G, cycle path finding algorithm in a connected graph (Floyd) —
Pollard: O(+/#G), probabilistic
(the cycle path encodes the answer)

® parallel search (parallel Pollard, Kangarous)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}
® naive search, try them all: #G tests
O(+/#G) generic algorithms
® Shanks baby-step-giant-step (BSGS): O(1/#G), deterministic
® random walk in G, cycle path finding algorithm in a connected graph (Floyd) —
Pollard: O(1/#G), probabilistic

(the cycle path encodes the answer)
® parallel search (parallel Pollard, Kangarous)

independent search in each distinct subgroup
+ Chinese remainder theorem (Pohlig-Hellman)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
— choose G of large prime order (no subgroup)
— complexity of inverting exponentiation in O(+/#G)

— security level 128 bits means /#G > 2128
take #G = 226
analogy with symmetric crypto, keylength 128 bits (16 bytes)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
— choose G of large prime order (no subgroup)
— complexity of inverting exponentiation in O(+/#G)

— security level 128 bits means /#G > 2128
take #G = 226
analogy with symmetric crypto, keylength 128 bits (16 bytes)

Use additional structure of G if any.
= Number Field Sieve algorithms.
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Sony Play-Station 3 (PS3) hacking

® Revealed in 2010 at Chaos Communication Congress in Germany

® Problem of bad randomness in the ephemeral key of the ECDSA signature:

Same one used to sign everything
— With two valid signatures, the attackers can deduce Sony's private key
then forge valid signatures themselves for anything
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https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

ECDSA signature, NIST FIPS 186-4, updated to 186-5 (February 3, 2023)

Domain parameters
e field size g = p an odd prime or ¢ = 2™ a binary field

e elliptic curve parameters: curve type (Koblitz, binary, short Weierstrass,
Montgomery), curve coefficients a, b,

® group G parameters: prime order n = #G, curve cofactor h,
G = (xg, yc) a generator of order n, optional domain parameter seed

Key pair (d, P) generation, secret d and public P

® generate a private secret random 0 < d < n (in the scalar field)
® compute the public key: curve point P = [d]|G
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https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

ECDSA signature of a message m, under the private key d

® generate a new secret random ephemeral key k < {1,...,n—1}
e compute its inverse k! mod n
® compute R = [k]G = (xgr, yr) and set r = xg

® compute the signature (r,s) with
s=k . (H(m)+r-d)modn

e securely erase k and k!

Moreover the standard specifies how to generate random ephemeral keys k;
and how to select a secure cryptographic hash function H.
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ECDSA signature of a message m, under the private key d

® generate a new secret random ephemeral key k < {1,...,n—1}
e compute its inverse k! mod n
® compute R = [k]G = (xgr, yr) and set r = xg

® compute the signature (r,s) with
s=k . (H(m)+r-d)modn

e securely erase k and k!

Moreover the standard specifies how to generate random ephemeral keys k;
and how to select a secure cryptographic hash function H.

Verify (r,s): with P = [d]|G, check that @ has xg = r mod n, with

Q

[s71- H(m) mod n]G + [s71 - r mod n]P = (xq, yq)
[s7Y(H(m) +r-d)]G =" R=[K]G
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PS3 attack (2010)

Same ephemeral key k used to sign different messages, say my, mo
® (r,s1 =kt (H(my)+r-d) mod n)
® (r,sp =kt (H(m2)+r-d) mod n)

Recover the private key d
e compute the difference s; — sp = k=1 - (H(m1) — H(m3)) mod n
® the secret part r - d vanished!

® publicly compute H(my) — H(m2) mod n and recover the ephemeral secret key
k= (51 — 52)_1 . (H(ml) — H(mz)) mod n
e from (r,s1) and k, recover d = (k-s3 — H(m1)) - r~Y mod n

Knowing the manufacturer’'s private key d allows anyone to sign any non-legitimate
documents (software, games for the PS3). The signature will be accepted as valid by
any verifier.
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