
ECC school: The Montgomery ladder in SageMath

Aurore Guillevic

Academia Sinica, Taipei, Taiwan

October 28, 2024

1. The Montgomery ladder in SageMath on curve25519

We will implement the Montgomery ladder for constant-time scalar multiplication on an elliptic curve.
The general Montgomery curve, for B ̸= 0 and A ̸= ±2, is

(1) EM : By2 = x3 +Ax2 + x over a finite field Fq of characteristic p ≥ 5 .

For testing in SageMath, we need a correspondance with a leading coefficient of y2 to be 1. Let us
neutralise the B coefficient of y2 by dividing the curve equation by B3 ∈ Fq:

EM

B3
:
By2

B3
=

x3

B3
+

Ax2

B3
+

x

B3

⇐⇒
(y

B

)2

=
(x

B

)3

+
A

B

(x

B

)2

+
1

B2

x

B

⇐⇒ y′2 = x′3 +
A

B
x′2 +

1

B2
x′ with x′ = x/B, y′ = y/B

therefore there is a Fq-rational isomorphism between EM and E′M

E′M : y′2 = x′3 +
A

B
x′2 +

1

B2
x′

i : EM →E′M

(x, y) 7→(x/B, y/B)

and the inverse is

i−1 : E′M →EM

(x′, y′) 7→(x ·B, y ·B)

We will use the representation E′M for tests in SageMath as follows. Let E be the curve25519 curve:

p = ZZ(2**255-19)

Fp = GF(p)

Montgomery form is y^2 = x^3 + 486662*x^2 + x

A = Fp(486662)

B = Fp(1)

EM = EllipticCurve([0, A/B, 0, 1/B**2, 0])

The Montgomery form of elliptic curve is not competitive compared to the short Weierstrass form with
the double-and-add algorithm. However Peter L. Montgomery observed that skipping the y-coordinate
and using projective X,Z-coordinates, the scalar multiplication becomes competitive.

In this part, we will implement the group law in X,Z-coordinates, then the Montgomery ladder
for scalar multiplication. The file ladder_skeleton.py contains the addition and doubling in affine
and projective coordinates on EM with test functions, to serve as an example. Download the file
ladder_skeleton.py and write the answers to the questions as SageMath functions in this
file. Test with ladder_tests.py

Question 1. Implement the x-only addition and doubling in x-only affine coordinates according to the
formulas:

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on EM . Let P1+P2 = (x3, y3) and P1−P2 = (x4, y4).
Assume that x1 ̸= x2, x1 ̸= 0 or x2 ̸= 0, and x4 ̸= 0. From Montgomery’s formulas one has

x3x4(x1 − x2)
2 = (x1x2 − 1)2(2)

1

and for P1 = P2, with x1 ̸= 0,

(3) 4x1x3(x
2
1 +Ax1 + 1) = (x2

1 − 1)2 .

Knowing P1, P2, P1 − P2, one can deduce P3 = P1 + P2 for P1 ̸= P2:

x3 =
(x1x2 − 1)2

x4(x1 − x2)2
(4)

and for doubling P1:

(5) x3 =
(x2

1 − 1)2

4x1(x2
1 +Ax1 + 1)

.

The functions whose header are given below are sketched in the PYTHON file of the hand-in, complete
these functions in the file:

def add_affine_x_only(x1, x2, x4):

def double_affine_x_only(x1, A):

Question 2. Test your functions of the previous question. The functions assume that the inputs are not
O nor points of order 2, more precisely: x1 ̸= x2, x1 ̸= 0 or x2 ̸= 0, and x4 ̸= 0.

Question 3. Implement the x-only addition and doubling in X,Z-projective coordinates, based on the
affine coordinates. It means to avoid the divisions, you will have two coordinates (X,Z) such that the
correspondance with the affine coordinates is x = X/Z for non-zero Z, and if P (X,Z = 0), then P
corresponds to the point at infinity O.

Remember that you can use the Elliptic Curve Formula Database at http://www.hyperelliptic.
org/EFD/ to check your answers.

Use these function names:

def add_proj_x_only(X1, Z1, X2, Z2, X4, Z4):

def double_proj_x_only(X1, Z1, A):

Question 4. Test your functions of the previous question.

Montgomery’s binary scalar multiplication is given in Algorithm 1. Montgomery observed that at each
step, the difference R0 −R1 is always equal to P .

Algorithm 1: Montgomery’s binary scalar multiplication

Input: m =
∑n−1

i=0 bi2
i with bn−1 = 1, and point P ∈ EM in affine coordinates

Output: [m]P
1 (R0, R1)← (P, [2]P)

2 for i = n− 2 down to 0 do
3 if bi = 0 then
4 (R0, R1)← ([2]R0, R0 +R1)

5 else
6 (R0, R1)← (R0 +R1, [2]R1)

7 return R0

This gives the Montgomery ladder in Algorithm 2

Algorithm 2: Montgomery’s ladder for scalar multiplication

Input: m =
∑n−1

i=0 bi2
i with bn−1 = 1, and xP affine x-coordinate of point P ∈ EM

Output: x-coordinate of [m]P
1 (x0, x1)← (xP , double affine x only(xP , A))

2 for i = n− 2 down to 0 do
3 if bi = 0 then
4 (x0, x1)← (double affine x only(x0), add affine x only(x0, x1, xP)

5 else
6 (x0, x1)← (add affine x only(x0, x1, xP), double affine x only(x1, A)

7 return x0

2

http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/

Question 5. Implement the Montgomery ladder, using the two affine functions of Question 1.

Question 6. Test your function of the previous question.

Question 7. Implement the Montgomery ladder, using the two projective functions of Question 3.

Question 8. Test your function of the previous question.

3

	1. The Montgomery ladder in SageMath on curve25519

